Introduction (home) Contents / Site Map Admissions Policies / Procedures Registration Tuition and Fees Financial Aid Campus Resources Degree Requirements Undergraduate Programs Course Descriptions Academic Calendar Administration Board of Regents Faculty Correspondence Directory Appendices Alphabetical Index UTD Home Page Online Catalogs Index Graduate Catalog

## Electrical Engineering Course Descriptions

EE 1102 Introduction to Experimental Techniques (1 semester hour) EE fundamentals laboratory that stresses laboratory procedures; learning use of common laboratory equipment such as power supplies, multimeters, signal generators, and oscilloscopes; making measurements; familiarization with simple DC resistor circuits; Ohm's law; analyzing AC signals, including frequency, period, amplitude, and rms value; inductors, capacitors and DC transients; measuring phase shift in an AC circuit due to an inductor or capacitor; and basics of laboratory report writing. (Same as TE 1102) (0-1) S
EE 2110 Introduction to Digital Systems Laboratory (1 semester hour) Laboratory to accompany EE 2310. The purpose of this laboratory is to give students an intuitive understanding of digital circuits and systems. Laboratory exercises include construction of simple digital logic circuits using prototyping kits and board-level assembly of a personal computer. Corequisite: EE 2310. (0-1) S
EE 2300 Applied Linear Algebra (3 semester hours) Matrices, vectors, determinants, linear systems of equations, Gauss-Jordan elimination, vector spaces, basis, eigenvalues, eigenvectors, numerical methods in linear algebra using MATLAB, computer arithmetic, Gaussian elimination, LU factorization, iterative solutions to linear systems, iterative methods for estimating eigenvalues, singular value decomposition, QR factorization. Prerequisite: MATH 2419. (3-0) S
EE 2310 Introduction to Digital Systems (3 semester hours) Introduction to hardware structures and assembly-language concepts that form the basis of the design of modern computer systems. Internal data representation and arithmetic operations in a computer. Basic logic circuits. MIPS assembly language. Overview of PC architecture. Prerequisite: CS 1337. Corequisite: EE 2110. (3-0) S
EE 2V99 Topics in Electrical Engineering (1-4 semester hours) May be repeated as topics vary (9 hours maximum). ([1-4]-0) R
EE 3101 Electrical Network Analysis Laboratory (1 semester hour) Laboratory to accompany EE 3301. Design, assembly and testing of linear electrical networks and systems. Use of computers to control electrical equipment and acquire data. Prerequisite: EE 1102. Corequisite: EE/TE 3301. (Same as TE 3101) (0-1) S
EE 3102 Signals and Systems Laboratory (1 semester hour) Laboratory based on MATLAB to accompany EE 3302. Fourier analysis, implementation of discrete-time linear time-invariant systems, applications of Fast Fourier Transform, design of digital filters, applications of digital filters. Prerequisites: MATH 2420, EE/TE 3301, and CS 1337. Corequisite: EE/TE 3302. (Same as TE 3102) (0-1) S
EE 3110 Electronic Devices Laboratory (1 semester hour) Laboratory to accompany EE 3310. Experimental determination and illustration of properties of carriers in semiconductors including carrier drift, photoconductivity, carrier diffusion; p-n junctions including forward and reverse bias effects, transient effects, photodiodes, and light emitting diodes; bipolar transistors including the Ebers-Moll model and secondary effects; field effect transistors including biasing effects, MOS capacitance and threshold voltage. Prerequisite: EE 1102. Corequisite: EE 3310. (0-1) S
EE 3111 Electronic Circuits Laboratory (1 semester hour) Laboratory to accompany EE 3311. Design, assembly and testing of electronic circuits that use diodes, transistors and operational amplifiers in configurations typically encountered in practical applications. Prerequisite: EE/TE 3101. Corequisite: EE 3311. (0-1) S
EE 3120 Digital Circuits Laboratory (1 semester hour) Laboratory to accompany EE 3320. Design, assembly, and testing of logic circuits. Prerequisite: EE 2110. Corequisite: EE 3320. (0-1) S
EE 3150 Communications Systems Laboratory (1 semester hour) Laboratory to accompany EE 3350. Fundamental elements of communications systems hardware; use of spectrum analyzers and other measurement instruments typically encountered in communication systems; design of active filters in communications systems; analog frequency and amplitude modulators and demodulators; data communication systems. Corequisite: EE 3350. (0-1) S
