
1

Error-Resilient Packet Header Compression

Vijay A Suryavanshi and Aria Nosratinia

Multimedia Communications Laboratory, The University of Texas at Dallas

Richardson, TX 75083-0688, USA

E-mail: {vas021000, aria}@utdallas.edu

Abstract

Network traffic statistics show that, because shorter packets predominate in many applications,

headers impose a considerable overhead. But the header content is largely repetitive, thus in the past 15

years many packet header compression techniques have been proposed and studied. Header compression

is based on differential methods, which introduces error propagation and leads to problems, e.g., in

wireless links. This work presents error-resilient header compression by using forward error correction

(FEC), which can significantly improve the throughput of header compression in both uni-directional

and bi-directional links. The proposed methods are versatile and can work with pre-existing header

compression schemes. Simulations demonstrate the advantages of the proposed system in terms of

packet loss rates, throughput and delay.

Index Terms

Header compression, ROHC, error resilience

I. INTRODUCTION

Wireless bandwidth is precious. Every extra bit sent over the air not only uses scarce band-

width, but also interferes with other users and depletes the mobile battery. One must be frugal

with wireless bits.

Unfortunately TCP/UDP/IP packet transmission is anything but frugal. For routing and control

purposes, packets have a typical header of 40 bytes in IPv4 and 60 bytes in IPv6. Actual traces

July 7, 2005 DRAFT

2

of Internet traffic show [1] that a significant number of packets are only 40 bytes long, i.e. they

have no payload, and a majority of packets are less than 300 bytes long. Based on the statistics

derived from typical traces, headers impose a heavy overhead in terms of bitrate.

Thankfully the header data are redundant, so it is possible to compress them. Many header

compression algorithms have been proposed and studied over the past 15 years (Figure 1). Van

Jacobson [2] proposed a method that reduces packet overhead to an average of 4-5 bytes per

packet. Subsequently, other methods were proposed that reduce the overhead further down to 2-3

bytes per packet. These methods depend on the similarity between successive packet headers, in a

manner similar to DPCM. Thus, packet header compression shares the strengths and weaknesses

of DPCM: excellent compression is achieved when headers are strongly correlated (as they

usually are), but any errors will propagate and contaminate future packets.

To confront the error propagation problem in uni-directional links, existing schemes perform

periodic refresh with uncompressed headers, thus periodically restoring synchronization between

the transmitter and receiver. In bi-directional links, variations of ARQ with partial retransmis-

sion of the compressed information have been proposed. An overview of header compression

methodologies in uni-directional and bi-directional links is presented in Section II.

The refresh method for the uni-directional link clearly leaves much to be desired. At high

refresh rates, compression ratio is quickly eroded; at lower refresh rates, packet loss ensues.

Motivated by the bursty nature of the losses in this application, and by the excellent burst-error

correcting capability of Reed-Solomon (RS) codes, we propose to use systematic RS codes for

the packet header compression problem in the uni-directional links. The distribution of parity bits

over the packets is carefully designed to comply with existing protocols and to reduce the overall

error rate. Significant improvements over previous solutions are obtained using this method.

We also design a reduced-complexity solution for the same channel using an interleaved

convolutional code. The complexity advantage obtained at the cost of a higher residual packet

loss rate, compared with the RS code.

We then turn to the bi-directional link, where feedback can be used to acknowledge the

July 7, 2005 DRAFT

3

receipt of packets. Again we propose to use FEC methods, where (in principle) multiple packet

headers will contribute to each parity bit. Therefore each of the (compressed) packet headers

correspond to several symbols in our codewords, and the reverse link provides feedback several

times within each codeword. This presents an unusual situation for code design, presenting a

challenge how to use the feedback link effectively without cannibalizing the coding gain. We

construct a predictive ARQ with multiple retransmission within a convolutional codeword. We

also design and use a delay-limited interleaver. Using this structure, very attractive throughput-

delay tradeoff is obtained in the presence of noise in both forward and reverse links. In fact,

both the throughput and delay of the proposed system is superior to previous solutions under a

large set of channel conditions.

To summarize, this work constructs a framework such that well-known channel codes can be

gainfully and effectively applied to a new network-based application. The contribution of this

work consists of the adaptation of Reed-Solomon and convolutional codes through the design

of bit allocation and interleaving strategies for the header compression application, and thus

obtaining much improved results that were previously unavailable.

