Homework 4p

EE/TE 4367: Telecommunications Networks

NOTE: Please, complete the following table and keep record of your assignment number.

First Name	
Last Name	
Student ID	
Assignment $\#$	0

Exercise 1. Two servers (S_{1} and S_{2}) with exponential service time and same service rate μ are busy completing service of two jobs at time $t=0$. The server that completes service first is referred to as the winning server $\left(S_{w}\right)$, the other is referred to as the losing server $\left(S_{l}\right)$. Jobs must complete their service before departing from the queue.
A) Compute the probability of S_{1} to be the winning server, i.e., $P\left(S_{w}=S_{1}\right)=P\left(S_{l}=S_{2}\right)$. Compute the probability of S_{2} to be the winning server, i.e., $P\left(S_{w}=S_{2}\right)=P\left(S_{l}=S_{1}\right)$ [pt. 10].
B) Compute the expected departure time of the winning server, defined as $t_{w}>0$ [pt. 10].
C) Compute the expected departure time of the losing server, defined as $t_{l}>t_{w}$ [pt. 10].

Exercise 2. Consider a $M / M / 1$ queue with job arrival rate λ and service rate μ. There is a single job (J_{1}) in the queue and in service at time $t=0$. Jobs must complete their service before departing from the queue.
A) Compute the probability that the job in service $\left(J_{1}\right)$ completes service and departs from the queue before the next job $\left(J_{2}\right)$ enters the queue [pt. 10].
B) Compute the probability that the next job $\left(J_{2}\right)$ enters the queue before the job in service $\left(J_{1}\right)$ completes service and departs from the queue [pt. 10].
C) Assuming that the queue is First-Come First-Serve, which means J_{2} can go into service only once J_{1} completes service, compute the expected departure time of J_{1} and J_{2}, i.e., $t_{1}>0$ and $t_{2}>t_{1}$, respectively [pt. 10]. [Hint: two possibile and mutually exclusive sequences must be accounted for when computing t_{2} : J_{1} departs before J_{2} arrives, and J_{1} departs after J_{2} arrives.]

Exercise 3. Four servers $\left(S_{1}, S_{2}, S_{3}\right.$, and $\left.S_{4}\right)$ with exponential service time and same service rate μ are busy completing service of four jobs at time $t=0$. Jobs depart from their respective server as soon as their service completes.
A) Compute the expected departure time of the winning job (the job that completes service first), i.e., $t_{1}>0$ [pt. 10].
B) Compute the expected departure time of the job that completes service second, i.e., $t_{2}>t_{1}$ [pt. 10].
C) Compute the expected departure time of the job that completes service third, i.e., $t_{3}>t_{2}$ [pt. 10].
D) Compute the expected departure time of the job that completes service last, i.e., $t_{4}>t_{3}$ [pt. 10].

