

 THE COST OF SOFTWARE FAILURES

 SIMEON NTAFOS

 Computer Science Program

 The University of Texas at Dallas

 Richardson, TX 75083-0688

�
Abstract: Software reliability is defined as the probability that a program will operate correctly for a specified time period in a specified environment. However, what we may really be interested in is the total cost of software faults that remain in the released software and will eventually manifest themselves as failures in the field. Most testing and reliability estimation methods treat all failures as having equal cost . We use the partition testing model to demonstrate that much can be gained if we consider the variable cost of field failures in allocating testing effort.

Keywords: Program Testing, Software Reliability.

INTRODUCTION

 A major problem facing the computer industry today is that of developing reliable software. The “software crisis” has become a fixture of everyday life with many well publicized failures that have had major economic impact. For example, the delay in Denver airport’s opening because of software problems in the automated baggage handling system cost $1.1 million per day [1]); the recent Ariane 5 explosion was attributed to a software failure at a direct cost of $370 million [2]).

 Program testing remains the main method used to reach some level of confidence on the reliability of a software product. An important issue that has hardly been addressed is the relation between testing and the cost of experiencing a software failure in the field. Although it is well established that failures can have varied costs, almost all the existing testing strategies and reliability estimation methods make the simplifying assumption that all failures are of equal cost. There has been very little research on how to develop or modify a testing methodology that takes into account the cost of potential failures when allocating testing effort. Reliability estimation methods attempt to predict the failure rate of the program in the field or the Mean Time to Failure (MTTF) or the number of remaining errors, etc. However, what the user (and hence the developer) are really interested in is the cost and total impact of failures in actual use. The impact of each failure varies and should include not only loss of service and repair costs but also the effect on customer/user perceptions of the system.

 Typical testing methodologies will test “critical modules” more than the rest of the program. An effort to measure software risk at the module level is described in [3]. A Markov chain approach that incorporates failure cost information for load testing is presented in [4]. Some reliability growth models attempt to account for failures of different cost by allowing failures observed during testing to be classified into failure severity classes. These can then be used to estimate model parameters and predict reliability for each class or to estimate a cost distribution function.

 In this paper we use the partition testing model to consider ways to account for the variable cost of failures and evaluate the potential benefits of doing so. A central issue is whether or not it is possible to estimate failure costs without full knowledge of the failures and the environment in which the software will operate. How accurate do the estimates need to be in order to realize benefits?

THE PARTITION TESTING MODEL

 To determine the feasibility of using the cost of potential field failures in determining things like testing effort, allocation of effort, release time, we carried out a simulation study based on the partition testing paradigm. This follows an analytical comparison of the relative effectiveness of random and partition testing reported in [5]. Random (statistical) testing selects test cases from the input domain of the program according to an operational profile that reflects the expected use of the program in the field. It is used as the standard testing method in the Cleanroom development method [6]. Partition testing divides the input domain into subdomains (induced by the testing strategy that is used) and then selects a number of test cases from each subdomain. Partition testing is a general model for many popular testing strategies. The partition testing model has been used in many comparisons of the relative effectiveness of random and partition testing.

 The study in [5] allowed variable cost failures and showed that the performance of partition testing very much depends on how the tests are allocated to the various subdomains. It showed that if test cases are allocated to the subdomains in proportion to ci * pi, then partition testing performs significantly better than random testing with respect to the expected cost of the first failure in the field. However, if test cases are allocated uniformly to the subdomains, there is little difference between the performance of random and partition testing (and random may be better in many cases).

 In the partition testing model the input domain is divided into subdomains D1,...,Dk. Each subdomain has a probability pi and a failure rate (i; to that we add a cost ci. We assume that these parameters are constant within each subdomain. In general this may not be the case in practice but it can be made realistic by appropriately increasing the number of subdomains.