The paper is organized as follows. In Section II we review header compression methodology,

and present information needed in the remainder of the paper. Sections III and V present code

design for the uni-directional and bi-directional links, respectively. Section IV discusses the

design of interleavers.

II. HEADER COMPRESSION METHODOLOGY

Header fields of consecutive packets are not unrelated [2]. For example, consecutive packets

in a session share the same source and destination address, so one may economize by sending

them only once. The fields whose values are constant throughout a session are called static

fields. Some other parts of the header are more or less unrelated from one packet to the next,

e.g., the Time To Live (TTL), and are known as random fields. Finally, there are some parts,

such as the packet number, that are not the same, but can be determined from past values. These

are known as inferred fields.

July 7, 2005 DRAFT

4

Existing header compression methods use variations of (nonlinear) DPCM. Random fields are

transmitted intact, while static and inferred fields are compressed by reference to the previous

packet header(s). The entire process is a reversible (lossless) compression that is characterized by

a finite state machine, whose state must be maintained and updated regularly at the compressor

and decompressor alike. This state is known as CONTEXT.

It is well known that DPCM is a simple and powerful technique that can compress highly

correlated sequences. In fact the best header compression techniques can compress a 40-byte

IPv4 header down to 2–3 bytes (see Figure 1). However the basic DPCM assumes an error-free

link; any errors in DPCM transmission will de-synchronize the compressor and decompressor

states, thus future received values will be interpreted incorrectly. This problem is known as error

propagation.

The problem of error propagation was recognized in the earliest works on header compression.

The method of Van Jacobson [2] proposed periodic refresh to limit the damage caused by

channel errors (Figure 2). Nevertheless, this method concedes lost packets between two refreshes.

Perkins and Mutka [3] propose a more robust method where CONTEXT is stationary and does

not change, i.e., all compression is done with respect to the last uncompressed packet header.

Eventually, as differences between the current packet and last uncompressed packet grow, sending

the differential may be unprofitable. Thus Calveras et al [4], [5] optimized the frequency of

transmission of uncompressed headers in the method of [3]. Unfortunately these methods, while

removing dependence among compressed headers, lose a significant part of the compression

ratio.

Degermark et al. [6] observed that the statistics of the compressed headers are not random,

but that some residual redundancy remains in them. Often times, the compressed headers are

the same from one packet to the next. Thus, whenever a compressed header is lost, for the next

packet, the CONTEXT is repaired by applying the received delta value twice, thus leading to

the TWICE algorithm. The basic assumption is that the lost compressed header was the same

as the next one received. This is a similar idea to what is known as error concealment in the

July 7, 2005 DRAFT

5

image and video compression literature. The TWICE update is verified by the checksum of the

decompressed header at the transport layer (TCP or UDP).

The basic ideas arising from these methods were adopted by the Internet Engineering Task

Force (IETF) into various standard documents (RFC’s). Compression of RTP packets via the

basic Van Jacobson algorithm with the TWICE decoder is incorporated into RFC 2508 [7]. The

Enhanced Compressed RTP (ECRTP) algorithm allows for multiple transmission of compressed

information based on channel conditions, and is incorporated into RFC 3545 [8].

Perhaps the most effective header compression standard to date is known as RObust Header

Compression (ROHC) RFC 3095 [9]. The fundamentals of ROHC are similar to previous header

compression algorithms, but ROHC, through attention to detail, achieves superior compression.

Since ROHC is widely considered to be the state of the art, we briefly describe some of its key

aspects. Due to space constraints the concepts are presented in a simplified form; the interested

reader is invited to consult [9] for a more detailed treatment. The reader who is familiar with

ROHC may safely bypass the remainder of this section.

ROHC is in fact not one compression algorithm, but several compression algorithms bundled

into one package. There are four compression profiles in ROHC (Uncompressed profile, RTP,

UDP, and ESP profiles) each of them applies to a particular type of packet stream.

Also, based on the existence of feedback and/or reliability of the channel, ROHC operates

in one of several modes. In unidirectional links, we have the unidirectional mode or U-mode,

also known as ROHC-U. In the presence of feedback there are two modes, the reliable mode

(ROHC-R) which is a conservative compression, and optimistic mode (ROHC-O), which has

higher compression ratio.

