The recognition of static versus dynamic faces in prosopagnosia

David Raboy, Alla Sekunova, Michael Scheel, Vaidehi Natu, Samuel Weimer, Brad Duchaine, Jason Barton, Alice O'Toole

OBJECTIVE
- compare static versus dynamic face recognition
- prosopagnosia and neurologically intact controls

BACKGROUND
- Two-stream hypothesis (Haxby et al., 2000)
 - invariant information (identity)
 - fusiform gyrus (FFA)
 - inferior occipital gyrus (OFA)
 - changeable information (social communication)
 - superior temporal sulcus (STS)
- pSTS - a “back-up” face recognition system
 - O'Toole, Roark & Abd, 2002; Roark et al., 2003
 - dynamic identity signatures
 - structure-from-motion

RATIONALE
- Can prosopagnosics recognize moving faces?
 - with sparing of the pSTS “back-up system”
 - possible that pSTS can support recognition
 - detectable when faces are learned in motion

Previous work
- “CS” developmental prosopagnosia
- could discriminate identity in moving faces
 - (Steed et al., 2007)

What about prosopagnosia from a lesion?
- (cf. also Lander et al., 2004; Humphreys & Riddoch, 1987)

PARTICIPANTS
- 19 neurologically intact controls
- 2 prosopagnosics with intact STS (Barton et al., 2009)
- MR and BP

STIMULI
- dynamic face stimuli (5 s video clips)
 - person speaking or expressing (smile, laugh)
- static face stimuli
 - 5 frames from video presented in random order

EXPERIMENTAL SETUP
- Face Recognition Task
 - learn - 20 faces
 - from static or dynamic face presentations
 - within-subject
 - test 80 faces
 - 20 images/videos identical to learned stimuli
 - 20 images/videos “changed” (hair style, etc.)
 - 40 images/videos from 20 novel identities
- response - Old? or New?
- d' - face recognition accuracy
- measured on first occurrence of identity in test

RESULTS - Does Motion Affect Recognition?

Recognition Scores for Static and Dynamic Face Stimuli

<table>
<thead>
<tr>
<th></th>
<th>FFA</th>
<th>OFA</th>
<th>STS</th>
<th>Anterior temporal areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>MR</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>BP</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

PATIENT BRAIN SCANS

MR (70 yr. old male)
- lesions
 - fusiform temporal

BP (30 yr. old female)
- lesions
 - anterior temporal

IMPACTED (BP and MR)
- Warrington face test
- Cambridge face memory test
- famous face recognition

CONCLUSION
- motion advantage for MR and BP in the challenging changed stimulus condition
- prosopagnosics with pSTS may be able to use this system to recognize moving faces
- no motion advantage for MR and BP for the identical stimulus condition
- matching on external features (e.g., hair?)
- no motion effect for neurologically intact controls
- for either identical or changed stimulus conditions
- consistent with previous work (cf. O’Ttoole et al., 2002)

REFERENCES

ACKNOWLEDGEMENT
Funding acknowledgments: CHTR MOP-77915, Canada Research Chair program, Michael Smith Foundation for Health Research (JL).