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Abstract— Low-fidelity analytical models of turbine wakes
have traditionally been used to demonstrate the utility of
advanced control algorithms in increasing the annual energy
production of wind farms. In practice, however, it remains
challenging to achieve significant performance improvements
using closed-loop strategies that are based on conventional
low-fidelity models. This is due to the over-simplified static
nature of wake predictions from models that are agnostic to the
complex aerodynamic interactions among turbines. To improve
the predictive capability of low-fidelity models while remaining
amenable to control design, we offer a stochastic dynamical
modeling framework for capturing the effect of atmospheric
turbulence on the thrust force and power generation as deter-
mined by the actuator disk concept. In this approach, we use
stochastically forced linear models of the turbulent velocity field
to augment the analytically computed wake velocity and achieve
consistency with higher-fidelity models in capturing power and
thrust force measurements. The power-spectral densities of
our stochastic models are identified via convex optimization to
ensure statistical consistency while preserving model parsimony.

Index Terms— Control-oriented modeling, convex optimi-
zation, state covariances, stochastically forced Navier-Stokes
equations, wake modeling, turbulence modeling, wind energy.

I. INTRODUCTION

Wind energy has been recognized as an important natural
source of sustainable energy that can play a major role in mit-
igating the environmental impacts of the ever-growing global
energy demand. With the exponential rise in wind energy
production, scientific efforts are shifting toward gaining a
better understanding of the physics of atmospheric flows and
how tools from optimization and control can improve the
efficiency of wind farms [1]. A major challenge in wind farm
control arises from the importance of nonlinear aerodynamic
interactions among turbines. Such interactions are caused
by the operation of downwind turbines in the wakes of
upwind ones [2] and result in a reduction in power production
and an elevation in dynamic loads while inducing wake
recovery. An accurate representation of wake turbulence can
thus profoundly affect the performance of control strategies
in improving energy production and structural durability.

Given the importance of capturing the complexities of
the wake, closed-loop control design has relied on compu-
tationally expensive models such as those that are used in
large-eddy simulations (LES) of wind farms, e.g., [3]–[5].
While such models play an important role in improving our
understanding of wake turbulence, they are not suitable for
the development of online model-based control strategies that
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can adapt to time-varying atmospheric conditions informed
by supervisory control and data acquisition (SCADA) mea-
surements. This motivates the development of lower fidelity
models that capture the essential flow features and quantities
of interest for analysis or control.

Seminal efforts in developing low-fidelity models of tur-
bine wakes focused on two-dimensional (2D) heuristic-
based methods that capture the steady-state velocity at hub
height for given atmospheric conditions [6]–[8]. Enabled by
structural approximation of turbine rotors, e.g. the actuator
disk model (ADM) [9], more sophisticated variants were
developed that observe conservation principles for mass and
momentum [10], [11]. Recent efforts have also been made to
include 3D effects caused when turbines are yawed via curled
wake profiles [12]. The predictions of such static models of
the velocity field typically depend on a set of parameters
that can be tuned to match field measurements or LES data,
e.g., [13]–[15]. Nevertheless, in the absence of a dynamical
model for the background turbulence, wake recovery is
often under-predicted and interactions with the atmospheric
boundary layer cannot be accounted for autonomously.

To overcome the shortcomings of static models, con-
tributions have been made to add a degree of dynamics
or parametric stochasticity to analytical models, e.g., the
stochastic ADM model [16] or the dynamic extension of the
Park model [17]. In addition to such models, the linearized
Navier-Stokes (NS) equations were combined with vortex
cylinder theory to provide a physics-based alternative for
dynamical modeling of wind farm flows [18]. However,
in the absence of nonlinear terms, such linearized models
lack the quantitative accuracy in predicting flow statistics
or quantities of interest for control design, e.g., thrust force
or power generation at turbines. To address this problem,
we build on the stochastic dynamical modeling framework
of [19]–[21] to augment the predictions of low-fidelity ana-
lytical models with the fluctuating velocity field obtained via
stochastically forced linear models that are trained to match
SCADA measurements or LES-generated data.

