Information For
Campus
Comet Calendar Event Details
Mathematical Sciences Colloquium by Vladimir Dragovic
Friday, Feb 10
2 p.m. - 3 p.m. Location: JO 4.614

Vladimir Dragovic

The University of Texas at Dallas

Algebraic Geometry and the Schlesinger systems: from Poncelet to Painleve VI and beyond

A new method to construct algebro-geometric solutions of rank two Schlesinger systems is presented. For an elliptic curve represented as a ramified double covering of CP^1, a meromorphic differential is constructed with the following property: the common projection of its two zeros on the base of the covering, regarded as a function of the only moving branch point of the covering, is a solution of a Painleve VI equation. This differential provides an invariant formulation of a classical Okamoto transformation for the Painleve VI equations. A generalization of this differential to hyperelliptic curves is also constructed. The corresponding solutions of the rank two Schlesinger systems associated with elliptic and hyperelliptic curves are constructed in terms of these differentials. The initial data for the construction of the meromorphic differentials include a point in the Jacobian of the curve, under the assumption that this point has nonvariable coordinates with respect to the lattice of the Jacobian while the branch points vary. The research has been partially supported by the NSF grant 1444147. This is joint work with Vasilisa Shramchenko.

 

Sponsored by the Department of Mathematical Sciences

Contact Info:
Viswanath Ramakrishna, 972-883-6873
Questions? Email me.

Tagged as Lectures/Seminars
See more events from Natural Sciences & Mathematics
View other events on the Comet Calendar