## April 25, 2018

## Final Exam

## EE/TE 4367: Telecommunications Networks

NOTE: Please, complete the following table and keep record of your assignment number.

| First Name   |   |  |
|--------------|---|--|
| Last Name    |   |  |
| Student ID   |   |  |
| Assignment # | 0 |  |

Exercise 1. Representing all the relevant intermediate steps, find a minimum weight spanning tree on the



Figure 1: Undirected graph with 6 nodes and 9 edges.

graph shown in Fig. 1 using, respectively,

- A) the Prim-Dijkstra algorithm choosing node 4 as the root vertex [pt. 10],
- B) the Kruskal algorithm [pt. 10].

Exercise 2. Consider the graph shown in Fig. 2. Note that every arc in the figure represents two distinct



Figure 2: Undirected graph with 6 nodes and 9 edges.

directed arcs with opposite directions and same weight (shown next to the arc). Using a graphical or matrix based representation of each intermediate iteration, find the shortest path from every node to destination node 5 as indicated below.

- A) Run the first two iterations of the Dijkstra algorithm and show the path costs at the end of the second iteration [pt. 15].
- B) Identify the paths found at the end of the second iteration [pt. 10].
- C) Continue to run iterations until a stop condition is reached, reporting the paths found and their respective costs [pt. 15].

Exercise 3. Consider the open network of three queues Q1, Q2, and Q3. Each queue has a single server. The service times at the queues are independent and exponentially distributed with mean  $1/\mu_1$ ,  $1/\mu_2$ , and  $1/\mu_3$ , respectively. Customers (or jobs) entering the network form two statistically independent Poisson arrival processes. With rate  $\lambda$  jobs enter Q1. With rate  $2\lambda$  jobs enter Q2. Jobs leaving Q1 and Q2 will always enter Q3. Upon completing service in Q3, jobs depart from the network of queues.

- A) Find the stability conditions for the network of queues [pt. 10].
- B) Find N, defined as the average number of jobs in the entire network of queues at steady state [pt. 15].
- C) Find T, defined as the average time spent in the network of queues by a generic job [pt. 15].
- D) Define  $\hat{T}_1$  as the average total time spent in the network of queues by a job arriving into  $Q_1$ . Define  $\hat{T}_2$  as the average total time spent in the network of queues by a job arriving into  $Q_2$ . Find the value of  $\mu_2$  which is required to obtain  $\hat{T}_1 = \hat{T}_2$ . Note that  $\mu_2$  is now a dependent variable. [pt. 15].
- E) Assuming now that  $\mu_1 = 2\lambda$  and  $\mu_3 = 4\lambda$ , and using the value of  $\mu_2$  found in question D), compute N and T as function of  $\lambda$ . [pt. 15].