A. Challenge and contribution

The energy extraction process that is based on the actuator
disc concept [9, Chapter 3] yields the following expressions
for the thrust force exerted on the rotor disk of a turbine and
the power extracted by the rotor:

F =
1

2
ρACT u2, P =

1

2
ρACP u3. (1)

Here, F is the thrust force, P is the power, ρ is the air density,
A is the area of the rotor disk, CT is the thrust coefficient, CP

is the power coefficient, and u is the effective disk-averaged
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Fig. 1. Our proposed modeling approach uses data to augment the
predictive capability of low-fidelity engineering models using a stochastic
dynamical representation of atmospheric turbulence whereby improved
predictions of power and thrust force can be achieved.

velocity on the rotor disk. The power and thrust coefficients
can be defined as functions of the axial induction factor a
that is used to quantify the induced flow at the actuator disk
due to the pressure variation over the turbine:

CT = 4a (1 − a) , CP = 4a (1 − a)
2
.

Low-fidelity analytical models such as the Frandsen [10]
or the Jensen-Park [6], [7] models predict the wind velocity
in the wake of turbines under steady atmospheric conditions.
Such models neglect the time-varying near-field turbulence
behind the wind turbine and are often combined with linear
wake superposition laws providing an over-simplified static
prediction of the wind velocity. In the absence of a turbulence
model that can induce mixing in the turbine wakes, velocity
deficits are typically over-predicted by such models leading
to inaccurate predictions of quantities of interest for wind
farm control, i.e., the load and power corresponding to each
turbine. In contrast, medium fidelity models, e.g., those that
are based on the Reynolds-averaged NS equations, are not
prone to such issues as they capture the 3D dynamic variation
of the velocity field and introduce turbulence models that
enable wake recovery [22], [23].

In this paper, we seek linear dynamical models of the
velocity field in a wind farm that compensate the short-
comings of low-fidelity models by accounting for second-
order statistics of the velocity field that are pertinent in the
prediction of thrust force and power using Eq. (1). To this
end, we adopt the stochastic dynamical modeling framework
of [19]–[21] to model the effect of atmospheric turbulence
as an input stochastic forcing. The power spectral density
of the stochastic input is prescribed by inverse problems that
are formulated to improve predictions of the thrust force and
power. The data in our inverse problems are informed by
SCADA measurements or LES. Our approach offers a data-
driven dynamical enhancement to low-fidelity models that
improves their predictive capability without adding to their
dimensional complexity giving rise to linear time-invariant
(LTI) models that are well-suited for analysis and synthesis
using tools from modern robust control; see Fig. 1.

B. Paper outline

In Sec. II, we formulate a problem to address the challenge
of matching thrust force and power generation by accounting
for the dynamics of velocity fluctuations around static flow
fields. In Sec. III, we summarize the stochastic modeling
framework that we use to match the thrust force and power
at various turbines. In Sec. IV, we provide a model for the
turbulent velocity field at the hub height of a wind farm using
the stochastically forced linearized NS equations. In Sec. V,

we apply our approach to the problem of matching LES-
informed quantities of interest in a 4 × 1 array of turbines.
We conclude with remarks and future directions in Sec. VI.

II. PROBLEM FORMULATION

The wind velocity field u can be decomposed into the sum
of a time-averaged mean ū and zero-mean fluctuations v as

u = ū + v, ū = E [u] , E [v] = 0 (2)

where E [·] denotes the time-average operator, e.g.,

E [u(x, t)] = lim
T→∞

1

T

∫ T

0

u(x, t + τ) dτ .