EE 3300 Advanced Engineering Mathematics (3 semester hours) Survey of advanced mathematics topics needed in the study of engineering. Topics include vector differential calculus, vector integral calculus, integral theorems, complex variables, complex integration, series, residues and numerical methods. Examples are provided from microelectronics and communications. Prerequisite: MATH 2420. (3-0) S
EE 3301 Electrical Network Analysis (3 semester hours) Analysis and design of RC, RL, and RLC electrical networks. Sinusoidal steady state analysis of passive networks using phasor representation; mesh and nodal analyses. Introduction to the concept of impulse response and frequency analysis using the Laplace transform. Prerequisites: MATH 2420, PHYS 2326. Corequisite: EE/TE 3101. (Same as TE 3301) (3-0) S
EE 3302 Signals and Systems (3 semester hours) Advanced methods of analysis of electrical networks and linear systems. Laplace transforms, Fourier series, and Fourier transforms. Response of linear systems to step, impulse, and sinusoidal inputs. Convolution, system functions, and frequency response. Z transforms and digital filters. Prerequisites: MATH 2420, EE/TE 3301. Corequisite: EE/TE 3102. (Same as TE 3302) (3-0) S
EE 3310 Electronic Devices (3 semester hours) Theory and application of solid state electronic devices. Physical principles of carrier motion in semiconductors leading to operating principles and circuit models for diodes, bipolar transistors, and field effect transistors. Introduction to integrated circuits. Prerequisites: MATH 2420, PHYS 2326 and EE/TE 3301. Corequisite: EE 3110. (3-0) S
EE 3311 Electronic Circuits (3 semester hours) Analysis and design of electronic circuits using diodes, transistors and operational amplifiers with feedback. Gain and stability of basic amplifier circuits using BJT’s, JFET’s and MOSFET’s; classes of amplifiers; performance of ideal and non-ideal operational amplifiers. Prerequisites: EE/TE 3301, EE 3310. Corequisite: EE 3111. (3-0) S
EE 3320 Digital Circuits (3 semester hours) Boolean logic. Design and analysis of combinational logic circuits using SSI and MSI. Design and analysis of synchronous state machines. Use of programmable logic devices and simple CAD tools. Prerequisite: EE 2310. Corequisite: EE 3120. (3-0) S
EE 3341 Probability Theory and Statistics (3 semester hours) Axioms of probability, conditional probability, Bayes theorem, random variables, probability density function (pdf), cumulative density function, expected value, functions of random variable, joint, conditional and marginal pdf’s for two random variables, moments, introduction to random processes, density estimation, regression analysis and hypothesis testing. Prerequisite: MATH 2419. (Same as TE 3341) (3-0) S
EE 3350 Communications Systems (3 semester hours) Fundamentals of communications systems. Review of probability theory and Fourier transforms. Filtering and noise. Modulation and demodulation techniques, including amplitude, phase, pulse code, pulse position, and pulse width modulation concepts. Time division multiplexing. Prerequisites: EE 3300, EE/TE 3302, and EE/TE 3341. (3-0) S
EE 4301 Electromagnetic Engineering I (3 semester hours) Introduction to the general characteristics of wave propagation. Physical interpretation of Maxwell’s equations. Propagation of plane electromagnetic waves and energy. Transmission lines. Antenna fundamentals. Prerequisites: PHYS 2326, EE 3300. (3-0) S
EE 4302 Electromagnetic Engineering II (3 semester hours) Continuation of the study of electromagnetic wave propagation. Metallic and dielectrically guided waves including microwave waveguides and optical fibers. Dipole antennas and arrays. Radiating and receiving systems. Propagation of electromagnetic waves in materials and material properties. Prerequisite: EE 4301. (3-0) S
EE 4304 Computer Architecture (3 semester hours) Introduction to computer organization and design, including the following topics: CPU performance analysis. Instruction set design, illustrated by the MIPS instruction set architecture. Systems-level view of computer arithmetic. Design of the datapath and control for a simple processor. Pipelining. Hierarchical memory. I/O systems. I/O performance analysis. Multiprocessing. Prerequisite: EE 3320. (3-0) S
EE 4310 Systems and Controls (3 semester hours) Introduction to linear control theory. General structure of control systems. Mathematical models including differential equations, transfer functions, and state space. Control system characteristics. Sensitivity, transient response, external disturbance, and steady-state error. Control system analysis. Performance, stability, root-locus method, Bode diagram, log diagram, and Nichol’s diagram. Control system design. Compensation design using phase-lead and phase-lag networks. Prerequisites: EE 2300, EE/TE 3302. (3-0) Y
