
Project Assignment 2. Turning a BeagleBone Black Wireless (BBW) into an IoT sensor
node

General Instructions:

 Submission Deadline: April 18th, 2018. Please submit electronically to
(rja150230@utdallas.edu) and consider that you may be required for a demonstration.

 Team members: A maximum of two students per project.

 Collection of Equipment: Stop by TA office ECSN 3.520 Wednesdays and Fridays from
2:30pm to 7:00pm.

Problem Statement

The Internet of Things (IoT) concept involves connecting things to the Internet in order to make
our lives easier, more efficient, and friendly with the environment. For this purpose, a
BeagleBone Black Wireless (BBW) will be use it as a sensor node collecting data. In addition,
the BeagleBone will send the collected data to the Internet using its built-in Wi-Fi radio
connectivity. The data being sent over the Internet will be received at the AT&T Flow IoT
Designer Platform which is a NodeRed-based graphical environment to design and deploy IoT
applications quickly.

Components

 One (1) BeagleBone Black Wireless with Linux installed

 Internet connection over the WiFi built-in adapter of the Beaglebone Black

 AT&T Flow Design user account (it is free of charge at http://flow.att.com)

Procedure

The sensor data being collected by the BBW will be emulated by reading one of its serial ports,
that is, everything received over the selected serial port on the BBW will represent the sensor
data (You should use an external device to send data to the BBW, for example a CC1310).
These data will be sent over the WiFi connectivity of the BBW to the AT&T Flow Design platform
and will be displayed there using a debug node to see all the incoming messages. To achieve
this, you may follow two approaches as described below:

1. You may implement this functionality by using a Node-red server installed in your BBW
or,

UART INTERNET

mailto:rja150230@utdallas.edu)
http://flow.att.com)/

2. Writing a Bonescript application for your BBW.

Basic instructions to implement this project will be provided for both approaches as follows.
Therefore, you must add the missing pieces to complete the project.

Using a NodeRed Server at the BBW

You will need first to install the Node-Red server in your Linux running on the BBW. By following
the steps described below, you should be able to install and start the Node-RED server in your
BBW.

1. Make sure that your Internet connection is up and running in your BBW through your WiFi
adapter.

2. Open the root prompt and execute the following command:
bone# npm install –unsafe-perm –g node-red@0.12.1
bone# node-red

3. Add BeagleBone specific nodes:

bone# cd ~/.node-red
bone# npm install node-red-node-beaglebone

4. To access the Node-RED server, you need to get the IP address assigned to the BBW
WiFi adapter by the WiFi Internet Connection (through your Access Point). Then, open
a browser and type http://xx.xx.xx.xx:1880 to access the server (the x marks represent
your local IP address).

5. For this experiment you will need to drag the following nodes to the canvas:

 serial: use it to read a serial port of the BBW

 function: use it to manipulate the data coming from the serial port to create the
message payload to be send over a TCP/UDP socket.

 tcp out/udp out: use it to implement a TCP/UDP client in order to send the data
through a socket which matches the socket configuration at the AT&T Flow
Designer Server.

 debug: use it to debug the implementation by looking the output coming from the
nodes.

6. Wire the above nodes properly in order to provide the functionality being asked.
7. At the AT&T Flow Server, you have to implement a TCP/UDP server using a tcp in node

and then process and display the incoming messages using the function and debug
nodes, respectively. Take note of the endpoints assigned to the TCP/UDP nodes in order
to communicate through them, that is, their IP address and the Port Number as illustrated
in the figure below.

http://xx.xx.xx.xx:1880/

8. At the Debug window the data being received must be displayed.

For more documentation about Node-RED please visit http://nodered.org
For more documentation about the BBW please visit http://beagleboard.org

Using a BoneScript

BoneScript is a node.js library which provides a set of Arduino-like functions written in JavaScript
to simplify the development of physical computing tasks under embedded Linux, specifically
designed to support the BeagleBone board.

The first step to use this set of functions is to check the installed BoneScript version of your
BeagleBone to verify if you have the latest version. To check this and to verify the correct path,
execute the following command:

node -pe "require('bonescript').getPlatform().bonescript"

To write a Bonescript application you can use Cloud9 IDE in your browser to start writing your
script. Once you are ready for coding, add the bonescript library as part of code using 'require'
directive. Functions are then referenced through the object provided back from require. This is
equivalent to an #include statement in C.

Here's an example:

var b = require('bonescript');

b.pinMode('P8_12', b.INPUT);
b.pinMode('P8_13', b.OUTPUT);

setInterval(copyInputToOutput, 100);

function copyInputToOutput() {
 b.digitalRead('P8_12', writeToOutput);
 function writeToOutput(x) {
 b.digitalWrite('P8_13', x.value);
 }
}

The 'P8_12' and 'P8_13' are pin names on the board and the above example would copy the
input value at P8_12 to the output P8_13 every 100 ms.

Please visit http://beagleboard.org/Support/bone101/#cloud9 to learn more about how to start
writing a bonescript in Cloud9 IDE.

In order to address the requirements for this project, you will need to read the serial port, to
establish an internet connection, and to send the data to a TCP/UDP server. For sample codes
and instructions about how to use the serial port, please visit https://github.com/node-

http://nodered.org/
http://beagleboard.org/
http://beagleboard.org/Support/bone101/#cloud9
https://github.com/node-serialport/node-serialport

serialport/node-serialport . At this point, it is recommendable to set up the serial port in “flowing
mode” in order to receive data continuously.

For more information about Node.js, please visit: http://nodejs.org
For more documentation about Bonescript, please visit: http://beagleboard.org/bonescript

Analysis

1. Record in the table below, the results of your implementation. 20 samples are enough to
complete the table.

2. What is the size of the payload received at the Flow server and compare this value with
the payload size at the transmitter (BBW)? Are they the same?

Message
Transmitted

Size
(bytes)

Message
Received

Size
(bytes)

https://github.com/node-serialport/node-serialport
http://nodejs.org/
http://beagleboard.org/bonescript