Here, x denotes the spatial coordinates and t is time. The
velocity fluctuations v, which we will use to capture the
effect of atmospheric turbulence on the wake model, are
assumed to be stochastic Gaussian processes. Substituting
this decomposition into Eqs. (1) yields

F =
1

2
ρACT (ū2 + v2), P =

1

2
ρACP (ū3 + 3 ū v2)

(3)

where, the overline denotes an average over the surface of
the rotor disk S, i.e.,

v2 =

∫
S
E
[
v(x, t)2

]
dx (4)

and the properties of the fluctuation field v, namely its
zero mean (cf. Eq. (2)) and skewness (due to its Gaussian
distribution) have been used to eliminate certain terms. Based
on Eq. (3), the scalar quantities that we obtain for the thrust
force and power of each turbine will not only depend on
the mean disk-averaged velocity ū at the turbine, but also
on the disk-averaged second-order statistics of a fluctuation
field v. While analytical models provide a static prediction
of the effective velocity in the wind farm (similar to ū), the
fluctuation field v provides an additional degree-of-freedom
whose second-order statistics can be modeled to improve
predictions of the thrust force and power.

Given a set of available thrust force {F̄i} and power
{P̄i} measurements for turbines across a wind farm, the
dynamics of v can be sought to augment the predictions of
static analytical models by providing the necessary surface
integrals v2 to better predict the available data (cf. Eq. (3)).
Together with the prior low-fidelity model that predicts ū,
the dynamical model identified for v can provide a class of
low-complexity models that are more accurate in predicting
quantities that depend on turbulent flow statistics. To this end,
we adopt a stochastic dynamical modeling approach that is
based on stochastically forced LTI approximations of com-
plex dynamical systems [19]–[21]. Specifically, we assume
the dynamics of velocity fluctuations that complement the
static predictions of ū to follow the state-space representation

ψt(x, t) = Aψ(x, t) + Bd(x, t)

v(x, t) = Cψ(x, t).
(5)

Here, ψ is the state, d is a stationary zero-mean stochastic
process, A is the dynamic generator that represents a prior
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dynamical representation for the wake dynamics, B is the
input operator that is used to introduce the input d into
the dynamics, and C is an output operator that relates the
state ψ to the output velocity field v. In Sec. V, we use the
stochastically forced linearized NS equations as a physics-
based dynamical model for the evolution of fluctuations v.
We note, however, that alternative linear models, which may
result from application specific assumptions/simplifications,
or data-driven methods such as dynamic mode decompositi-
on [24]–[27] may also provide viable starting points.

A finite-dimensional approximation of the operators in
Eq. (5) over the spatial dimensions yields

ψ̇(t) = Aψ(t) + B d(t)

v(t) = C ψ(t)
(6)

where ψ(t), v(t), d(t), A, B, and C are real-valued vectors
and matrices of appropriate dimensions. We next summarize
our approach for the stochastic realization of process d that
induces a statistical response v that achieves consistency with
LES in predicting power and thrust force measurements.

III. STOCHASTIC DYNAMICAL MODELING OF PARTIALLY
AVAILABLE SECOND-ORDER STATISTICS

We assume knowledge of a set of measurements for
the thrust force and power of turbines in a wind farm.
This information, together with an initial prediction of the
effective mean velocity ū from a low-fidelity static model
can be used to identify second-order statistics of the effective
fluctuating component that are needed to achieve the best
possible prediction of the available data with linear Gaussian
model (6). In this section, we provide background material
on structural constraints on state covariances of LTI systems
and formulate covariance completion problems that identify
the statistics of forcing d and enable its stochastic realization.

A. Second-order statistics

For system (6) with Hurwitz A and controllable pair
(A,B), matrix X qualifies as the steady-state covariance
matrix of the state vector, i.e., X = lim

t→∞
E [ψ(t)ψ∗(t)],

if and only if the Lyapunov-like equation

AX + XA∗ = −BH∗ − H B∗ (7)

is solvable for the matrix H [28], [29]. Here, ∗ denotes
the complex conjugate transpose. The matrix H quantifies
the cross-correlation between the input and the state in
model (6) [20, Appendix B]:

H := lim
t→∞

E [ψ(t)d∗(t)] +
1

2
B Ω.

When the stochastic input d is zero-mean and white-in-time
with covariance Ω, H = (1/2)B Ω, which reduces Eq. (7)
to the standard algebraic Lyapunov equation

AX + X A∗ = −B ΩB∗.