EE 4330 Integrated Circuit Technology (3 semester hours) Principles of design and fabrication of integrated circuits. Bipolar and MOS technologies. Passive and active component performance, fabrication techniques including epitaxial growth, photolithography, oxidation, diffusion, ion-implantation, thin and thick film components. Design and layout of integrated devices. Relations between layout and fabrication technique. Prerequisites: EE 3310, EE 3300. (3-0) T
EE 4340 Analog Integrated Circuit Analysis and Design (3 semester hours) Analog integrated circuits and systems. Analysis and design of linear amplifiers, including operational, high-frequency, broad-band and feedback amplifiers. Use of monolithic silicon systems. Prerequisite: EE 3311. (3-0) T
EE 4341 Digital Integrated Circuit Analysis and Design (3 semester hours) Digital integrated circuits. Large signal model for bipolar and MOS transistors. MOS inverters and gates. Propagation delay and noise margin. Dynamic logic concepts. Bipolar transistor inverters and gates, regenerative logic circuits, memories. Prerequisites: EE 3311, EE 3320. (3-0) T
EE 4360 Digital Communications (3 semester hours) Information, digital transmission, channel capacity, delta modulation, and differential pulse code modulation are discussed. Principles of coding and digital modulation techniques such as Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), and Continuous Phase Frequency Shift Keying (CPFSK) are introduced. M-ary signaling such as Quadrature amplitude and phase shift keying, and M-ary PSK and FSK are also discussed. Prerequisite: EE 3350. (3-0) T
EE 4361 Introduction to Digital Signal Processing (3 semester hours) An introduction to the analysis and design of discrete linear systems, and to the processing of digital signals. Topics include time and frequency domain approaches to discrete signals and systems, the Discrete Fourier Transform and its computation, and the design of digital filters. Prerequisite: EE 3302. (3-0) T
EE 4365 Introduction to Wireless Communication (3 semester hours) Introduction to the basic system concepts of cellular telephony. Mobile standards, mobile system architecture, design, performance and operation. Voice digitization and modulation techniques; PCS technologies. Prerequisite: EE 3350. (Same as TE 4365) (3-0) Y
EE 4367 Telecommunications Switching and Transmission (3 semester hours) Trunking and queuing, switching technologies: voice, data, video, circuit switching and packet switching, transmission technologies and protocols, transmission media - copper, fiber, microwave, satellite, protocols - bipolar formats, digital hierarchy, optical hierarchy, synchronization, advanced switching protocols and architectures; frame relay, ATM, HDTV, SONET. Prerequisite or Corequisite: EE 3350. (Same as TE 4367) (3-0) Y
EE 4368 RF Circuit Design Principles (3 semester hours) Transmission lines, the Smith chart, impedance matching, simple amplifier design, power coupling, waveguides and lossy transmission lines. Prerequisite: EE4301. Corequisite: EE 3311. (3-0) Y
EE 4380 Microprocessor Design Project I (3 semester hours) Detailed design, architecture and interfacing of a microprocessor-based system. A balanced view of hardware techniques (e.g. using development board) and software strategies (e.g. using assembler, simulator) for developing an embedded system. All students must do laboratory experiments, propose and implement a limited microprocessor-based project, submit a written report and make an oral presentation at the culmination of the project. Prerequisite: EE 3320. (3-0) Y
EE 4381 Mobile Communications System Design Project I (3 semester hours) Fundamental topics in network design including graph theory, internal and external routing protocols, reliability, availability, capacity, security, and quality of service for networks comprised of SONET, Ethernet, cable, DSL, and wireless infrastructures. All students will design and configure multi-node, multi-topology networks, complete with cost analysis, then will submit a written report and make an oral presentation of their project. Corequisite: EE/TE 4365. (Same as TE 4381) (3-0) Y
EE 4382 Individually Supervised Senior Design Project I (Microelectronics) (3 semester hours) Detailed design assembly and testing of a system or component under the guidance of a faculty member. Specific technical requirements will be set by the faculty member. All students must submit a written report and make an oral presentation of the culmination of the project. Prerequisite: senior standing. (Same as TE 4382) (3-0) R