Profiles and modes determine the details of the compression algorithm, so in principle, we

can think of ROHC as a family of algorithms. The profiles adapt ROHC to the properties of the

source, while the modes adapt ROHC to the properties of the channel.

ROHC senses the quality of the channel and moves between the different modes via an

algorithm described by a finite state machine. Specifically, ROHC starts in the U-mode, and pro-

July 7, 2005 DRAFT

6

gresses to R-mode and O-mode. Whenever there are too many errors, it falls back down through

the mode hierarchy. Furthermore, in each of the modes, the operation of ROHC compressor and

decompressor is characterized by a finite state machine. To summarize, there is one small-scale

FSM describing the operation of the compression algorithm, while there is (another) large-scale

FSM driving the movement between different modes. The interested reader is referred to [9],

[10] for a more detailed treatment of these subjects.

Among the important innovations in ROHC is the concept of Window-based LSB encoding

(W-LSB). The basic idea behind W-LSB is as follows: instead of encoding the difference with

respect to the last sample, one can encode the difference with respect to a “neighborhood” of

the past few samples. If the neighborhood is such that it is uniquely identified by any of the

past few samples, then one can decode (decompress) despite the loss of one or more samples,

thus reducing the error propagation problem.

Let us assume that we wish to encode a sample value v and denote the maximum and minimum

values in a prescribed window as vmax and vmin respectively. To obtain the description of

“neighborhood”, the compressor first calculates a range r that describes the size of the so-called

neighborhood.

r = max(|v − vmax|, |v − vmin|) (1)

The number of bits, k that need to describe the position within this neighborhood are:

k = d(log2(2r + 1))e (2)

The k least significant bits (LSB) of v are thus its representative values. At the decompressor,

these LSB bits replace the LSB bits of Vref , the last reference value that is received correctly,

to give v. Then the window, Vref , vmax and vmin are all updated.

A longer window ensures better performance against packet losses, but increases the number

of bits k that need to be transmitted. Also on uni-directional links RFC 3095 recommends all

compressed headers carry a CRC to verify correct decompression, thus adding two bytes to the

compressed packet header.

July 7, 2005 DRAFT

7

III. CASE I: UNI-DIRECTIONAL LINKS

In a unidirectional link, since there is no feedback, a compressed-header packet must be

discarded if any of the preceding packets are lost. With forward error correction (FEC), many of

these otherwise lost packets can be recovered. In this section we present FEC techniques based

on Reed-Solomon codes and convolutional codes for the header compression in a uni-directional

link.

A. Reed-Solomon Codes

There are two aspects of the header compression problem that give rise to bursts of errors.

First, each packet header, even when compressed, consists of multiple bytes, thus the loss of each

compressed header will result in the loss of 2-5 consecutive bytes. Second, the bursty nature of

many channels of interest, e.g., the fading wireless channel, result in consecutive losses. These

two factors together lead to a bursty error (equivalent) channel in our problem.

Motivated by the excellent burst-error correction properties of Reed-Solomon (RS) codes,

we propose to use them for the packet header compression problem. A systematic RS encoder

accepts K data symbols and generates N − K parity symbols [11]. A symbol is made up of

m bits and the maximum codeword length, N ≤ Nmax = 2m − 1. In this paper we consider

m = 8, i.e., each symbol is one byte and therefore Nmax = 255. At the receiver, a RS decoder

can recover these K data symbols if any K from N transmitted symbols are received correctly.

In a packet header compression system, periodically an uncompressed header is transmitted

that is around 40 bytes long, and following that compressed packets are transmitted that are

much shorter. Our encoder will combine the uncompressed and the compressed headers into one

group of symbols, and calculates the parity bits for this group of symbols (see Figure 3). Since

we do not wish to manipulate the protocols already in place, we propose to use a systematic

code, so that the existing (compressed) packet headers will be transmitted as they are. Additional

parity bits will be generated and loaded onto the packets in a manner to be described below.

In order to achieve a configuration of parity bits that will achieve good error performance,

July 7, 2005 DRAFT

8

careful attention must be paid to how symbol losses are generated through packet losses, since

the distribution of symbols and errors in this application is different from many of the channels

where RS codes have been used. In particular, note that our symbol errors are highly correlated,

even with i.i.d. packet losses, because each packet loss will entail the loss of several systematic

bits (compressed header) as well as parity bits that may be loaded onto the packet.