The one-point velocity correlations that are integrated to
obtain v2 (Eq. (4)) represent entries of the output covariance

filter
linear

system

white
noise

w ψ

colored
noise

d

Fig. 2. A cascade connection of an LTI system with a linear filter that is
designed to account for the sampled steady-state covariance matrix X .

matrix Φ = lim
t→∞

E [v(t)v∗(t)], which is linearly related to
the state covariance matrix via Φ = CXC∗.

B. Covariance completion

Given partially known entries of Φ corresponding to the
deficit in thrust force and power predictions relative to LES-
generated data, we seek an input matrix B and statistics of
forcing d that are consistent with the hypothesis that the
required statistics in v are generated by model (6) with
known generator A. Moreover, it is also important to restrict
the complexity of the forcing model, which we quantify
using the number of degrees of freedom that are directly
influenced by the stochastic forcing, i.e., the number of input
channels or rank(B). To these ends, we follow [19]–[21] in
solving the structured covariance completion problem:

minimize
X,Z

− log det (X) + γ ∥Z∥∗

subject to AX + XA∗ + Z = 0

(CXC∗) ◦ E − G = 0

(8)

which penalizes a composite objective subject to two linear
constraints. Here, matrices A, C, E, and G are problem data,
and Hermitian matrices X and Z are optimization variables.
Entries of G represent partially available second-order sta-
tistics of the output v, the symbol ◦ denotes elementwise
matrix multiplication, and E is the structural identity matrix:

Eij =

{
1, if Gij is available
0, if Gij is unavailable.

The objective function provides a trade-off between the so-
lution to a maximum-entropy problem and the complexity of
the forcing model; the logarithmic barrier ensures the positive
definiteness of matrix X and the nuclear norm regularizer,
which is weighted by the parameter γ > 0, is used as
a proxy for the rank function (see, e.g., [30], [31]). The
rank of matrix Z bounds the number of independent input
channels or columns in matrix B; for details see [19]. Convex
optimization (8) can be cast as a semidefinite program and
solved efficiently using standard solvers [32]–[34] for small-
size problems. In [19], [35], customized algorithms have
been developed to deal with larger problems. The solution
to problem (8) can be used to construct a low-pass filter that
generates the suitable colored-in-time forcing d in Eqs. (6)
(Fig. 2); see [19] for additional details.

IV. LINEARIZED NAVIER-STOKES EQUATIONS

In this section, we specialize our dynamical modeling
approach to the stochastically forced linearized NS equations
around a static velocity profile ū that is generated by a
low-fidelity model. For simplicity, we restrict mathematical
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Fig. 3. A cascade of 4 wind turbines where turbine 1 is the most upstream.

developments to the 2D domain at hub height (Fig. 3) and
assume all turbines to be facing the wind, i.e., 0◦ yaw
angle relative to the free-stream velocity U∞. As a result,
the average velocity field ū will only have a streamwise
component in the direction of the free-stream wind. We note
that our approach is not limited to 2D models and that more
complicated farm arrangements involving various pitch and
yaw angles can also be accounted for.

The linearized NS equations around ū are given by

vt = − (∇ · v) ū− (∇ · ū)v −∇p+
1

Re
∆v −K−1v

0 = ∇ · v (9)

where v = [u w ]T consists of the fluctuating velocity field
in the streamwise (u) and spanwise (w) directions, p is the
vector of pressure fluctuations, ∇ is the gradient operator,
∆ = ∇·∇ is the Laplacian, and the Reynolds number Re =
U∞d0/ν is defined in terms of the rotor diameter d0, free-
stream velocity U∞, and kinematic viscosity ν. All variables
in Eqs. (9) have been non-dimensionalized: length by d0,
velocity by U∞, time by d0/U∞, and pressure by ρU2

∞.
In Eqs. (9), we have captured the effect of turbine ro-

tors and nacelles on the velocity field using the volume
penalization technique proposed by Khadra et al. [36]. This
method avoids the implementation of boundary conditions
in complex geometries by modeling the effect of solid
obstructions of the flow as a spatially varying permeability
function K that influences the governing equations as a static
feedback term. Within the fluid, the penalization resulting
from K should have no influence on the flow, i.e., K → ∞,
yielding back the original linearized NS dynamics for v. On
the other hand, within solid structures, the function K should
force the velocity field to zero, i.e., K → 0. To capture the
spatial region that is influence by the presence of the turbines
we use the smooth filter function

K−1(x, z) =
c

π2

[
arctan(a(x− x1))− arctan(a(x− x2))

]
×
[
arctan(a(z − z1))− arctan(a(z − z2))

]
(10)

where x1,2 and z1,2 determine the spatial extent of the rotors
in the horizontal plane and parameters a and c determine the
magnitude and slope of the function.