EE 4383 Microprocessor Design Project II (3 semester hours) Advanced topics in microprocessor design, architecture, I/O, memory and interfacing. Specification and design of embedded systems. Advanced hardware and software techniques (e.g. using simulator, emulator, compiler and other sophisticated test equipment) for developing microprocessor-based system. All students must do a market survey, propose and implement a complete microprocessor-based project, submit a written report and make an oral presentation at the culmination of the project. Prerequisite: EE 4380. (3-0) Y
EE 4384 Mobile Communications System Design Project II (3 semester hours) Radio frequency system design, propagation, antennas, traffic and trunking, technology issues, channel modeling, link budget, cell design principles, demographics and capacity analysis, project management, and regulatory issues. All students must submit a written report and make an oral presentation at the culmination of the project. Corequisite: EE 4390 or CS/TE 4390. (Same as TE 4384) (3-0) Y
EE 4385 DSP-Based Design Project I (3 semester hours) Basic discrete-time signal processing concepts, hands-on experience in real-time digital communications systems, digital signal processor architectures, programming, and interfacing with external systems. All students must finish laboratory experiments, submit a written report, and make an oral presentation at the culmination of the project. Prerequisites: EE 2310 and EE 3350 (or EE/TE 4361). (Same as TE 4385) (3-0) Y
EE 4386 DSP-Based Design Project II (3 semester hours) Implementation of signal processing algorithms on DSP processors, DSP chip architectures, DSP software development tools, DSP assembly programming, code optimization, fixed-point versus floating-point, design projects. Prerequisites: EE 4361 or EE4385, and knowledge of C and MATLAB. (2-3) Y
EE 4387 Individually Supervised Senior Design Project II (3 semester hours) Detailed design assembly and testing of a system or component under the guidance of a faculty member. Specific technical requirements will be set by the faculty member. All students must submit a written report and make an oral presentation of the culmination of the project. Prerequisite: EE/TE 4382. (Same as TE 4387) (3-0) R
EE 4390 Introduction to Telecommunication Networks (3 semester hours) An introduction to packet-switched communication networks, including the OSI model, Internet, TCP/IP, ATM, Ethernet, Frame Relay, and Local Area Networks. Corequisite: EE 3350. (3-0) S
EE 4399 Senior Honors in Electrical Engineering (3 semester hours) For students conducting independent research for honors theses or projects. (0-3) R
EE 4V95 Undergraduate Topics in Electrical Engineering (1-9 semester hours) Subject matter will vary from semester to semester. May be repeated for credit (9 hours maximum). ([1-9]-0) R
EE 4V97 Independent Study in Electrical Engineering (1-9 semester hours) Independent study under a faculty member’s direction. May be repeated for credit (9 hours maximum). Consent of instructor required. ([1-9]-0) R

 ENGINEERING AND COMPUTER SCIENCE General Information Computer Science Electrical Engineering Software Engineering Telecommunications Engineering

 COURSES AHST AIM AMS AP ARTS ATEC BA BIOL CGS CHEM CJS COMM CRWT CS DANC DRAM ECO ECS ECSC ED EE FILM GEOG GEOS GST GOVT HIST HUMA LANG LIT MATH MUSI NATS NSC PA PHIL PHYS PSY RHET SE SOC SOCS SPAU STAT TE

This catalog is a general information publication only. It is not intended to nor does it contain all regulations that relate to students. The provisions of this catalog do not constitute a contract, express or implied, between any applicant, student or faculty member and The University of Texas at Dallas or The University of Texas System. The University of Texas at Dallas reserves the right to withdraw courses at any time, to change fees or tuition, calendar, curriculum, degree requirements, graduation procedures, and any other requirements affecting students. Changes will become effective whenever the proper authorities so determine and will apply to both prospective students and those already enrolled.

Statement on Equal Educational Opportunity
The University of Texas at Dallas is committed to an educational and working environment that provides equal opportunity to all members of the University community. In accordance with federal and state law, the University prohibits unlawful discrimination on the basis of race, color, religion, national origin, gender, age, disability, and veteran status. Discrimination on the basis of sexual orientation is also prohibited pursuant to University policy.