Due to the nature of RS codes, i.e., decoding is affected by the total number of lost symbols

(systematic + parity), the best course of action is to equalize the total number of systematic

plus parity bits on each packet.1 Therefore, since uncompressed headers are many times larger

than compressed headers, parity bits must be loaded onto the compressed-header packets (see

Figure 4) in a manner such that the total number of header bytes plus parity bytes for all packets

are equal (as close as possible).

The details of the coding strategy are as follows. Consider an uncompressed header of u bytes

and α compressed headers each consisting of c bytes. The RS encoder accepts these u + αc

bytes and generates some parity symbols as shown in Figure 3. The parity symbols so generated

are distributed equally among the α packets with compressed headers shown in Figure 4. The

number of parity symbols generated is xα, where x denotes the number of parity symbols per

transmitted compressed header.

We now calculate the packet discard rate of the coded system under i.i.d. errors. Let sa be the

average number of symbols per transmitted packet, then sa = u+(x+c)α
1+α

. At the decoder we need

u+xα symbols for successfully decoding the codeword; Kp = u+xα
sa

packets suffice this purpose.

The probability of successfully decoding the codeword over an i.i.d. channel with packet loss

probability p can be given as:

PRS =
α

∑

i=Kp

(

α

i

)

pα−i(1 − p)i (3)

The average packet discard rate of the coded system m̄cod can then be calculated as:

m̄cod = α pPRS + m̄ (1 − PRS) (4)

1With an underlying assumption that packet loss probability is equal among different type of packets.

July 7, 2005 DRAFT

9

where m̄ is the packet discard rate of the uncoded system given as [12]:

m̄ =
α+1
∑

k=0

k(1 − p)(α+1−k)p = (α + 1) − 1 − p

p

[

1 − (1 − p)α+1
]

(5)

It is possible to perform similar performance analysis under correlated errors using recursion

relationships [13], which we omit in the interest of brevity.

Figure 5 shows the performance of various (N,K) RS codes where u = 40 bytes and c = 2

bytes for the i.i.d. channel. The proposed coded scheme performs well compared to the uncoded

system. Decreasing the code rate provides better protection and hence better performance.

Extensive experiments were also undertaken in bursty error channels, which are omitted due

to editorial constraints on the number of figures. The interested reader is referred for further

experimental results to [12].

B. Convolutional Codes

Although RS codes are powerful and give excellent performance, there are two disadvantages

associated with them: delay and complexity.

The delay of the RS decoding is due to the fact that, if some symbols are lost, they cannot

be recovered until after a prescribed number of systematic plus parity bits have been correctly

received. To demonstrate, we calculate the delay for the simple case of i.i.d. errors. Assume

a (N,K) RS code, take nf to be the position of first channel error, and ∆ to be the number

of symbols in error prior to successful decoding. We must wait for decoding until exactly K

correct symbols have been received, the location at which this happens is denoted by S. Note that

symbols before nf have zero decoding delay and symbols after S have no effect on decoding.

Packets between nf and S have delay S − nf . The average delay can be calculated as:

D̄ =
1

N

S
∑

n=nf

(S − nf) (6)

July 7, 2005 DRAFT

10

After substituting S = K + ∆ the expected overall delay per packet E[D̄] is:

E[D̄] = E

[

(K + ∆ − nf)
2

2N

]

≥ E

[

K(K + ∆ − nf)

2N

]

=
r

2

(

N(r + p) − 1

p

)

(7)

where p is the probability of packet loss and r is the code rate. To calculate this bound, we

have used the fact that ∆ is less than the total number of errors in the codeword, which is

binomially distributed, and nf is geometrically distributed. Thus it is seen that the average

delay of the Reed-Solomon decoding is on the order of the codeword length, i.e., it increases

linearly with codeword length. In delay-sensitive situations, we may need to seek alternative

solutions. Convolutional codes can be decoded with delay that is roughly on the order of the

constraint length of the code, which is independent (and often much smaller than) the length of

the codeword.

Another motivation for looking beyond RS codes is complexity. Reed-Solomon codes have

excellent burst error correcting properties, but their decoding complexity is at least quadratic

(O(N 2)) in length of the codeword. Convolutional codes have complexity that increases linearly

with codeword length.

Convolutional codes perform well when errors in the codeword are random, but sometimes

the losses are bursty. To improve the performance of convolutional codes when losses are bursty,

interleaving must be employed. Interleaving does create additional delay, a question that we will

address in the sequel.

