Open Sets, Closed Sets, and Boundary Points

Open Ball in \(\mathbb{R}^n \):

Let \(p \) be a point in \(\mathbb{R}^n \) and \(r > 0 \). Then \(B(p, r) \), the open ball of radius \(r \) and center \(p \), is the set \(\{ y \in \mathbb{R}^n \mid |p - y| < r \} \).

Definition of an Open Set in \(\mathbb{R}^n \):

A subset of \(Q \) in \(\mathbb{R}^n \) is open if for every \(p \) in \(Q \), there is at least one radius \(r > 0 \) such that the open ball \(B(p, r) \) is completely contained in \(Q \).

Examples:

Show that the upper half-plane \(Q = \{(x, y) \mid y > 0 \} \) is open.

Let \(p = (p_1, p_2) \) be in \(Q \). Then \(p_2 > 0 \). Need to find \(r \) such that \(B(p, r) \) is completely in \(Q \). Let \(q = (q_1, q_2) \) be in \(B(p, r) \). Then \((p_1 - q_1)^2 + (p_2 - q_2)^2 < r^2 \). Pick \(r = p_2 \). So \((p_1 - q_1)^2 + (p_2 - q_2)^2 < p_2^2 \). Since \((p_1 - q_1)^2 > 0 \), then \((p_2 - q_2)^2 < p_2^2 \). So \(q_2 > 0 \). Therefore, \(Q \) is indeed open.

Show that \(Q = \{(x, y, z, w) \mid w < 2 \} \) is open.

Let \(p = (x_1, y_1, z_1, w_1) \) be in \(Q \) such that \(w_1 < 2 \). Need to find \(r \) so that \((x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2 + (w_1 - w_2)^2 < (w_1 - 2)^2 \). Pick \(r = |w_1 - 2| \). So since \((x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2 > 0 \), it follows that \((w_1 - w_2)^2 < (w_1 - 2)^2 \). Then \(w_2 < 2 \). Therefore, \(Q \) is indeed open.

Properties of Open Sets:

1. \(\mathbb{R}^n \) is open.
2. The empty set, \(\emptyset \), is open.
3. The intersection of a finite number of open sets is open.
4. The union of an arbitrary collection of open sets is open.

Example:

Show that \(Q = \{(x, y, z, w) \mid y > 0, w < 2 \} \)

\[Q = Q_1 \cap Q_2\]

where

\[Q_1 = \{(x, y) \mid y > 0\} \text{ and } Q_2 = \{(x, y, z, w) \mid w < 2\}\]

We have already showed that are \(Q_1 \) and \(Q_2 \) both open.

Therefore, the intersection \(Q_1 \cap Q_2 \) is open.

Boundary Point and Boundary of a Subset:

Let \(K \) be a subset of \(\mathbb{R}^n \) (\(K \) not need to be open). Let \(p \) be a point in \(\mathbb{R}^n \) (within or without of \(K \)). Then \(p \) is a boundary point of \(K \) if for every radius \(r > 0 \), \(B(p, r) \) contains at least one point in \(K \) and at least one point not in \(K \).

Examples:

Find the boundary points of \(K = [1, 2) \).

Boundary points of \(K \): \{1\} and \{2\}
Let K be the punctured open disk

$$K = \{(x, y) \mid x^2 + y^2 < 1 \text{ and } (x, y) \neq (0, 0)\}.$$

Find the boundary of K.

Boundary Points: The origin and points on the circle $x^2 + y^2 = 1$.

Closed Set:

Definition 1: A subset of K of \mathbb{R}^n is closed if it contains all its boundary points. (Closure of a subset K is K plus all its boundary points).

Examples:

The set $[1,2)$ is not closed since $\{2\}$ is a boundary point, but it does not belong to the set $[1,2)$.

The set $K = \{(x, y) \mid x^2 + y^2 < 1 \text{ and } (x, y) \neq (1/(3^{1/2}), 1/(3^{1/2}))\}$ is not closed because the point $(1/(3^{1/2}), 1/(3^{1/2}))$ is a boundary point for K, but it does not belong to K.

Definition 2: A subset K of \mathbb{R}^n is closed if its compliment $\mathbb{R}^n - K = \{p \in \mathbb{R}^n \mid p \not\in K\}$ is open.

Properties of Closed Sets:

1. \mathbb{R}^n is closed.
2. The empty set, \emptyset, is closed.
3. The intersection of a finite number of open sets is closed.
4. The union of an arbitrary collection of open sets is closed.