By expressing the velocity fluctuations in terms of the
stream function ϕ, i.e., u = ∂z ϕ and w = −∂x ϕ, pressure

can be removed form the Eqs. (9) bringing the linearized
dynamics (9) into the form:

ϕt = − ∆−1
(
ū ∂x∇ + ūx ∇ + ūxz ∂z − ūzz ∂x

− 1

Re
∆2 + K−1∆ + (∇K−1) · ∇

)
ϕ (11)

where ūx and ūz denote the derivatives of ū with respect to
the x and z. Homogeneous Dirichlet and Neumann boundary
conditions are implemented at the boundaries of the 2D
domain, i.e.,

ϕ(x(0), z) = 0, ϕ(x(Lx), z) = 0

ϕ(x, z(0)) = 0, ϕ(x, z(Lz)) = 0

ϕx(x(0), z) = 0, ϕx(x(Lx), z) = 0

ϕz(x, z(0)) = 0, ϕz(x, z(Lz)) = 0

where Lx and Lz denote the length of the 2D domain in the
streamwise and spanwise directions, respectively.

V. NUMERICAL EXPERIMENT

In this section, we provide a data-enhanced dynamical
model for the turbulent velocity field at hub height for a
cascade of 4 identical turbines (Fig. 3). Similar to Sec. IV, we
assume all turbines to be facing the wind, i.e., 0◦ yaw angle
relative to the free-stream velocity U∞. The thrust force and
power at each turbine ({F̄i} and {P̄i}), which constitute the
data in our problem, are generated by an LES code [4], [5]
that solves the filtered NS equations when the turbine blades
are modeled using the actuator line model [37].

We consider a 2D computational domain of size Lx×Lz =
22 × 5; x ∈ [ 0, 22 ] and z ∈ [−2.5, 2.5 ] with turbines
located at x = {3, 8, 13, 18} and z = 0. As there is no cross-
wind, the time-averaged velocity field will only consist of a
streamwise component. The analytical wake model proposed
by [11],

ū(x, z) = U∞ − U∞

(
1−

√
1− CT

8
(
k⋆x/d0 + 0.25

√
β
)2
)

× exp

(
− 1

2
(
k⋆x/d0 + 0.25

√
β
)2 ( z

d0

)2
)

(12)

is used together with a linear superposition law for velocity
deficits to provide the static hub-height velocity field ū
for this cascade of turbines (Fig. 4). Here, the diameter of
turbines is set to d0 = 1, the wake growth rate of k⋆ = 0.03
is chosen in accordance with earlier studies (e.g., [15]), and
β = (1 +

√
1− CT /(2

√
(1 − CT ))). Choices of CP =

0.4858 and CT = 0.7871 correspond to the maximum power
generated by a 5MW NREL turbine [38] using an LES code
that leverages blade momentum element theory [4], [5].

As shown in Fig. 6, the velocity field predicted by the
low-fidelity analytical model (12) yields quantitatively poor
predictions of the thrust force and power generation at the
turbines (cf. Eq. (1)). It is also evident that the monotonically
decreasing ū fails to capture the increase in the thrust force
and power after the second turbine. We thus seek the statistics
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Fig. 4. The streamwise and spanwise dependence of ū(x, z) generated by
Eq. (12) over the 2D computational domain at hub height. The thick black
lines mark the location of the turbine rotors with diameter d0 = 1.

of velocity fluctuations v around ū to improve predictions of
the low-fidelity model. To this end, we use the stochastically
forced linearized NS equations described in Sec. IV and
follow the stochastic modeling framework of Sec. III to
improve predictions of power and thrust force over the farm.