 For the purposes of this study we selected the expected cost of undetected errors as the measure of effectiveness of a testing strategy. This depends on the underlying failure rate, the number of test cases used per subdomain, ni, and the cost of the subdomain and is given by the expression : (i (1-(i) n i * c i . This assumes one fault per subdomain and is the sum over all subdomains of the probability that the fault will not be detected during testing times the cost of a failure for the subdomain. It assumes that all undetected faults will eventually result in a field failure. We feel that this is reasonable since a field failure may result in corrective action but that action is usually of very limited scope and is unlikely to correct other faults (it may even introduce new faults). It is true that some faults will never manifest themselves as field failures within the period the software is operational (e.g., a new release may sidestep the problem, the fault may be eliminated by an upgrade, the software may be shelved). We could disregard the cost of subdomains that have a very low probability of execution or cost factors below a certain threshold. However, there are many uncertainties in trying to estimate failure rates, operational profiles, and potential costs and it may well be advisable to take a worst case view of things, i.e., assume that every undetected fault will result in a failure.

 If the (i , ci are known, it is a simple matter to optimally allocate the test cases so as to minimize the expected cost of future failures. The question we attempt to answer in this paper is how close we can get to the optimum allocation if we make educated guesses for the failure and cost profiles and how that compares to the alternative of treating all failures as having equal cost (i.e., the current state of affairs).

COST ESTIMATION AND ITS EFFECTIVENESS

 The cost of field failures depends on many factors. These include (a) the complexity of the system and the quality of the software development process including testing (and other V&V) effort since they help determine the failure rate of the software at release; (b) the environment in which the software operates since that determines the cost of a failure; © the actual distribution of failures and costs for various inputs or classes of inputs (e.g., a high cost failure that is hard to find vs. a low cost failure that is easy to find). A fundamental question that arises in trying to deal with the cost of field failures during development is whether or not it is al all possible to do so without making unrealistic assumptions that render the results useless in practice.

 It appears that one can not accurately calculate the cost of failures in the field beforehand without knowing what failures exist in the software and having an accurate model of the environment in which the software will operate. Even then, measuring cost can involve subjective factors (e.g., what is the cost of bad publicity?) or may depend on the exact timing of the failure (e.g., the cost of a fault in automated teller software that results in failure to properly record withdrawals will depend on the amount available in the machine at the time of failure and how long the problem goes undetected; the cost of a fault that knocks out a switch depends on the traffic at that time, the speed of the repair, etc.). We carried out a simulation study to try to answer some of these questions. We tried to make reasonable choices in setting up the simulations and tried a variety of alternatives. However, experiments with data from real projects are needed to establish and validate cost models.

 In the basic model, we begin by assigning random probabilities to the subdomains. The failure rates were assigned randomly in the range 0-1 for 3% of the subdomains and in the range 0-0.005 for the rest. Random cost factors in the range 100-10,000 (in multiples of 100) were used. Having that information it is straightforward to compute the optimum allocation of n test cases to the subdomains so as to minimize the expected cost of undetected failures. We used this optimum allocation to provide a basis of comparison with other strategies. These included random testing and two versions of partition testing , a uniform allocation of test cases to the subdomains and a proportional allocation based on the probability of each subdomain (the latter has been suggested as the optimum way to perform partition testing in [7]). Both random and partition testing did not take the cost factors into account.

 In designing realistic strategies that take the cost factors into account the first difficulty is that it is not reasonable to assume that the (i are known. While that is true, developers often have a very good estimate of the overall failure rate they can expect for a project (based on experience with similar projects). Also, the results of early inspections and unit testing could be used to estimate an expected failure rate which can be used during integration/system testing. Then a viable strategy may be to use the expected failure rate for the program as a whole in place of the individual (i. We refer to this as the “average-theta” strategy (it assumes perfect knowledge of the cost factors).

