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Introductory Summary

Low-fidelity analytical models of turbine wakes have traditionally been used for wind farm planning, per-
formance evaluation, and demonstrating the utility of advanced control algorithms in increasing the annual
energy production. In practice, however, it remains challenging to correctly estimate the flow and achieve
significant performance gains using conventional low-fidelity models. This is due to the over-simplified static
nature of wake predictions from models that are agnostic to the complex aerodynamic interactions among
turbines. To improve the predictive capability of low-fidelity models while remaining amenable to control
design, we offer a stochastic dynamical modeling framework for capturing the effect of atmospheric turbu-
lence on the thrust force and power generation as determined by the actuator disk concept. In this approach,
we use stochastically forced linear models of the turbulent velocity field to augment the analytically com-
puted wake velocity and achieve consistency with higher-fidelity models in capturing power and thrust force
measurements. The power-spectral densities of our stochastic models are identified via convex optimization
to ensure consistency with partially available velocity statistics or power and thrust force measurements.
Our results provide insight into the significance of sparse field measurements in recovering the statistical
signature of the flow using stochastic linear models.
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Introduction

A major challenge in wind farm control arises from the importance of nonlinear aerodynamic interactions
that can result in a reduction in power production and an elevation in dynamic loads while inducing wake
recovery. An accurate representation of wake turbulence can thus notably affect the performance of control
strategies in improving energy production and structural durability. While high-fidelity models, e.g., large-
eddy simulations (LES) [1–3], capture such complex wake interactions, they are computationally expensive
and are thus not suitable for the development of online model-based control strategies that can adapt
to time-varying atmospheric conditions informed by supervisory control and data acquisition (SCADA)
measurements. On the other hand, low-fidelity analytical models such as the Frandsen [4] or the Jensen-
Park [5, 6] models predict the wind velocity in the wake of turbines under steady atmospheric conditions.
Such models neglect the time-varying near-field turbulence behind the wind turbine and are often combined
with linear wake superposition laws providing an over-simplified static prediction of the wind velocity. In
the absence of a turbulence model that can induce mixing in the turbine wakes, velocity deficits are typically
over-predicted by such models leading to inaccurate predictions of quantities of interest for wind farm control,
i.e., the load and power corresponding to each turbine.

In this work, we seek linear dynamical models of the velocity field in a wind farm that compensate the
shortcomings of low-fidelity models in a data-driven manner , i.e., by accounting for second-order velocity
correlations that are pertinent in the prediction of turbulence intensities as well as thrust force and power
based on the actuator disk concept. To this end, we adopt the stochastic dynamical modeling framework
of [7–9] to model the effect of atmospheric turbulence as an input stochastic forcing for the linearized Navier-
Stokes (NS) equations around a static velocity profile provided by a low-fidelity wake-expansion model. The
power spectral density of the stochastic input is prescribed by inverse problems that are formulated to match
statistical data informed by SCADA measurements or LES. Our approach offers a data-driven dynamical
enhancement to low-fidelity models improving their predictive capability without adding to their dimensional
complexity giving rise to linear time-invariant (LTI) models that are well-suited for estimation and control.
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Figure 1: (a) Schematic of hub-height computational plane with data points highlighted in red; (b) Hub-
height streamwise velocity ū(x, z) generated using the analytical wake-expansion model of [10].

Methods

The wind velocity field u can be decomposed into the sum of a time-averaged mean ū and zero-mean
fluctuations v as

u = ū + v, ū = E [u] , E [v] = 0 (1)

where E [·] denotes the time-average operator. The velocity fluctuations v, which we will use to capture
the effect of atmospheric turbulence on the wake model, are assumed to be stochastic Gaussian processes.
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Substituting the decomposition for u into the power and thrust force relations offered by the actuator disk
concept [11, Chapter 3] yields

F =
1

2
ρACT (ū2 + v2), P =

1

2
ρACP (ū3 + 3 ū v2) (2)

where the overline denotes an average over the surface of the rotor disk S and the properties of the fluctuation
field v, namely its zero mean (cf. Equation (1)) and skewness (due to its Gaussian distribution), have been
used to eliminate certain terms. Based on Equation (2), the scalar quantities that we obtain for the thrust
force and power of each turbine will not only depend on the mean disk-averaged velocity ū at the turbine,
but also on the disk-averaged second-order statistics of the fluctuation field v.

While analytical models provide a static prediction of the effective velocity in the wind farm (similar to
ū), the fluctuation field v provides an additional degree-of-freedom whose second-order statistics can be
modeled to improve predictions of the thrust force and power. Thus, given a set of available thrust force
{F̄i} and power {P̄i} measurements for the turbines across a wind farm, the dynamics of v can be sought to
augment the predictions of static analytical models by providing the necessary surface integrals v2 to better
predict the available data (cf. Equation (2)). Together with the prior low-fidelity model that predicts ū,
the dynamical model identified for v can provide a class of low-complexity models that are more accurate in
predicting quantities that depend on turbulent flow statistics. Following [8, 9], we assume the dynamics of
velocity fluctuations that complement the static predictions of ū to be governed by the stochastically forced
linearized NS equations

vt = − (∇ · v) ū − (∇ · ū)v − ∇p +
1

Re
∆v −K−1v + d

0 = ∇ · v
(3)

where p is the vector of pressure fluctuations, ∇ is the gradient operator, ∆ = ∇ · ∇ is the Laplacian, and
the Reynolds number Re = U∞d0/ν is defined in terms of the rotor diameter d0, free-stream velocity U∞,
and kinematic viscosity ν. Moreover, the volume penalization term K−1v is used to capture the effect of
turbine rotors and nacelles on the velocity field, i.e., K → 0 within solid structures and K → ∞ within the
fluid; see [12] for details. After eliminating p, Equations (3) can be brought into the evolution form

ψ̇(t) = Aψ(t) + B d(t)

v(t) = C ψ(t).
(4)

Here, ψ is the state, d is a stationary zero-mean stochastic process, A is the linearized dynamic generator,
B is an input matrix, and C is an output matrix that relates ψ to v; see [8] for an example of matrices.

