REAL ANALYSIS

QUALIFYING EXAM, SPRING 2014; CLOSED BOOKS

Solve four of the following five problems

1. Let $f : [0, 1] \to \mathbb{R}$ be a differentiable function.
 (i) Is it true that f' is necessarily continuous? Justify your answer.
 (ii) Is it true that f' is necessarily measurable? Justify your answer.

2. Compute $\int_{[0,\pi/2]} f d\mu$, where

 $f(x) = \begin{cases}
 \cos(x), & \text{if } \sin(x) \text{ is rational;} \\
 \cos^3(x), & \text{if } \sin(x) \text{ is irrational}
 \end{cases}$

3. Let $f : [a, b] \to \mathbb{R}$ be a measurable function such that $\int_a^b |f| d\mu = 0$. Show that $f(x) = 0$ a.e.

4. Let $f : [a, b] \to \mathbb{R}$ be a summable function and $\{c_n\}$ an increasing sequence such that $a < c_n < b$ for all $n \in \mathbb{N}$. Put $c := \lim_{n \to \infty} c_n$. Show that

 $\int_{c_1}^c f d\mu = \sum_{n=1}^\infty \int_{c_n}^{c_{n+1}} f d\mu.$

5. (i) Let $f : \mathbb{R} \to \mathbb{R}$ be an additive function (i.e. $f(x + y) = f(x) + f(y)$ for all $x, y \in \mathbb{R}$). Assume, in addition, that f is continuous. Show that f is linear.

 (ii) Is Statement (i) true if we replace continuity by measurability? Justify your answer.
REAL FUNCTIONAL ANALYSIS (MATH 6302)

QUALIFYING EXAM, SPRING 2014; CLOSED BOOKS

Solve four of the following five problems

1. Let E be a Banach space. Show that E is finite-dimensional if and only if every closed bounded subset of E is compact.

2. Let E be a normed space, $A, B \subseteq E$ and $A + B := \{a + b : a \in A, \ b \in B\}$.

 (i) Assume A is open and B is arbitrary. Show that $A + B$ is open.

 (ii) Assume A is closed and B is compact. Show that $A + B$ is closed.

 (iii) Assume A is closed and B is closed. Is $A + B$ necessarily closed? Justify your answer.

3. Let H be the space of real continuous functions on $[-1, 1]$ equipped with the inner product $< f, g > := \int_{-1}^{1} f(t)g(t)dt$. Let $K \subset H$ be the linear subspace of H consisting of functions which are equal to zero at zero. Find the orthogonal complement of K in H (i.e., the linear space of functions from H orthogonal to any function from K). Justify your answer.

4. Let $A : E \rightarrow F$ be a linear operator between two normed spaces. Show that A is bounded if and only if there exists an open non-empty set $U \subseteq E$ such that $A(U)$ is bounded in F.

5. Let c_0 be the space of real sequences converging to zero and equipped with the sup-norm. Let c_0^* stand for the conjugate (dual) space of linear continuous functionals on c_0 equipped with the standard norm: if $f \in c_0^*$, then:

 $$\|f\| = \sup_{\|x\| \leq 1} |f(x)|.$$

Show that c_0^* is isometrically isomorphic to the space l^1 of real sequences $\{x_n\}$ with $\sum_n |x_n| < \infty$ equipped with the norm $\sum_n |x_n|$.
THIS IS A CLOSED BOOK, CLOSED NOTES EXAM
Give clear and complete answers with full details in proofs

1. Let $A(t) \in C(-\infty, \infty)$ be periodic with period T, i.e. $A(t + T) = A(t)$.
 [a] (25 points) Prove that the fundamental set of solutions $\Phi(t)$ for the ODE $x' = A(t)x$ for $-\infty < t < \infty$ can be represented as $\Phi(t) = P(t)e^{tR}$, where $P(t)$ is a periodic nonsingular matrix with period T and R is a constant matrix.
 [b] (25 points) Find the fundamental set of solutions for $x'' = \sin(t)x'$. Find R and explicitly show that the associated 2×2 matrix $P(t)$ for this problem is periodic.

2. (25 points) Suppose for a given continuous function $f(t)$ we find the equation

$$x' = \begin{pmatrix} -5 & 2 \\ -4 & 1 \end{pmatrix} x + f(t)$$

has a solution $\phi(t)$ which satisfies: $\sup\{|\phi(t)| : \tau \leq t < \infty\} < \infty$. Prove that all other solutions to above ODE must satisfy the same boundedness condition.

3. (25 points) Consider the boundary value problem on $[0, 2]$ for the ODE

$$Lx = \lambda x, \text{ where } Lx = ix', \text{ and } x(2) = \alpha x(0)$$

with α being a constant complex number and $i = \sqrt{-1}$. Find the associated eigenvalues and eigenfunctions of this problem. For what values of α the eigenvectors are orthogonal. Please clearly justify your answer.
Qualifying Exam: Ordinary Differential Equations II, April 2014
Math 6316

THIS IS A CLOSED BOOK, CLOSED NOTES EXAM
Give clear and complete answers with full details in proofs

1. [a] (25 points) Determine all the equilibrium point of

\[\begin{align*}
 x_1' &= -x_2 + 2 \sin x_1 \\
 x_2' &= x_1 - x_1 x_2.
\end{align*} \]

[b] (25 points) Determine the stability of \(x = 0 \) for the nonlinear system given in part(a) by finding an appropriate Lyapunov function.

