February 22, 2017
Midterm Exam I
EE/TE 4367: Telecommunications Networks

NOTE: Please, complete the following table and keep record of your assignment number.

First Name	
Last Name	
Student ID	
Assignment $\#$	0

Exercise 1. Consider the open network (referred to as the system) of three queues, i.e., Q_{1}, Q_{2}, and Q_{3}, at steady state. New customers arrive at rate λ. A new customer chooses to enter Q_{1} with probability p_{1}, Q_{2} with probability p_{2}, and Q_{3} with probability $p_{3}=1-p_{1}-p_{2}$. Customers leaving Q_{1} choose to enter Q_{2}. Customers leaving Q_{2} choose to enter Q_{3}. Customers leaving Q_{3} choose to either depart from the system with probability q or (re)enter Q_{1} with probability $1-q$. The average time spent by a customer in Q_{1} while visiting this queue once is T_{1}. The average time spent by a customer in Q_{2} while visiting this queue once is T_{2}. The average time spent by a customer in Q_{3} while visiting this queue once is T_{3}.
A) Compute N_{1}, N_{2}, and N_{3}, defined as the average number of customers in Q_{1}, Q_{2}, and Q_{3}, respectively [pt. 10].
B) Compute T, defined as the average total time spent in the system by a customer [pt. 10].
C) Compute the value of p_{3} that would minimize T [pt. 10].

Exercise 2. An Ethernet switch transmits frames at a transmission rate of 10 gigabit per second (Gbps). The frame average length is 900 bytes. The transmitter utilization is 20%. The average number of frames stored in the switch (including the one in transmission) is estimated to be 150.
A) Compute X, defined as the frame average transmission time [pt. 10].
B) Compute T, defined as the average time a frame spends in the switch at steady-state (T includes both waiting and transmission time) [pt. 10].

Exercise 3. The following string of 7 data bits is transmitted (from left to right) " 1110111 ". A CRC is attached at the end of the string during transmission. The CRC is computed using the generator polynomial $g(D)=D^{4}+D^{2}+D+1$.
A) Compute $c(D)$, defined as the remainder when $D^{4} s(D)$ is divided by $g(D)$, using modulo 2 arithmetic, where $s(D)$ is the polynomial representing the string of data bits. Write down the sequence of bits as they are transmitted inclusive of CRC, starting left with the first bit to be transmitted [pt. 10].
B) Assume that at the receiver the sequence of bits is affected by an error, described by $e(D)=D^{10}+D^{3}$. Compute $r(D)$, defined as the remainder when $D^{3} s(D)+c(D)+e(D)$ is divided by $g(D)$, using modulo 2 arithmetic. Is the error detected by the receiver, and if so, why [pt. 10]?