 Cost profiles parallel operational profiles in many ways and it may be possible to get reasonably good predictions for the cost of a failure associated with a particular function the software is supposed to perform. Then again, there are many uncertainties when it comes to estimating costs of potential failures. We looked at two ways to estimate the cost factors. The first was to allow only two cost factors, i.e., assume that we can accurately distinguish between “high” and “low” cost subdomains. Thus we assigned a cost of 2,500 to all subdomains with costs in the range 100-5,000 and a cost of 7,500 to all subdomains with original cost over 5,000. We refer to this as the “two-cost” strategy. A second alternative was to assume that half the cost factors are predicted accurately while the other half are overestimated or underestimated by 30% (keeping the costs within the original 100-10,000 range; this amounts to an average shift of 18% for half the costs). We refer to this as the “guess-half” strategy. Both cost estimating strategies use the average failure rate to allocate the test cases to the subdomains. We then computed the expected cost of field failures for each strategy for various values of k (the number of subdomains) and n (the number of test cases). Each experiment was repeated 100 times. The number of test cases we used was at least twice the number of subdomains in order to make proportional partition testing feasible (since at least one test case is needed per subdomain and the number of test cases has to be integer, proportional allocation can only be approximated if the number of test cases is fixed). Table 1 shows how many times (out of the 100 trials) the two-cost and the guess-half strategies resulted in lower, equal, larger cost than random and partition testing.

 Both the two-cost and the guess-half strategies outperform random and partition testing. In this experiment the percentages increase with the number of test cases for each value of k. The variation with the average number of test cases per subdomain varies; it decreases as k increases at the low end (n/k=2) but increases with k at the high end (n/k=32). Table 2 shows how the expected costs (averaged over 100 trials) for random testing, uniform and proportional partition testing, the average-theta , two-cost and half-guess strategies compare with the expected cost of the optimum strategy (it assumes complete knowledge of the failure rates and costs within each subdomain and allocates the test cases so as to minimize the expected cost). As one would expect, random and proportional partition testing perform about the same. Surprisingly, uniform partition testing does better than proportional partition testing. This is because the marginal contribution of the next test case in a subdomain decreases with the number of test cases in a subdomain. Random and proportional partition testing pay attention to the execution probabilities of the subdomains, a factor that is not important since we assume that every undetected fault will eventually result in a field failure. Note that the execution probabilities could be used to eliminate the cost of subdomains that are very unlikely to be executed in practice.

 The costs we used so far range from 100 to 10,000 in multiples of 100. Since the cost factors have to be estimated during development, it may be unreasonable to expect that such fine distinctions can be made in practice. It may be more realistic to have fixed ratios between costs rather than fixed intervals. To model this situation, we repeated the experiments with cost factors ranging from 64 to 32,768 (in powers of two). This increases the importance of properly allocating the test cases and the results bare this out. To investigate the effect of the failure rate, we tried a variety of failure rates and distributions. Staying with the basic two-tier uniform distribution we varied the overall failure rate. To investigate the effect of the distribution of the failure rates we tried uniform distributions. The results showed that the differences between the strategies decrease as the failure rate decreases. This is to be expected under this basic model because the optimum expected cost will also increase as the failure rate decreases. What happens is that failures get harder and harder to detect and the number of test cases used does not make that much difference. We also tried biased distributions that model approximately homogeneous subdomains (i.e., the failure rates for the subdomains are either very low or very high). Under this type of distribution, the average-theta strategy does not perform well (in fact it is outperformed by most of the other strategies in most cases). A reason for this may be that the distribution of the failure rates is now bi-modal and the average failure rate does not represent a maximum likelihood value (in fact the probability that it, or any value close to it, occurs is zero). Since most of the failure rates are close to zero, this causes the average-theta strategy to “waste” many test cases going after high cost subdomains that in reality have very low failure rates. We note that if the subdomains are ideal, i.e., all failure rates are either zero or one, then all the strategies will perform the same as long as they test each subdomain. Since the number of test cases is at least twice the number of subdomains, even random testing will not suffer significantly since it will test most subdomains most of the time (as n increases).

