Erik Jonsson School of Engineering and Computer Science

Electrical Engineering (B.S.E.E.)

Specific Program Educational Objectives

One broad goal for the Erik Jonsson School is an excellent education for our students. Our earlier Program Educational Objectives (PEOs) toward this goal are:

  • Preparation for a successful, long-lived, engineering career
  • Perform, review and assess sophisticated engineering design and manufacturing
  • Further the necessities of innovation, functionality, safety, and economy in engineering
  • Critical thinking, decision making and communicating
  • Ability to contribute and to lead engineering teams
  • Place engineering design and decision making in a market and societal context

Additional Program Educational Objectives for a high quality educational infrastructure include:

  • Growing and maintaining an outstanding faculty that remains motivated and empowers
  • Excellent facilities, including teaching laboratories, computing facilities and classrooms with advanced presentation capabilities

Our most recent set of Program Educational Objectives is that graduates of the Electrical Engineering program should:

  • Have a successful, long-lived engineering based career path
  • Meet the needs of industry
  • Contribute to, and/or lead engineering based teams
  • Actively pursue continuing (lifelong) learning

High School Preparation

Engineering education requires a strong high school preparation. Pre-engineering students should have high school preparation of at least one-half year in trigonometry and at least one year each in elementary algebra, intermediate and advanced algebra, plane geometry, chemistry, and physics, thus developing their competencies to the highest possible levels and preparing to move immediately into demanding college courses in calculus, calculus-based physics, and chemistry for science majors. It is also essential that pre-engineering students have the competence to read rapidly and with comprehension, and to write clearly and correctly.

Lower-Division Study

All lower-division students in Electrical Engineering concentrate on mathematics, science and introductory engineering courses, building competence in these cornerstone areas for future application in upper-division engineering courses. The following requirements apply both to students seeking to transfer to UT Dallas from other institutions as well as to those currently enrolled at UT Dallas, whether in another school or in the Erik Jonsson School of Engineering and Computer Science.

ABET Requirements

All engineering degree plans must satisfy the requirements specified by the Accreditation Board for Engineering and Technology (ABET). The course work must include at least:

  1. One year (32 SCH) of an appropriate combination of mathematics and basic sciences
  2. One and one-half years (48 SCH) of engineering topics.
  3. A general education component that complements the technical content.

Although the electrical engineering and telecommunications engineering curricula that follow have been designed to meet these criteria, students have the responsibility, in consultation with an advisor, to monitor their own choice of courses carefully to be certain that all academic requirements for graduation are being satisfied. Students are strongly encouraged to take courses in such subjects as accounting, industrial management, finance, personnel administration, and engineering economy.

Academic Progress in Electrical Engineering

In order to make satisfactory academic progress as an Electrical Engineering major, a student must meet all University requirements for academic progress, and must earn a grade of C- or better in each of the major core courses. No “Major Requirement” course (as listed under Section II of the B.S.E.E. degree requirement) may be taken until the student has obtained a grade of C- or better in each of the prerequisites (if a higher grade requirement is stated for a specific class, the higher requirement applies).

Bachelor of Science in Electrical Engineering Degree Requirements (128 hours)

I. Core Curriculum Requirements1: 42 hours

  1. Communication (6 hours)
    3 hours Communication (RHET 1302)
    3 hours Professional and Technical Communication (ECS 3390)5
  2. Social and Behavioral Sciences (15 hours)
    6 hours Government (GOVT 2301 and GOVT 2302)
    6 hours American History
    3 hours Social and Behavioral Science elective (ECS 3361)
  3. Humanities and Fine Arts (6 hours)
    3 hours Fine Arts (ARTS 1301)
    3 hours Humanities (HUMA 1301)
  4. Mathematics and Quantitative Reasoning (6 hours)
    6 hours Calculus (MATH 2417 and MATH 2419)2
  5. Science (9 hours)
    8 hours Physics (PHYS 2325, PHYS 2125, PHYS 2326 and PHYS 2126)
    4 hours Chemistry (CHEM 1311 and CHEM 1111)3

1 Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed in parentheses are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

II. Major Requirements: 74 hours4

Major Preparatory Courses (20 hours beyond Core Curriculum)

CHEM 1111 General Chemistry Laboratory I3,4
CHEM 1311 General Chemistry I3,4
CS 1325 Introduction to Programming
ENGR 1202 Introduction to Engineering
ENGR 2300 Linear Algebra for Engineers
ENGR 2310 Introduction to Digital Systems
MATH 2417 Calculus I2
MATH 2419 Calculus II2
MATH 2420 Differential Equations with Applications
PHYS 2125 Physics Laboratory I
PHYS 2126 Physics Laboratory II
PHYS 2325 Mechanics
PHYS 2326 Electromagnetism and Waves

Major Core Courses (45 hours beyond Core Curriculum)

