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Abstract

This paper investigates the fixed points of the characteristic function operator, i.e., we

seek probability density functions whose characteristic functions are identical to themselves. A

prominent example of a self-characteristic function is the Gaussian. Interestingly, however, the

Gaussian is not unique in that respect. We present a formulation that systematically generates

self-characteristic densities by applying a nonlinear transform to arbitrary positive semi-definite

functions.
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This paper addresses the question of probability density functions that have characteristic func-

tions identical to themselves. We call such functions “self-characteristic.” These functions consti-

tute the fixed points of the characteristic function operator. It is noteworthy that this problem

is similar to finding power spectra that map to autocorrelations of the same shape, since both

operators are based on the inverse Fourier transform.

However, this problem does not reduce to the fixed point of the Fourier operator. The fixed

points of the Fourier operator are easily obtained through its reciprocity property. Adopting the

symmetric definition of Fourier transform:

F (ν) =

∫ ∞

−∞
f(x) e−j2πνxdx

f(x) =

∫ ∞

−∞
F (ν) ej2πνxdν (1)

we have the reciprocity relation f(x)
F→ F (ν) ⇒ F (x)

F→ f(−ν). Therefore, for even f(x),

functions F (x) + f(x) are fixed points of the Fourier transform. However, this process alone does

not produce self-characteristic functions; F (x) + f(x) may have an imaginary part, be negative in

some interval(s), or may not have finite energy (in which case it cannot be normalized to integrate

to one).

The best known example of a pdf with identical characteristic function is the Gaussian (with

the appropriate variance). Due to many other interesting properties that the Gaussian enjoys

alone among probability densities, one may be tempted to assert that the Gaussian is the only

self-characteristic function. That, however, is not true. As a preview to the main result of this

paper, we note one simple example of a non-Gaussian self-characteristic function1:

p(x) = sech(πx) =
2

eπx + e−πx
. (2)

As can be seen in Figure 1, the shape of this function is very similar to a Gaussian. The

Gaussian and sech(πx) are not the only self-characteristic functions. In the following, we present

a systematic way of generating such functions.

Proposition 1 Let f(x) to be any square-integrable positive semi-definite function on IR, and take

F (ν) = F{f(x)} =
∫ ∞

−∞
f(x) e−j2πνxdx . (3)

1One of the reviewers brought it to the author’s attention that W. Feller had knowledge of the existence of such

pairs; in particular Feller pointed out the sech function in [2] (p. 503).
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Furthermore, let ∗ denote the convolution operator

(f1 ∗ f2)(x) =

∫ ∞

−∞
f1(τ) f2(x− τ)dτ

Then, the function

p(x) = f2(x) + (F ∗ F ) (x) , (4)

with the proper normalization constant, is a self-characteristic density.

Proof:

f(x) ∈ L2, hence f2 ∈ L1, F (ν) ∈ L2, and F ∗ F ∈ L2. Thus p(x) is absolutely integrable and,

with proper normalization, is a density. Noting the combination of reciprocity and convolution

property of the Fourier transform, f 2(x)
F→ (F ∗ F )(ν) and (F ∗ F )(x)

F→ f2(−ν) = f2(ν) (real,

positive-semi-definite functions are even a.e.). It immediately follows that p(x)
F→ p(ν). p(x) is

non-negative because F (ν), the Fourier transform of positive semi-definite f(x), is non-negative,

and the convolution of two non-negative functions is non-negative.

Any self-characteristic function can be expanded into an expression similar to (4).

Proposition 2 For any self-characteristic density function p(x), there exists a square-integrable

function g(x) with Fourier transform G(ν) such that p(x) can be expanded as

p(x) = g2(x) + (G ∗G)(x) . (5)

In particular, the function g(x) = 1√
2
p

1

2 (ν), the positive root of p(x), is a candidate generating

function for p(x).

Proof:

Since p(x) ∈ L1, g(x) =
1√
2
p

1

2 (x) ∈ L2, thus g(x) exists. Furthermore,

F{p(x)} = F{2 g2(x)} = 2 (G ∗G)(ν)

= p(ν) = 2 g2(ν)

Thus p(x) = 2 g2(x) = 2 G ∗G(x); Equation (5) immediately follows.
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We conjecture that, given a self-characteristic density p(x), the function 1√
2

√

p(x) is positive

semi-definite. This is borne out in known examples, but currently we have no proof. The implication

of this conjecture is that our construction for self-characteristic functions is complete. Interestingly,

in the inverse proposition G(ν) turns out to be positive semi-definite, but the same is not directly

evident for g(x). Alternatively, one may seek an altogether different construction for g(x) which

would be positive semi-definite, since the representations above are not unique. To show that these

representations are not unique, consider the following positive semi-definite function:

f(x) = Λ(x) =



















1 + x if −1 < x ≤ 0

1− x if 0 < x ≤ 1

0 otherwise

(6)

The self-characteristic function generated by this function, through (4), is:

p(x) = α(Λ2(x) + sinc2(x) ∗ sinc2(x)) , (7)

where

sinc(x)
.
=

sin(πx)

πx
.

and where α is a normalization constant so that p(x) integrates to unity. (Because of reciprocity, a

simple way to calculate α is to set p(0) = 1.) Thus, we modify the generating function from Λ(x)

to g1(x) =
√
αΛ(x). The function p(x) is shown in Figure 2. It is easy to see that the g2(x) =

√
α

[

sinc2(x) ∗ sinc2(x)
]0.5

also generates the same self-characteristic function. Furthermore, the

expansion given in Proposition 2 is:

g3(x) =

√

α

2

[

Λ2(x) + sinc2(x) ∗ sinc2(x)
]

1

2 (8)

which is a generating function different from both g1 and g2 (see Figure 3). In fact, all functions

gθ(x) =

√

α

2

[

(1− θ)Λ2(x) + (1 + θ)sinc2(x) ∗ sinc2(x)
]

1

2

θ ∈ [−1, 1]

generate the same self-characteristic function. The equivalence class of functions that generate a

self-characteristic function are in general the solutions to

T {g(x)} = [1 + F ]g2(x) = p(x) (9)
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In conclusion, two notes:

• For convenience and elegance of expression, we used the symmetric definition of Fourier

transform, which is based on linear frequency ν. The more common definition of characteristic

function uses the angular frequency ω, where for an arbitrary probability density p(x),

Φ(ω) =

∫ ∞

−∞
p(x)ejωxdx . (10)

With this definition, fixed points exist only up to a multiplicative constant, due to the factor

1

2π
when Parseval’s identity is written in the angular frequency ω. If p(x)

F→ P (ν) according

to (1), then Φ(ω) = P (−ω
2π
). Results in this paper directly translate to the ω domain by a

change of variable and appropriate normalization.

• By a simple property of Fourier transform, smoothness at origin and rate of decay are related

in self-characteristic functions.

∫ ∞

−∞
xnp(x) dx =

dn

dxn
p(x)|x=0 . (11)
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Figure 1: sech(πx), self-characteristic
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Figure 2: Self-characteristic function

α(Λ2(x) + sinc2(x) ∗ sinc2(x))
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Figure 3: Different generating functions of p(x) = α(Λ2(x) + sinc2(x)sinc2(x)), shown in Figure 2.

Top right: g1(x), top left: g2(x), bottom: g3(x) (see text).
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