 In the basic model we used, it is almost impossible for a subdomain to have a zero failure rate (i.e., to be correct). This leads to exaggerated values for the expected costs even under the optimum strategy and tends to reduce the differences between the various strategies (as can be seen by the relatively low percentages in Tables 2). In order to make more realistic comparisons in terms of the actual amounts of the expected costs, we consulted with a test manager in a local company. This led to a model that allows failure rates to be zero since, in practice, it is often the case that many of the subdomains are known to be highly reliable. The number of subdomains was set at k=300 with costs ranging from $1,000 to $20,000 and the failure rates for 90% of the subdomains were set to zero. Using 300-3,000 test cases, we have the expected costs (in thousands) shown in Table 3. The potential cost of field failures (no testing) is $313,600. Comparing with the optimum strategy, the six strategies start with expected costs three times the optimum (n=300) and end up with expected costs ranging from 60-110 times the optimum (n=3,000). This points out how much room for improvement there is. Comparing the two-cost strategy with random and partition testing, with 300 test cases the two-cost strategy has an expected cost of $235,600 which is a savings of $ 16,000 over the uniform partition testing strategy and $20,000 over random testing. However, with 3,000 test cases, the two-cost strategy has an expected cost of $ 113,500 which is $14,000 more than the expected cost for random testing and $ 41,000 more than the expected cost of uniform partition testing. The “guess-half” strategy performs much worse. The two cost strategy outperforms partition testing when the number of test cases is low but is outperformed as the number of test cases increases. This pattern is the opposite of what was observed before. Also note that the “average- theta” strategy performs worse than the two-cost strategy as well as random and partition testing. This seems surprising since it appears that having more knowledge (the exact costs) actually produces negative results. This illustrates that the comparisons are sensitive to the distribution of the failure rates and the relation between the average failure rate and the most likely failure rates. We expect that using the average failure rate in place of the individual (i will work very well when it is (or is near) the most likely value. For example, if the failure rates in the various subdomains follow a normal distribution then the average-theta strategy should do very well (the two-cost strategy will benefit as well).

 To further investigate the effect of using an average failure rate, we repeated the experiment using a classification of the subdomains into “very reliable” and “questionable” subdomains.. Using a mid-range value for each group (0.0005 and 0.2 respectively), we obtain the results shown in Table 4. There is a dramatic change in favor of the two-cost strategy; we even have a “diminishing returns” situation with the two-cost strategy since there is very little gain when the number of test cases increases past 1,000. However, the average-theta strategy now performs even worse!

 The explanation for this lies in the value used as the failure rate for the “very reliable” subdomains. Taking this value to be 0.0005 when actually the subdomains are correct causes the average-theta strategy to allocate many test cases to correct subdomains that have high cost factors (i.e., the effort is wasted). The reason why the two-cost strategy does not suffer from this is because of the difference between the maximum cost ($20,000) and the “high” cost ($15,500) used by the two-cost strategy. In effect, the average-theta strategy wastes many test cases trying to bring the $20,000 cost of some very reliable subdomains down (at the assumed 0.0005 failure rate, 10 test cases reduce the cost by only $100). The guess-half strategy suffers because of the same problem. To verify this we ran the experiment a third time using a zero failure rate for the “very reliable” subdomains. The results are shown in Table 5.

Now we have a very dramatic improvement for the average-theta strategy while the expected costs for the two-cost and the guess-half strategies remain about the same. This points out the complexity of the interaction between the failure rates, the costs, and the number of test cases in each subdomain; it also points out the importance of carrying out studies with data from real projects in order to formulate more accurate and realistic cost and failure profiles.

CONCLUSIONS

 The simulation studies we performed so far clearly demonstrate the enormous potential that a testing methodology based on reasonably good estimates of the cost and failure profiles would have over the current practice of mostly disregarding the issue. We discussed the “two-cost” and the “guess-half” methods as potential approaches to approximating cost factors and the “average-theta” and “two-theta” strategies as approximations for the failure rate profile. What needs to be established is whether these methods are realistic in practice, what other methods can be used to estimate costs, how accurate can the estimates be and what benefit can be expected. Also, how well can existing testing strategies make use of cost information, how easy it is to adjust them to do so and what are the best testing methodologies for making use of approximate cost information.