The operators in the evolution form (6) corresponding
to the stream function dynamics (11) are provided in the
appendix. For discretization, we use a 4th-order central
difference scheme with Nx = 21 and Nz = 9 collocation
points in x and z, respectively, which renders the state
ϕ ∈ R189×1. In this experiment, Re = 108 and the resistance
function K−1 used in the linearized equations for the 4× 1
array of turbines is shown in Fig. 5.

Following Sec. III-B, we use the solution to problem (8)
to identify the input matrix B and statistics of forcing d
that allow us to match either the set of LES-generated thrust
forces {F̄i} or power {P̄i} and predict the other. As shown
in Fig. 6, our modeling approach provides the necessary
dynamical perturbation to the linearized NS equations for
matching the LES data (cf. Fig. 6(a,d)), and significantly
improve predictions of quantities that are not assumed to be
known (cf. Fig. 6(b,c)). We note that matching both {F̄i}
and {P̄i} is not possible because of the limited degrees of
freedom in Eqs. (3), but a least-squares balance in matching
F and P can provide a reasonable simultaneous estimation
of both quantities of interest; see Fig. 7.

VI. CONCLUDING REMARKS

We provide a wake modeling framework for improved
predictive capability relative to conventional low-fidelity
models. We particularly focus on the estimation of quantities
that are pertinent to control, i.e., thrust forces and power
generation. We use LES-generated measurements of thrust
forces and/or power to identify stochastic realizations of
forcing into linear approximations of the turbulent flow dyna-
mics to achieve consistency in matching statistical quantities
of interest. To demonstrate the utility of our approach, we use
the stochastically forced linearized NS equations around a 2D
static velocity profile of a wind farm consisting of a cascade
of 4 turbines and show that stochastic modeling of input
forcing allows us to significantly improve the predictions of
low-fidelity analytical models. Our control-oriented models
are: (1) physics-based; (2) linear; (3) dynamic; and (4) low
complexity. The proposed framework allows for linearization
around more complicated (potentially 3D) base flow profiles

that can better represent turbine yawing or alternative turbine
arrangements within a wind farm. Our ongoing efforts focus
on extensions of the framework to the 3D domain to better
capture vortex shedding effects from yawed turbines as well
as exploring alternative covariance completion formulati-
ons [39], [40] that may provide useful information about
critical directions that have maximal effect in bringing model
(in our case the stochastically forced linearized NS) and
statistics in agreement.
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APPENDIX

The system matrices in Eqs. (6) are given as

A = −∆−1
(
ū ∂x∇ + ūx ∇ + ūxz ∂z − ūzz ∂x

− 1

Re
∆2 + K−1∆ + (∇K−1) · ∇

)
B = ∆−1

[
∂z −∂x

]
; C =

[
∂z
−∂x

]
.
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[11] M. Bastankhah and F. Porté-Agel, “A new analytical model for wind-
turbine wakes,” Renewable energy, vol. 70, pp. 116–123, 2014.

[12] L. A. Martı́nez-Tossas, J. Annoni, P. A. Fleming, and M. J. Church-
field, “The aerodynamics of the curled wake: a simplified model in
view of flow control,” Wind Energy Science, vol. 4, no. 1, pp. 127–138,
2019.

[13] L. Wang, A. C. Tan, M. Cholette, and Y. Gu, “Comparison of the
effectiveness of analytical wake models for wind farm with constant
and variable hub heights,” Energy Conversion and Management, vol.
124, pp. 189–202, 2016.

5245



z
x

Fig. 5. Streamwise and spanwise dependence of the resistance function K−1(x, z) based on Eq. (10)).

(a) (b)

F

(c) (d)

P

turbine number turbine number

Fig. 6. Estimated thrust force (a,b) and power generation (c,d) over the
4× 1 cascade of wind turbines. (a,c) LES-generated thrust forces {F̄i} are
used to train our model and power is predicted; (b,d) LES-generated power
measurements {P̄i} are used to train the our model and thrust forces are
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