2. [a] (25 points) Analyze the stability properties of the equilibrium point \(x = 0 \) for the following equation.

\[x' = \begin{pmatrix} 2 & 1 \\ 7 & 3 \end{pmatrix} x + \begin{pmatrix} (e^{x_1} - 1) \sin(x_2 t) \\ e^{-t} x_1 x_2 \end{pmatrix} \]

[b] (25 points) For the above nonlinear system, find the tangent spaces to its stable and unstable manifolds at the origin (if they exist).
Name: ____________________________

Abstract Algebra Qualifying Exam
Spring 2014
Tobias Hagge

April 9, 2014

Do as many as you are able. Show all work.

1. Let G be a group. Show that if $g^2 = e$ for all $g \in G$, then G is abelian.

2. Let G be a group. Show that if $G/Z(G)$ is cyclic, then G is abelian.

3. Show that if (n_1, \ldots, n_k) is a sequence of relatively prime positive integers, then $\mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}$ is a cyclic group.

4. Let G be a group of order 12. Show that either G has a normal subgroup of order 3, or $G \cong A_4$ (hint: consider action by conjugation on the set of Sylow 3-subgroups).

5. Let T be a planar region bounded by an equilateral triangle with barycenter at the origin. The symmetric group S_3 acts by reflections and rotations on T, such that the action by permutation σ on T reduces to permutation by σ of the vertices. Up to isomorphism, is every transitive S_3-set present as an orbit of this action?

6. Show that no group of order 14 is simple.

7. Show that in a finite commutative ring R with $1 \neq 0$, every prime ideal is maximal.

8. Let R be a commutative ring with $1 \neq 0$. Suppose that every nonzero proper ideal of R is maximal. Show that if R has two distinct maximal ideals, then there are fields F_1 and F_2 such that $R \cong F_1 \oplus F_2$.

9. Show that if R is a ring and M is an irreducible R-module, then the ring $\text{End}_M(R)$ is a division ring.

10. Show that every module over a field is free.
1. Let $a, b \in \mathbb{C}$, $k > 0$. Show that the set of points $\{z \in \mathbb{C} | |z - a| = k|z - b|\}$ is a line or circle.

2. Show that any meromorphic function on the plane with a finite limit at infinity is a rational function.

3. Prove the fundamental theorem of algebra using the argument principle. In particular, show that if f is a polynomial of degree $n > 0$ and D is a sufficiently large disk centered at the origin, f contains n zeros with multiplicity.

4. Show that every conformal homeomorphism of the upper half plane can be expressed in the form

$$f(z) = \frac{az + b}{cz + d},$$

where $a, b, c, d \in \mathbb{R}$.

5. Compute the residue of the function $\cot z$ at $z = 0$.

6. Compute $\int_0^{\infty} \frac{\cos \pi}{x^2 + 1} dx$ using complex methods.
Name:

Instructions: You must show all your work to receive full credit. Partial answers will only receive partial credit. Please choose 3 of the 4 problems to solve. Please indicate which 3 problems you would like graded.

(1a) If

\[A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \]

what are the singular values of \(A \)?

(b) If the matrix of left singular vectors is

\[V = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \]

what is the minimum length least squares solution \(x^+ \) to \(Ax = b \) if

\[b = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]

(c) Prove the theoretical formula you used in Part (b) gives the minimum norm least squares solution.

(2) Assume that \(A \in \mathbb{R}^{n \times n} \) has \(n \) linearly independent eigenvectors \(v_1, \ldots, v_n \). Let \(\lambda_1, \ldots, \lambda_n \) denote the eigenvalues associated with the eigenvectors \(v_1, \ldots, v_n \). Show that the sequence \((q_j) \) generated by the power method converges to the dominant eigenvector \(v_1 \) with convergence ratio \(r = |\lambda_2/\lambda_1| \), provided that \(|\lambda_1| > |\lambda_2| > |\lambda_3| \), and \(c_1 \neq 0 \) and \(c_2 \neq 0 \).
(3) Let
\[A = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}. \]

Find the QR factorization of \(A \) using
(a) Householder transforms,
(b) Givens rotations.

(c) Which of these two algorithms would be more efficient to use for this factorization if your matrix were large?

(d) Assuming \(b = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \), use one of your QR factorizations above to find the solution \(x \) to the system \(Ax = b \).

(4a) Show that for any induced matrix norm, \(\kappa(A) \geq 1 \).

(b) If \(Ax = b \) and \((A + \delta A)(x + \delta x) = b \), prove the inequality
\[\frac{||\delta x||}{||x + \delta x||} \leq \kappa(A) \frac{||\delta A||}{||A||} \]
where \(\kappa(A) \) is the condition number of the matrix \(A \).

(c) Verify the inequality for the system
\[
\begin{pmatrix}
1 & 1/2 & 1/3 \\
1/2 & 1/3 & 1/4 \\
1/3 & 1/4 & 1/5
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} =
\begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}
\]
using
\[\Delta A = \begin{pmatrix} 0 & 0 & 0.00003 \\ 0 & 0 & 0 \\
0 & 0 & 0 \end{pmatrix}. \]

(d) Is the determinant of a matrix a good measure of the condition of a matrix? Give an example to help justify your answer.