March 7, 2016 ## Midterm Exam I ## EE/TE 4367: Telecommunications Networks NOTE: Please, complete the following table and keep record of your assignment number. | First Name | | | |--------------|----|----| | Last Name | | _ | | Student ID | | 15 | | Assignment # | 29 | | Exercise 1. Consider the open network (referred to as the system) of three queues, i.e., Q_1 , Q_2 , and Q_3 . New customers enter Q_1 at rate λ . Customers leaving Q_1 will choose to enter either Q_2 with probability p_1 , or Q_3 with probability $1-p_1$. Customers leaving Q_2 will depart from the system. Customers leaving Q_3 will choose to either depart from the system with probability p_2 or (re)enter Q_1 with probability $1-p_2$. The average time spent by a customer in Q_1 while visiting this queue once is T_1 . The average time spent by a customer in Q_2 while visiting this queue once is T_3 . - A) Compute N_1 , N_2 , and N_3 , defined as the average number of customers in Q_1 , Q_2 , and Q_3 , respectively [pt. 10]. - B) Compute T, defined as the total time spent in the system by a customer [pt. 10]. Exercise 2. An Ethernet switch transmits frames at a transmission rate of 1 gigabit per second (Gbps). The frame average length is 887 bytes. The transmitter utilization is 30%. The average time a frame stays stored in the switch (including its transmission time) is estimated to be 473 μ s. - **A)** Compute X, defined as the average frame transmission time [pt. 10]. - B) Compute N, defined as the average number of frames stored in the blade at steady-state [pt. 10]. **Exercise 3.** The following string of 6 data bits is transmitted (from left to right) "101011". A CRC is attached at the end of the string during transmission. The CRC is computed using the generator polynomial $g(D) = D^3 + D + 1$. - A) Compute c(D), defined as the remainder when $D^3s(D)$ is divided by g(D), using modulo 2 arithmetic, where s(D) is the polynomial representing the string of data bits. Write down the sequence of bits as they are transmitted inclusive of CRC, starting left with the first bit to be transmitted [pt. 10]. - B) Assume that at the receiver the sequence of bits is affected by an error, described by $e(D) = D^5$. Compute r(D), defined as the remainder when $D^3s(D) + c(D) + e(D)$ is divided by g(D), using modulo 2 arithmetic. Is the error detected by the receiver, and if so, why [pt. 10]?