As shown in Figure 6 at the transmitter a total of u + αc bits are fed to the interleaver. The

output bits from the interleaver are fed to a Recursive Systematic Convolutional (RSC) encoder.

Parity bits coming out of this encoder are fed to the interleaver and the output interleaved parity

bits are equally divided among α compressed packet headers. Interleaving data bits (u + αc of

them) before encoding ensures that the parity bits generated belong to data bits which are at least

some samples apart. Correct reception of one such parity bit can contribute in reconstruction

July 7, 2005 DRAFT

11

of many packets. The parity bits are also interleaved so that when a packet is lost, the missing

parity bits are separated as much as possible in the codeword. Also the parity bits are equally

distributed among the α compressed packets instead of transporting them in one single packet.

This excludes the possibility of losing all the parity bits except when all the packets are lost (a

rare event). Similarly decoding is done as shown in Figure 6 at the receiver side.

In our simulations u = 40 bytes and c = 2 bytes. We compare our scheme with ECRTP and

ROHC operating in uni-directional mode over an i.i.d. channel. The RSC encoder given in [14]

with rate 1/2, K = 6 and generator matrix g0 = [101011] and g1 = [111101] is used. The results

are shown in Figure 7. Extensive experiments were also undertaken in the bursty error channels,

the results of which cannot appear here due to editorial constraints on the number of figures.

The interested reader is referred for further experimental results to [15].

Interleaving always incurs delay. In general the maximum delay can be as large as the codeword

length. In the next section we provide a delay-limited interleaver design algorithm for delay

sensitive applications.

IV. DELAY-LIMITED INTERLEAVER DESIGN

An interleaver π is characterized by a pair of spreading factors, indicating the distance

properties of symbols at the input and output. The symmetric expression of spreading factor

is the s-parameter, which is the largest number s such that symbols within distance s at the

input are s samples apart in the output stream [16]. The delay of an interleaver is defined as:

δ = max
i

(π(i) − i) (8)

Let Dmax be the maximum allowable delay of the system (in bits). From 8 it can be seen that

if an interleaver needs to be designed with Dmax in view, then

π(i) ≤ Dmax + i (9)

July 7, 2005 DRAFT

12

The delay-limited interleaver design algorithm can be described as follows. First, an initial

guess for the s-parameter is made. A necessary and sufficient condition for an interleaver with

spread s and period P to exist is that P ≥ s2 [17] therefore our initial guess for s is b
√

P c. The

algorithm tries to design the interleaver with the specified delay constraint and s parameter. If at

any step of the algorithm the interleaver cannot satisfy the delay constraint for a given s, the s

parameter is decreased by 1 and the algorithm starts all over again. The interleaver is designed

similarly to the classic block interleaver but adhering to Equation (9).

As in the case of a block interleaver, we start by setting J11 = 1, i.e., the element on the upper

left corner of the matrix is one. Recall that a column represents the input and a row represents

the output of the interleaver, so every time a 1 is placed, the other elements in the corresponding

row and column are set to zero. The next 1 is placed in the second row and 1+(s+1)th column.

Similarly for the third output bit of the interleaver, a 1 is placed in the third row and 2+(s+1)th

column. At some point, we will need to wrap back once we exceed the delay limit or when the

column value exceeds the period P of the interleaver. In this case we place a 1 in the next least

valued and unoccupied column. We continue to fill the matrix in a similar fashion.

The resulting interleaver matrix will have a block interleaver structure but some of the

permutation indices are not allowed. The non-permissible indices are represented by x. Thus

the interleaver matrix is filled as in the case of a block interleaver but will have delay less than

Dmax. Equation 10 shows the interleaver matrix Jcon with spread s = 1 and maximum delay

Dmax = 7 bits. The resulting Jcon will have a trapezoidal appearance due to the delay constraint.