 Estimation of the cost of potential failures for classes of inputs is a central issue. Possible approaches to obtain failure cost estimates include (a) extending operational profiles; (b) using the results of early testing and (c) studying field failure data from real projects. Failure rate profiles can also be developed along the same lines. Having some reasonable cost and failure profiles, the next problem is to investigate how well existing strategies can make use of this information and which are the best strategies to use. Our simulation results point out the importance of the cost of field failures.

REFERENCES

[1] W. Gibbs, Software's Chronic Crisis, Scientific American, vv(xx), 1994, 86-95.

[2] M. Dowson, The ARIANE 5 Software Failure, ACM SIGSOFT, 22(2), 1997, 84.

[3] S. Sherer, Measuring Software Failure Risk: Methodology and an Example, Journal of Systems and Software, 25, 1994, 257-269.

[4] E. Weyuker, Using Failure Cost Information for Testing and Reliability Assessment, ACM Trans. on Software Engineering and Methodology, 5(2), 1996, 87-98

[5] M. Tsoukalas, J. Duran and S. Ntafos, On Some Reliability Estimation Problems in Random and Partition Testing, IEEE Trans. on Software Engineering, 19(7), 1993, 687-697.

[6] R. Cobb and H. Mills, Engineering Software under Statistical Quality Control, IEEE Software, 1990, 44-54.

[7] T. Chen and Y. Yu, On the Relationship Between Partition and Random Testing, IEEE Trans. on Software Engineering, 20(12), 1994, 977-980.�

�
Two-Cost vs. Random�
Two-Cost vs. Uniform�
Two-Cost vs. Proportional�
Guess Half vs. Random�
Guess-Half vs. Uniform�
Guess-Half vs. Proportional�
�
k=10, n=20�
81 - 0 - 19 �
80 - 1 - 19�
80 - 0 - 20�
68 - 0 - 32�
64 - 0 - 36�
67 - 0 - 33�
�
k=10, n=80�
83 - 0 - 17�
84 - 1 - 15�
83 - 0 - 17�
74 - 0 - 26�
75 - 0 - 25�
75 - 0 - 25�
�
k=10, n=320�
89 - 1 - 11�
93 - 1 - 6�
90 - 0 - 10�
79 - 0 - 21�
83 - 1 - 17�
79 - 0 - 21�
�
k=60, n=120�
65 - 0 - 35�
57 - 0 - 43�
64 - 0 -36�
47 - 0 - 53�
41 - 0 - 59�
43 - 0 -57�
�
k=60, n=480�
64 - 0 - 36�
63 - 0 - 37�
65 - 0 - 35�
70 - 0 - 30�
62 - 0 - 38�
69 - 0 - 31�
�
k=60, n=1920�
98 - 0 - 2�
99 - 0 - 1�
98 - 0 - 2�
98 - 0 - 2�
99 - 0 - 1�
98 - 0 - 2�
�
k=100, n=200�
66 - 0 - 34�
55 - 0 - 45�
64 - 0 - 36�
31 - 0 - 69�
20 - 0 - 80�
26 - 0 - 74�
�
k=100, n=800�
76 - 0 - 24�
71 - 0 - 29�
77 - 0 - 29�
62 - 0 - 38�
50 - 0 - 50�
40 - 0 - 60�
�
k=100, n=3200�
100 -0 - 0�
100 - 0 - 0�
100 - 0 - 0�
98 - 0 - 2�
99 - 0 - 1�
100 - 0 - 0�
�

Table 1. Comparison of “two-cost” and “guess-half” with random and partition testing.

�
Random�
Uniform�
Proportional�
Avg. Theta�
Two-Cost�
Guess-Half�
�
k=10, n=20�
2.13�
1.92�
2.07�
2.06�
1.90�
2.02�
�
k=10, n=80�
3.27�
2.96�
3.28�
2.23�
2.46�
2.43�
�
k=10, n=320�
8.27�
7.77�
8.25�
4.21�
4.95�
5.51�
�
k=60, n=120�
2.15�
1.79�
2.00�
2.38�
1.89�
2.63�
�
k=60, n=480�
3.54�
3.31�
3.53�
2.83�
3.09�
3.17�
�
k=60, n=1920�
8.88�
8.66�
8.89�
5.20�
5.78�
6.07�
�
k=100, n=200�
2.03�
1.73�
1.90�
2.28�
1.69�
2.54�
�
k=100, n=800�
3.57�
3.30�
3.53�
2.78�
2.94�
3.29�
�
k=100, n=3200�
9.01�
8.69�
8.99�
5.38�
5.93�
6.17�
�

Table 2. Percentage above average optimum expected cost for six strategies.

n�
300�
600�
900�
1200�
1500�
1800�
2100�
2400�
2700�
3000�
�
Optimum�
58.1�
24.2�
12.4�
7.2�
4.6�
3.2�
2.3�
1.8�
1.4�
1.2�
�
Random�
255.5�
214.1�
184.7�
163.2�
146.1�
132.7�
121.9�
113.4�
105.9�
99.1�
�
Uniform�
251.6�
206.1�
172.1�
146.3�
126.3�
110.7�
98.1�
88.0�
79.6�
72.7�
�
Proportion.�
251.6�
211.8�
183.1�
162.6�
146.2�
133.3�
122.9�
114.0�
106.3�
100.1�
�
Avg. Theta�
254.6�
224.2�
200.4�
182.1�
166.8�
153.8�
142.9�
133.3�
124.7�
117.0�
�
Two-Cost�
235.6�
192.0�
166.0�
149.5�
138.3�
130.4�
124.5�
120.0�
116.4�
113.4�
�
Guess-Half�
257.3�
230.8�
211.2�
195.3�
180.5�
167.9�
157.4�
147.3�
138.9�
131.2�
�

 n�
300�
600�
900�
1200�
1500�
1800�
2100�
2400�
2700�
3000�
�
Optimum�
58.1�
24.2�
12.4�
7.2�
4.6�
3.2�
2.3�
1.8�
1.4�
1.2�
�
Random�
255.5�
214.1�
184.7�
163.2�
146.1�
132.7�
121.9�
113.4�
105.9�
99.1�
�
Uniform�
251.6�
206.1�
172.1�
146.3�
126.3�
110.7�
98.1�
88.0�
79.6�
72.7�
�
Proportion.�
251.6�
211.8�
183.1�
162.6�
146.2�
133.3�
122.9�
114.0�
106.3�
100.1�
�
Avg. Theta�
243.9�
222.2�
207.0�
195.8�
186.4�
178.2�
172.7�
165.0�
159.3�
155.3�
�
Two-Cost�
111.6�
96.6�
91.6�
89.1�
87.6�
86.6�
85.8�
85.2�
84.7�
84.4�
�
Guess-Half�
237.3�
224.8�
214.5�
205.9�
197.3�
191.4�
183.2�
178.5�
174.4�
170.3�
�

 n�
300�
600�
900�
1200�
1500�
1800�
2100�
2400�
2700�
3000�
�
Optimum�
58.1�
24.2�
12.4�
7.2�
4.6�
3.2�
2.3�
1.8�
1.4�
1.2�
�
Random�
255.5�
214.1�
184.7�
163.2�
146.1�
132.7�
121.9�
113.4�
105.9�
99.1�
�
Uniform�
251.6�
206.1�
172.1�
146.3�
126.3�
110.7�
98.1�
88.0�
79.6�
72.7�
�
Proportion.�
251.6�
211.8�
183.1�
162.6�
146.2�
133.3�
122.9�
114.0�
106.3�
100.1�
�
Avg. Theta�
67.2�
36.8�
25.6�
19.7�
16.0�
13.5�
11.7�
10.3�
9.2�
8.3�
�
Two-Cost�
111.7�
96.6�
91.3�
88.6�
86.9�
85.8�
85.0�
84.4�
83.9�
83.5�
�
Guess-Half�
237.4�
224.9�
214.5�
205.2�
197.2�
190.6�
182.5�
177.6�
173.7�
169.4�
�

Tables 3-5. Optimum expected cost (in thousands) and expected costs for six strategies (k=300).