ECS 3361 Social Issues and Ethics in Computer Science and Engineering 6
ECS 3390 Professional and Technical Communication5
ENGR 3101 Electrical Network Analysis Laboratory
ENGR 3102 Signals and Systems Laboratory
EE 3110 Electronic Devices Laboratory
EE 3111 Electronic Circuits Laboratory
EE 3120 Digital Circuits Laboratory
EE 3150 Communications Systems Laboratory
ENGR 3300 Advanced Engineering Mathematics
ENGR 3301 Electrical Network Analysis
ENGR 3302 Signals and Systems
EE 3310 Electronic Devices
EE 3311 Electronic Circuits
EE 3320 Digital Circuits
ENGR 3341 Probability Theory and Statistics
EE 3350 Communications Systems
EE 4301 Electromagnetic Engineering I
EE 4310 Systems and Controls
EE 4368 RF Circuit Design Principles
ENGR 4388 Senior Design Project I
ENGR 4389Senior Design Project II

Major Guided Electives (9 hours)

Students pursuing the general program take 9 semester hours from any other 4000 level Electrical Engineering courses. Students pursuing a concentration in Microelectronics take 3 of the following courses:

EE 4302 Electromagnetic Engineering II
EE 4304 Computer Architecture
EE 4325 Introduction to VLSI Design
EE 4330 Integrated Circuit Technology
EE 4340 Analog Integrated Circuit Analysis and Design
EE 4341 Digital Integrated Circuit Analysis and Design
EE 4391 Technology of Plasma Class and Laboratory

Students pursuing a concentration in Telecommunications take 3 of the following courses:

EE 4360 Digital Communications
EE 4361 Introduction to Digital Signal Processing
EE 4365 Introduction to Wireless Communication
EE 4367 Telecommunications Networks
EE 4390 Computer Networks
EE 4392 Introduction to Optical Systems

2 Six hours of Calculus are counted under Mathematics Core, and two hours of Calculus are counted as Major Preparatory Courses.
3 One hour of Chemistry is counted under Science core, and three hours are counted as Major Preparatory Courses.
4 Students must pass each of the EE, CS, Math and Science courses listed in this degree plan and each of their prerequisites, with a grade of C- or better.
5 Hours fulfill the communication component of the Core Curriculum.
6 Hours contribute to the Social and Behavioral Sciences component of the Core Curriculum.

III. Elective Requirements: 12 hours

Advanced Electives (6 hours) All students are required to take at least six hours of advanced electives outside their major field of study. These must be either upper-division classes or lower-division classes that have prerequisites.

Free Electives (6 hours) Both lower- and upper-division courses may count as free electives but students must complete at least 51 hours of upper-division credit to qualify for graduation.

Degree programs in the Erik Jonsson School of Engineering and Computer Science are governed by various accreditation boards that place restrictions on classes used to meet the curricular requirements of degrees they certify. For this reason, not all classes offered by the University can be used to meet elective requirements. Please check with your academic advisor before enrolling in classes you hope to use as free electives.

Fast Track Baccalaureate/Master’s Degrees

In response to the need for advanced education in electrical engineering, a Fast Track program is available to exceptionally well-qualified UT Dallas undergraduate students who meet the requirements for admission to the graduate school. The Fast Track program is designed to accelerate a student’s education so that both a B.S.E.E. and an M.S.E.E. degree can be earned in five years of full-time study. This is accomplished by (1) taking courses (typically electives) during one or more summer semesters, and (2) beginning graduate course work during the senior year. Details of the requirements for admission to this program are available from the Associate Dean for Undergraduate Education.

Honors Program

The Department of Electrical Engineering offers upper-division Honors for outstanding students in the B.S. Electrical Engineering degree program. This program offers special sections of designated classes and other activities designed to enhance the educational experience of exceptional students. Admission to the Honors programs requires a 3.50 or better GPA in at least 30 hours of coursework. Graduation with Honors requires a 3.50 or better GPA and completion of at least 6 honors classes. These honors classes must include either Senior Honors in Electrical Engineering (EE 4399) or Undergraduate Research in Electrical Engineering (EE 4V98) and a Senior Honors Thesis must be completed within one of those two classes. (While the topics may be related, the Senior Thesis does not replace the need for the student to complete a regular Senior Design Project). The other 5 honors classes can come from a mixture of Graduate level (up to a count of 4) classes and special honor sections of regular undergraduate EE classes (up to a count of 2). Current undergraduate honors courses include but are not limited to EE 2310(H), EE 3350(H), EE 4302, EE 4399, and EE 4V98. Course grades in the 6 honors classes used to determine Honors status must be B- or higher to qualify.

Departmental Honors with Distinction may be awarded to students whose Senior Honors Thesis is judged by a faculty committee to be of exemplary quality. Only students graduating with Departmental Honors are eligible. Thesis/projects must be submitted by the deadline that applies to M.S. Theses in the graduating semester to allow for proper evaluation. Students interested in Honors with Distinction are encouraged to start working on their thesis/project a year prior to graduation.

Minors

The Department of Electrical Engineering does not offer minors at this time.