July 7, 2005 DRAFT

13

Jcon =













































1 · · · · · · · X X X X X X X X

· · 1 · · · · · · X X X X X X X

· · · · 1 · · · · · X X X X X X

· · · · · · 1 · · · · X X X X X

· · · · · · · · 1 · · · X X X X

· · · · · · · · · · 1 · · X X X

· · · · · · · · · · · · 1 · X X

· · · · · · · · · · · · · · 1 X

· 1 · · · · · · · · · · · · · ·

· · · 1 · · · · · · · · · · · ·

· · · · · 1 · · · · · · · · · ·

· · · · · · · 1 · · · · · · · ·

· · · · · · · · · 1 · · · · · ·

· · · · · · · · · · · 1 · · · ·

· · · · · · · · · · · · · 1 · ·

· · · · · · · · · · · · · · · 1













































(10)

V. CASE II: BI-DIRECTIONAL LINKS

In this section we present a coded ARQ technique for resilient packet header compression

in the bi-directional links. Because the network ARQ function is available on a per-packet

basis, while the codewords consist of multiple packets, it follows that in our system, multiple

opportunities exist within a codeword to acknowledge partial receipt of codeword contents. Based

on this partial information, a decision must be made on transmission of additional data and parity,

in a way that is not exactly similar to any existing system known to the authors. We present an

adaptive hybrid ARQ technique to solve this problem.

A. Hybrid ARQ

Classic ARQ achieves reliability by retransmissions of lost data [11], [18]. The ability to

retransmit means that there are no packet losses in a delay-unlimited system, however, when

the channel deteriorates, multiple retransmissions reduce the throughput of ARQ. To reduce the

number of retransmissions the forward link can be encoded, a method known as hybrid ARQ. If

the error pattern is not correctable, the receiver can then request retransmission of the erroneous

block, thus maintaining the reliability of the system [19].

In the existing hybrid ARQ schemes [11] the decoder waits until a codeword is fully received,

then tries to decode the codeword and see if retransmission is necessary. In our search for partial

July 7, 2005 DRAFT

14

ARQ methods we found [20], where the transmitted packet includes additional information

(partial checksums) so that the rough location of error(s) can be determined at the decoder. Then,

the acknowledgment will ask only for the corrupted data to be retransmitted. In this scheme the

transmitter and receiver exchange more information that the traditional ARQ, however, still only

one ACK/NACK is available per encoded block.

In contrast, we have multiple ACK/NACK per codeword. The question is how to use this

feedback information in an efficient manner. The basic idea behind our method is as follows:

feedback makes available to the encoder some information about the status of the decoder.

Whenever a NACK is received, the encoder then makes an estimate of whether the decoder can

continue to decode despite the error. Only if the (estimated) answer is in the negative, additional

parity bits will be transmitted.

The block diagram of the system is shown in Figure 8. The encoder and decoder block are

shown in Figure 6. Each time a packet is lost, the decoder transmits a NACK to the encoder. Once

a NACK is received, the transmitter will mimic the decoding operation and will determine if this

packet loss will result in a decoding failure. If so, it will retransmit the packet. Due to non-zero

round-trip time, a buffer is provided at the encoder to allow for potential retransmissions.

For example, consider encoding of 10 packet headers as shown in Figure 6 at the transmitter

side where each packet is denoted by Pi, i ∈ {1, 2, ..., 10}. Assume that packets P1, P4 and P9

are lost in transition. The decoder, once P1 is not received, sends a NACK corresponding to

P1’s sequence number. Upon receiving this NACK, the transmitter mimics the receiver’s Viterbi

decoding and finds out that even with the loss of P1 the decoding can still be successful, so no

action takes place. After some time, a NACK is received for P4. With both P1 and P4 missing,

the transmitter determines that decoding will fail, so P4 is re-transmitted until it is successfully

received. Finally, a NACK for P9 is received. From the viewpoint of the transmitter at this time,

the receiver is missing only P1 (since P4 was successfully re-transmitted). So transmitter will

mimic the receiver’s decoding to see if it will fail. If so, P9 will be retransmitted.

We compared, through simulations, the throughput and delay performance of the proposed

July 7, 2005 DRAFT

15

scheme against the O-mode of ROHC. The packet headers have u = 40 bytes and compressed

headers have c = 2 bytes. We use the RSC encoder given in [14] with rate 1/2, K = 3 and

generator matrix g0 = [101] and g1 = [111]. In all experiments the decoder timeouts after

a period equivalent to round trip-time of a packet and retransmits the NACK. The feedback

channel is assumed i.i.d. with a packet loss rate of 0.1. We use delay-constrained interleavers

with Dmax = 100, 200, 600 and 900 bits, designed with the algorithm of Section IV.

