TxBDC Researchers Funded for Bioelectronic Medicines Read more

Second Derivative system developed by students at UT Dallas with Texas Instruments.

The Neurotriage system is designed to detect brain impairments to make sports safer by removing players from harm’s way when impaired.

Football player wearing the SecondDerivative system during a football game.

The Texas Biomedical Device Center partners with the Texas Brain Injury and Repair center at UTSW to use advanced MRI imaging to track white matter changes following Targeted Plasticity Therapy.

The Texas Instruments Alumni Association recently pledged $250,000 to support the Texas Biomedical Device Center’s mission to develop and advance medical devices and therapies to improve the lives of those who have suffered neurological injuries.

Researchers supported by the National Institutes of Health are launching a clinical trial to test a device that uses nervous system stimuli to rewire parts of the brain, in hopes of significantly reducing or removing tinnitus.

UT Dallas researchers are at the forefront of investigations into brain plasticity and its role in the development of tinnitus and chronic pain, as well as stroke, traumatic brain injury, autism, schizophrenia, Alzheimer's disease and Parkinson's disease.

An ultra low-power wireless neural interface chip for digitizing, amplifying and sending cortical implant device data to an external computer photographed on a U.S. dime.

A wearable wireless sensor that can detect precursors of falls. The system will be used for fall prevention in the elderly.

Brain response to 15 cortical implants. The holes show where wires were placed.

A peripheral nerve implant that can control a prosthetic limb. UT Dallas researchers are using this device in pre-clinical research to aid patients who have lost a limb.

Four cortical implants (orange lines) successfully recording from neurons (green).

UT Dallas researchers are developing a new generation of more efficient and robust implantable antennas to transmit and receive crucial data between biomedical devices and the external world.

Glial fibrillary acidic proteins moving through a brain. The bright yellow area represents the brain’s response to a cortical implant that has been removed.

A neural recording probe surface composed of titanium nanorods 5-10 nanometers in diameter. Nanorods are being studied for more efficient recording and activation of neurons.

This microelectrode array (MEA) stimulates and records neurons, providing tremendous insight into how the nervous system receives, processes and transmits information.

The Texas Biomedical Device Center is a collaborative effort engaging researchers from multiple disciplines working toward a common goal: creating new biomedical technology and therapies. The interdisciplinary program has a very strong connection with the Department of Bioengineering and includes faculty members from the School of Behavioral and Brain Sciences, the Erik Jonsson School of Engineering and Computer Science, and the School of Natural Sciences and Mathematics.

Together, these researchers will ensure that recent and future technological advances make it from the research laboratory into the clinic and ultimately to patients.


October 5, 2015
TxBDC Researchers Funded for Bioelectronic Medicines
June 3, 2015
CIRTEC Medical Systems to support new UT Dallas-led Initiative to deliver biomedical technologies from laboratory bench to bedside more efficiently
May 7, 2015
UT Southwestern testing Vivistim System device in stroke patients
April 2, 2015
New University Initiative Brings Together Medicine, Entrepreneurship
March 25, 2015
Bioengineering Professor Recognized for Stroke Recovery Research
February, 2015
Dr. Jesse Dawson discusses clinical trial data using MicroTransponder's Vivistim therapy for stroke.
February, 2015
Vagus Nerve Stimulation pre-clinical research.
February, 2015
Dr. Seth Hays a TxBDC Post-Doctoral Fellow and now UT Dallas Bioengineering Faculty member wins the 2015 Robert G. Siekert New Investigator Award for his work on stroke.