April 26, 2017
Final Exam
EE/TE 4367: Telecommunications Networks

NOTE: Please, complete the following table and keep record of your assignment number.

First Name	
Last Name	
Student ID	
Assignment $\#$	0

Exercise 1. Representing all the relevant intermediate steps, find a minimum weight spanning tree on the

Figure 1: Undirected graph with 7 nodes and 8 edges.
graph shown in Fig. 1 using, respectively,
A) the Prim-Dijkstra algorithm choosing node 3 as the root vertex [pt. 10],
B) the Kruskal algorithm [pt. 10].

Exercise 2. Consider the graph shown in Fig. 2. Note that every arc in the figure represents two distinct

Figure 2: Undirected graph with 6 nodes and 9 edges.
directed arcs with opposite directions and same weight (shown next to the arc). Using a graphical or matrix based representation of each intermediate iteration, find the shortest path from every node to node 1 as indicated below.
A) Run the first two iterations of the Dijkstra algorithm and show the path costs at the end of the second iteration [pt. 15].
B) Identify the paths found at the end of the second iteration [pt. 10].
C) Continue to run iterations until a stop condition is reached, reporting the paths found and their respective costs [pt. 15].

Exercise 3. Consider the open network of two queues $Q 1$ and $Q 2$. Each queue has a single server. The service times at the queues are independent and exponentially distributed with mean $1 / \mu_{1}$ and $1 / \mu_{2}$, respectively. Customers (or jobs) entering the network form a Poisson arrival process with rate λ. Upon entering the network of queues, a job chooses to enter $Q 1$ with probability p, or $Q 2$ with probability $1-p$. Jobs leaving $Q 1$ will choose to either re-enter $Q 1$ (with probability q_{1}) or depart from the network for good (with probability $1-q_{1}$). Jobs leaving $Q 2$ will choose to either re-enter $Q 2$ (with probability q_{2}) or depart from the network for good (with probability $1-q_{2}$).
A) Find the stability conditions of the network of queues [pt. 10].
B) Find N, defined as the average number of jobs in the entire network of queues at steady state [pt. 15].
C) Find T, defined as the average time spent in the network of queues by a generic job [pt. 15].
D) Define \hat{T}_{1} as the average total time spent in the network of queues by a job choosing to go through Q_{1}. Define \hat{T}_{2} as the average total time spent in the network of queues by a job choosing to go through Q_{2}. Find p_{T}, defined as the value of p which guarantees a fair system, i.e., $\hat{T}_{1}=\hat{T}_{2}$. Note that p_{T} must be a probability and there may be additional constraints on λ (beside those required for stability) for the solution to exist. Report any such additional constraint(s) on λ. [pt. 15].
E) Assuming now that $p=p_{T}$ and $q_{1}=q_{2}=q$, derive the stability conditions for the network of queues (answer must contain only q, λ, μ_{1} and μ_{2}). Report any additional constraint(s) on λ for the solution to exist [hint: recall that p_{T} must be a probability] [pt. 15].

