April 26, 2017 Final Exam EE/TE 4367: Telecommunications Networks

NOTE: Please, complete the following table and keep record of your assignment number.

First Name	
Last Name	
Student ID	
Assignment $\#$	0

Exercise 1. Representing all the relevant intermediate steps, find a minimum weight spanning tree on the

Figure 1: Undirected graph with 7 nodes and 8 edges.

graph shown in Fig. 1 using, respectively,

- A) the Prim-Dijkstra algorithm choosing node 3 as the root vertex [pt. 10],
- B) the Kruskal algorithm [pt. 10].

Exercise 2. Consider the graph shown in Fig. 2. Note that every arc in the figure represents two distinct

Figure 2: Undirected graph with 6 nodes and 9 edges.

directed arcs with opposite directions and same weight (shown next to the arc). Using a graphical or matrix based representation of each intermediate iteration, find the shortest path from every node to node 1 as indicated below.

- A) Run the first two iterations of the Dijkstra algorithm and show the path costs at the end of the second iteration [pt. 15].
- **B**) Identify the paths found at the end of the second iteration [pt. 10].

C) Continue to run iterations until a stop condition is reached, reporting the paths found and their respective costs [pt. 15].

Exercise 3. Consider the open network of two queues Q1 and Q2. Each queue has a single server. The service times at the queues are independent and exponentially distributed with mean $1/\mu_1$ and $1/\mu_2$, respectively. Customers (or jobs) entering the network form a Poisson arrival process with rate λ . Upon entering the network of queues, a job chooses to enter Q1 with probability p, or Q2 with probability 1 - p. Jobs leaving Q1 will choose to either re-enter Q1 (with probability q_1) or depart from the network for good (with probability $1 - q_1$). Jobs leaving Q2 will choose to either re-enter Q2 (with probability q_2) or depart from the network for good (with probability $1 - q_2$).

- A) Find the stability conditions of the network of queues [pt. 10].
- **B)** Find N, defined as the average number of jobs in the entire network of queues at steady state [pt. 15].
- C) Find T, defined as the average time spent in the network of queues by a generic job [pt. 15].
- **D**) Define \hat{T}_1 as the average total time spent in the network of queues by a job choosing to go through Q_1 . Define \hat{T}_2 as the average total time spent in the network of queues by a job choosing to go through Q_2 . Find p_T , defined as the value of p which guarantees a fair system, i.e., $\hat{T}_1 = \hat{T}_2$. Note that p_T must be a probability and there may be additional constraints on λ (beside those required for stability) for the solution to exist. Report any such additional constraint(s) on λ . [pt. 15].
- **E)** Assuming now that $p = p_T$ and $q_1 = q_2 = q$, derive the stability conditions for the network of queues (answer must contain only q, λ , μ_1 and μ_2). Report any additional constraint(s) on λ for the solution to exist [hint: recall that p_T must be a probability] [pt. 15].