The necessary surface integrals v2 that allow us to match the set of partially available power and thrust forces
measurements across the wind farm constitute entries of the output covariance matrix Φ = lim

t→∞
E [v(t)v∗(t)],

which are linearly related to the state covariance matrixX = lim
t→∞

E [ψ(t)ψ∗(t)] via Φ = CXC∗. The inverse

modeling framework of [7–9] provides the means to identify the statistics of forcing d and input matrix B
in Equations (4) in order to match a partially available set of second-order statistics v2 at given spatial
locations. In addition to matching power and thrust force, this approach also provides the means to match
a partially available set of turbulence intensities v2 (from LES or LIDAR measurements) at predetermined
locations across the farm and predict it over the remainder of the spatial domain in a way that is consistent
with the linearized NS equations. For brevity, we refrain from expanding on the formulation and solution of
structured covariance completion problems; see [7–9] for details. We next apply our approach to the problem
of matching LES-informed power and thrust force measurements in a 4× 1 array of turbines. We also show
how access to turbulence intensities at various diameters away from the turbines can change the ability of
the linearized NS equations to complete the statistical signature of the flow fields across the entire farm.

Results and Conclusions

We first consider a 2D computational domain of size Lx × Lz = 22 × 5; x ∈ [ 0, 22 ] and z ∈ [−2.5, 2.5 ]
with turbines of unit diameter located at x = {3, 8, 13, 18} and z = 0 in a turbulent flow with Re = 108. The
analytical wake model proposed by [10] with a wake growth rate of k⋆ = 0.03 and β = (1+

√
1− CT /(2

√
(1−

CT ))) with CP = 0.4858 and CT = 0.7871 results in the velocity profile shown in Figure 1(b). Choices of
CP and CT correspond to the maximum power generated by a 5MW NREL turbine [13] using an LES code
that leverages blade momentum element theory [2, 3].

As shown in Figure 2, the velocity field ū predicted by the low-fidelity analytical model yields quantitatively
poor predictions of the thrust force and power generation at the turbines. Furthermore, the monotonically
decreasing ū fails to capture the increase in the thrust force and power after the second turbine. We thus
seek the statistics of velocity fluctuations v = [u w ]T around ū to improve predictions of the low-fidelity
model. We use a 2nd-order central difference scheme with ∆x = 1 and ∆z = 0.5 to discretize the differential
operators in the linearized equations (3). Homogenous Dirichlet and Neumann boundary conditions are
applied at the top and bottom boundaries and extrapolated boundary conditions are implemented at the
inlet and outlet of the domain; see [14] for details. As shown in Figure 2, our modeling approach provides the
necessary dynamical perturbation to the linearized NS equations for matching the LES data (cf. Figure 2).
While matching both {F̄i} and {P̄i} is not possible because of the limited degrees of freedom in Equations (2),
a least-squares balance in matching F and P can provide a reasonable simultaneous estimation for both.

We next focus on the problem of predicting the streamwise turbulence intensity uu at the hub height of
single wind turbine; see Figure 1(a). We consider a 2D computational domain of size Lx ×Lz = 5× 5 where
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Figure 2: (a) Results for matching F and predicting P ; (b) Results for matching P and predicting F . LES
data (∗); results of analytical model [10] (•); and from our data-enhanced stochastic dynamical model (⃝).

x ∈ [ 0, 5 ] and z ∈ [−2.5, 2.5 ]. The turbine of unit diameter is located at x = 3 and z = 0. While the
discretization scheme and boundary conditions are the same as the first case study, we use a more refined grid
with ∆x = 0.5 and ∆z = 0.5 to better assess the effect of statistics at various locations downstream of the
turbine. We use LES generated turbulent intensities at various locations within the computational domain to
train our stochastic dynamical models. For consistency, we use all data points before the turbine to match the
inflow turbulence conditions with that of LES. We consider three cases in which the available training dataset
contains the streamwise turbulent intensity at various distances away from the turbine (see Figure 1(a) for
an illustration): (i) at the turbine location x = 2 and points at 1 diameter away (Figure 3(b)), (ii) at x = 2
and points at 1 and 2 diameters away (Figure 3(c)), and (iii)at x = 2 and points at 1, 2, and 3 diameters
away (Figure 3(d)). The preliminary results shown in Figure 3 demonstrate the ability of the stochastically
forced linearized NS equations in capturing the dominant trends of uu in the wake of the turbine. It is also
evident that for the considered turbine and atmospheric conditions, access to flow statistics at 3 diameters
away form the turbine can significantly improve the completion of the statistical signature of the flow at
hub height. This quality of completion demonstrates the ability of our linear stochastic dynamical models
in predicting the dominant features of the flow physics in addition to matching quantities of interest in farm
planning and control. Our ongoing efforts focus on extensions of the framework to the 3D domain to better
capture vortex shedding effects from yawed turbines.
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Figure 3: Preliminary results for the predictions of streamwise turbulent intensity using the data-enhanced
model (4). (a) LES results. Results obtained using inflow statistics in addition to statistics at a 1 diameter
downstream (b), 1 and 2 diameters downstream (c), and 1, 2, and 3 diameters downstream (d).
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