Figure 9 demonstrate the performance of the proposed predictive hybrid ARQ technique over

a correlated (bursty error) channel. As expected, the average delay increases with Dmax but is

lower than ROHC-O mode for most channel conditions. In the extreme low packet loss regime

the average delay of the proposed scheme is above ROHC-O, but overall the delay profile

remains consistent even when the channel deteriorates. The spreading factor s of the interleaver

increases as Dmax increases, allowing for better error correction. This is evident from Figure 9

where the throughput improves as Dmax increases. Experiments were also performed on the

i.i.d. channel, whose results can be found in [21]. Overall the proposed scheme comfortably

outperforms ROHC-O mode. The advantages are especially evident for throughput in the low to

medium loss scenarios, and for delay in medium to high packet loss scenarios.

VI. CONCLUSION

This paper presents error-resilient methods for packet header compression, for both uni-

directional and bi-directional links. For uni-directional links, we propose a system involving

Reed-Solomon codes, and also a reduced-complexity reduced-delay system with convolutional

codes. To maintain performance in bursty channels and yet maintain acceptable delay, a delay-

limited interleaver was designed. In bi-directional links, a system involving convolutional codes

combined with a new adaptive hybrid ARQ system is proposed. We show that under a wide

spectrum of channel conditions the proposed system can significantly improve the performance

of the packet header compression systems. Future work includes the use of turbo codes for the

packet header compression application.

July 7, 2005 DRAFT

16

REFERENCES

[1] NLANR, “Wan packet size distribution,” HTTP Link, January 1997, http://www.nlanr.net/NA/Learn/packetsizes.html.

[2] V. Jacobson, “TCP/IP compression for low-speed serial links,” RFC 1144 IETF Network Working Group, Feb 1990,

http://www.ietf.org/rfc/rfc1144.txt.

[3] S. J. Perkins and M. W. Mutka, “Dependency removal for transport protocol header compression over noisy channels,” in

Proc. of IEEE International Conference on Communications (ICC), vol. 2, June 1997, pp. 1025–1029.

[4] A. Calveras, M. Arnau, and J. Paradells, “A controlled overhead for TCP/IP header compression algorithm over wireless

links,” in Proc. of 11th International Conference on Wireless Communications (Wireless’99), Calgary, Canada. 1999.

[5] ——, “An improvement of TCP/IP header compression algorithm for wireless links,” in Proc. of Third World Multiconfer-

ence on Systemics, Cybernetics and Informatics (SCI 99) and the Fifth International Conference on Information Systems

Analysis and Synthesis (ISAS 99), vol. 4, July/August. Orlando, FL. 1999, pp. 39–46.

[6] M. Degermak, M. Engan, B. Nordgren, and S. Pink, “Low loss TCP/IP header compression for wireless networks,” in

mobicam96, New York, NY, October 1997.

[7] S. Casner and V. Jacobson, “Compressing IP/UDP/RTP headers for low-speed serial links,” RFC 2508 IETF Network

Working Group, Feb. 1999, http://www.ietf.org/rfc/rfc2508.txt.

[8] T. Koren and et al, “Rfc 3545 - enhanced compressed rtp (ECRTP) for links with high delay, packet loss and reordering,”

RFC 3545 IETF Network Working Group, July 2003, http://www.ietf.org/rfc/rfc3545.txt.

[9] C. Bormann and et al, “RFC 3095-RObust Header Compression (ROHC): Framework and four profiles: RTP,UDP,ESP,

and uncompressed,” RFC 3095 IETF Network Working Group, July 2001, http://www.ietf.org/rfc/rfc3095.txt.

[10] E. Ertekin and C. Christou, “Internet protocol header compression, robust header compression, and their applicability in

the global information grid,” IEEE Communications Magazine, vol. 42, pp. 106–116, November 2004.

[11] S. B. Wicker, Error Control Systems for Digital Communcation and Storage. Englewood Cliffs, NJ: Prentice Hall, 1995.

[12] V. Suryavanshi, A. Nosratinia, and R. Vedantham, “Resilient packet header compression through coding,” in Proc. IEEE

GLOBECOM, vol. 3, Dallas, TX USA, 29 Nov.-3 Dec. 2004, pp. 1635–1639.

[13] E. O. Elliot, “A model of the switched telephone network for data communications,” Bell Syst. Tech. J., vol. 44, no. 1, pp.

89–109, January 1965.

