February 26, 2018

Midterm Exam I

EE/TE 4367: Telecommunications Networks

NOTE: Please, complete the following table and keep record of your assignment number.

First Name		
Last Name		
Student ID		
Assignment #	39	

Exercise 1. Consider the open network (referred to as the system) of three queues, i.e., Q_1 , Q_2 , and Q_3 , at steady state. New customers arrive at rate λ and always enter Q_3 . Customers leaving Q_3 choose to either depart from the system with probability 1-p or go to Q_1 with probability p. Customers leaving Q_1 always choose to enter Q_2 . Customers leaving Q_2 always choose to enter Q_3 . The average time spent by a customer in Q_3 while visiting this queue once is T_3 . The average number of customers in both Q_1 and Q_2 combined is \hat{N} . Your final solutions should only contain λ , p, \hat{N} , and T_3 .

- A) Compute λ_1 , λ_2 , and λ_3 , defined as the arrival rate into Q_1 , Q_2 , and Q_3 , respectively [pt. 10].
- B) Compute N_3 , defined as the average number of customers in Q_3 [pt. 10].
- C) Compute T_{tot} , defined as the average total time spent in the system by a customer [pt. 10].

Exercise 2. The server of a queue completes service time according to a random variable denoted as X (in ms), whose probability density function is

$$f_X(x) = \begin{cases} -\frac{2}{81}x + \frac{2}{9} & 0 \le x \le 9\\ 0 & \text{otherwise} \end{cases}$$

The server utilization is 30%. The average time spent by a customer in the queue (inclusive of the service time) is 20ms.

- A) Compute $E[X] = \bar{X}$, defined as the average service time [pt. 10].
- B) Compute λ , defined as the customer arrival rate into the queue. [pt. 10].
- C) Compute N, defined as the average number of customers in the queue. [pt. 10].

Exercise 3. The following string of 5 data bits is transmitted (from left to right) "11111". A CRC is attached at the end of the string during transmission. The CRC is computed using the generator polynomial $g(D) = D^3 + D^2 + D + 1$.

- A) Compute c(D), defined as the remainder when $D^3s(D)$ is divided by g(D), using modulo 2 arithmetic, where s(D) is the polynomial representing the string of data bits. Write down the sequence of bits as they are transmitted inclusive of CRC, starting left with the first bit to be transmitted [pt. 10].
- B) Assume that at the receiver the sequence of bits is affected by an error, described by $e(D) = D^6 + D^5$. Compute r(D), defined as the remainder when $D^3s(D) + c(D) + e(D)$ is divided by g(D), using modulo 2 arithmetic. Is the error detected by the receiver, and if so, why [pt. 10]?
- C) What is the minimum distance of the used code and why [pt. 10]?