[14] P. Frenger, P. Orten, and T. Ottosson, “Convolutional codes with optimum distance spectrum,” IEEE Communications

Letters, vol. 3, pp. 317 –319, November 1999.

[15] V. Suryavanshi and A. Nosratinia, “Convolutional coding for resilient packet header compression,” in Proc. IEEE

GLOBECOM, November 2005, accepted, manuscript available at http://www.utdallas.edu/∼vas021000/globecom05.pdf.

[16] C. Heegard and S. B. Wicker, Turbo Coding. Kluwer International Series in Engineering and Computer Science, 1999.

[17] V. Tarokh and B. Hochwald, “Existence and construction of block interleavers,” in Proc. of IEEE International Conference

on Communications (ICC), vol. 25, no. 1, April 2002, pp. 1855–1857.

[18] S. Lin, D. J. Costello, and M. Miller, “Automatic repeat request error control schemes,” IEEE Communications Magazine,

vol. 22, no. 12, pp. 15–17, December 1984.

July 7, 2005 DRAFT

17

[19] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications. Pearson– Prentice-Hall., 2004.

[20] H. S. Cheng, G. Fairhurst, and N. Samaraweera, “Efficient partial retransmission arq strategy with error detection codes

by feedback channel,” in IEE Proceedings - Communications, vol. 147, no. 5, October 2000, pp. 263–268.

[21] V. Suryavanshi and A. Nosratinia, “A hybrid ARQ scheme for resilient packet header compression,” in Proc.

Asilomar Conference on Signals, Systems and Computers, October 2005, submitted, manuscritp available at

http://www.utdallas.edu/∼vas021000/asilomar05.pdf.

July 7, 2005 DRAFT

18

Header

Compression
Header Payload

40-60 bytes

Compressed
Header

Payload

2-3 bytes

Fig. 1. Reducing overhead through header compression

Compressed-header packets

Regular packet

Missing packet

Unusable

Fig. 2. Error Propagation due to single packet loss

 Systematic
 R-S Encoder

Parity

K

N Coded Symbols

Message Symbols

K (N-K) Parity Symbols Message Symbols

Uncompressed Header Compressed Headers

Fig. 3. Generation of parity symbols from packet headers

July 7, 2005 DRAFT

19

UNC

Parity
Symbols

CH

CH

CH

packets

0

1

2

α

UNC = uncompressed header
CH = compressed header

Fig. 4. Equal distribution of parity symbols among compressed packet headers. There are α compressed packet headers

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

packet error probability

pa
ck

et
 d

is
ca

rd
 ra

te
 (a

pp
lic

at
io

n
la

ye
r)

RS(160,120)
RS(200,120)
RS(240,120)
uncoded
ECRTP
ROHC−U

Fig. 5. Performance of RS coded system on iid unidirectional channel

July 7, 2005 DRAFT

20

Header
Decompression

parity bits

From
Channel

Viterbi
Decoder

data bits

−1

−1

data interleaver

channel de-interleaver

π
1

π
2

π
1

Decoder

Header
Compression

Systematic
Convolutional

Code

parity bits

(compressed) data bits

Multiplexer

data interleaver channel interleaver

π
1

π
2

Encoder

C H A N N E L

Fig. 6. The header compression system with convolutional codes

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

packet error probability

pa
ck

et
 d

is
ca

rd
 ra

te
 (a

pp
lic

at
io

n
la

ye
r)

ROHC−U
Proposed Scheme
ECRTP
No Protection

Fig. 7. Performance of interleaved and convolutionally coded system over iid unidirectional channel

July 7, 2005 DRAFT

21

 Channel

Ack/Nack

Encoder

Buffer

Decision

Feedback channel

Continuous
 ARQ

Decoder

Fig. 8. Predictive Hybrid ARQ – the blocks entitled “encoder” and “decoder” are delineated in Figure 6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

packet error probability

av
er

ag
e

de
la

y

D
max

 = 200 bits

D
max

 = 400 bits

D
max

 = 600 bits

D
max

 = 900 bits

ROHC O−mode

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

packet error pobability

th
ro

ug
hp

ut

D
max

=600 bits

D
max

=900 bits

D
max

=400 bits

D
max

=200 bits

ROHC O−mode

Fig. 9. Delay and throughput, correlated bidirectional channel with burst length, BL = 5

July 7, 2005 DRAFT

