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Abstract—The statistics of critical state variables and nodal
fluctuations in power grids are useful for control of its dynamics
and procurement of regulation resources. This paper studies
estimation of the statistics of grid state variables and ambient
fluctuations using time-stamped nodal measurements collected
from limited PMUs in the grid. We show that in the presence of
time-stamped observations that enable computation of delayed
covariances, PMUs located at half of the number of grid buses
are sufficient to reconstruct all state and noise statistics exactly.
For lower number of available PMUs, we provide a convex
optimization framework for estimating the covariance matrices
that outshines standard schemes that do not utilize the availability
of time-stamped measurements.

Index Terms—Covariance completion, Delayed covariance,
Lyapunov equation, Power grid, PMU, Swing dynamics

I. INTRODUCTION

Stable operation of the grid in real-time is necessary for re-
liable delivery of electricity. Over short time scales, stochastic
perturbations in nodal injections (generation and load) lead to
dynamics in the voltages and frequencies at grid nodes. These
are represented mathematically by coupled swing equations
[1], [2]. In recent years, due to the proliferation of stochas-
tic renewable resources and active loads, the fluctuations in
operating frequency has increased and led to concerns about
the stability of the grid [3] and increased procurement of fast
regulation resources for control [4], [5]. Past research has
shown that statistics of nodal states deviate from their steady
state as the system moves towards instability [6]–[8]. Such
statistics and their deviation from steady state can be used as
early ‘warning sings’ by the system operator to improve the
readiness of the emergency control and regulation resources
in the grid [9], [10]. Accurate estimation of the steady state
covariance of the grid variables is thus an important bench-
mark with use in early detection and subsequent response.
The amount of regulation resources (like MWs of primary
and secondary response) that the grid operator procures is
dependent on the knowledge of the fluctuations in nodal injec-
tions. Accurate estimation of the nodal injection statistics is
thus necessary for correct resource availability and allocation.
In this paper, we are interested in the problem of estimating
both statistics in state covariances and nodal fluctuations in
the ambient regime, based on the swing equation based model
for grid dynamics.

In prior work, researchers have analyzed different aspects
of estimation and utilization of the steady state covariance
matrix in power grids. [10]–[12] identifies several indicators
of grid instability using state covariance matrices. [13], [14]

look at the inverse problems of estimating the Jacobian matrix
and system parameters respectively using the estimated full
state covariance matrix. Note that in reality, the estimation
problem in the grid is rendered difficult by the scarcity of
high fidelity real-time meters like PMUs (Phasor Measurement
Units) [15], micro-PMUs [16], FNET (Frequency Monitoring
Network) devices. Expansion efforts of such devices, despite
recent trends, still have not been able to bring observability
to large sections of the network. In work for general linear
dynamical systems outside of power grids, covariance com-
pletion from partial observations of statistics has been studied
under different noise models, both colored and uncorrelated
[17]–[19]. This has applications for noise modeling, system
identification and minimal filter design. Learning algorithms in
this area utilize a convex formulation with constraints arising
from the Lyapunov relation between state and noise statistics
as well as matching the known covariances.

A. Contribution

In this paper, we analyze estimation of the state and noise
covariance matrices for ambient fluctuations in power grids in
the incomplete regime, where state measurements pertaining
to only a limited number of nodal PMUs are available for
reconstruction. The chief distinguishing feature of our work is
that we utilize the time-stamps in the available measurements
to improve the covariance estimation. In particular, this is
applicable for measurements collected by PMUs as they have
GPS synchronized time stamps. The time-stamps enable us
to compute ‘delayed’ covariances in observed state variables
that can be included as linear constraints in the estimation
algorithm. We show that in the presence of time-stamps, nodal
PMU measurements of frequency and phase angle at half
the grid nodes are sufficient to estimate the complete state
covariance matrix and noise statistics directly. For scenarios
where the number of PMUs available are much less than that
number, we present a convex optimization based estimation al-
gorithm to learn the necessary statistics of state and noise using
linear constraints that include delayed covariance of observed
states. Simulation results on test IEEE 39 bus dynamic network
demonstrate the improvement in estimation for both state and
noise covariances over schemes that do not use knowledge of
time-stamps.

The rest of the paper is organized as follows. Section II
includes the mathematical formulation for the topology and
swing equations in the grid. Section III describes the properties
of the steady state covariance matrices in the system under
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Fig. 1. Power grid and its associated state variables (nodal phase angle θ and
frequency ω) and parameters (nodal inertia M , damping D, line susceptance
b).

stochastic nodal fluctuations. Section IV includes our result on
number of PMUs necessary for exact recovery using delayed
statistics. Section V presents the convex optimization based
estimation algorithm for covariance completion. We provide
numerical experiments and a comparison with existing work
in Section VI. Finally, Section VII details directions of future
work and concludes the paper.

II. MATHEMATICAL FORMULATION

We represent the power grid mathematically by a connected
graph G = {V,E}, where V = {0, 2, ..N} is the set of N + 1
buses/nodes of the graph and E = {eij} is the set of undirected
lines/edges (see Fig. 1). Let yij = gij − ĵbij denote the
complex admittance of line (ij) in the grid (ĵ2 = −1) with
conductance gij > 0 and susceptance bij > 0. Each node
i is associated with a time varying complex voltage Vi of
magnitude |Vi| and phase angle θi. The frequency at node
i is denoted by ωi where ωi = δθi

δt . Under stable operating
conditions, all nodal frequencies are maintained at a constant
value ω0 = 60Hz (in U.S.A.). The temporal dynamics of the
frequency at each node is governed by the following swing
equation [20]:

Miω̇i +Di(ωi − ω0) = Pmi −
∑

(ij)∈E

Pij + ui (1)

Here, Mi denotes the inertia of the rotating mass at node
i, which primarily stems from inertia of generators. Di rep-
resents the damping at node i. Pmi represents the net real
power injected at node i. Pij is the real power flowing out
of node i through lines connected to its neighbors. ui is the
external stochastic disturbance affecting the node. Therefore
the terms on the right hand side represent the net power
imbalance at node i. As we consider ambient disturbances
of moderate/small amplitude, we make the linearized DC
approximation [1] of the flow equation by assuming constant
voltage magnitude (|Vi| = 1) and small angle differences at
neighboring nodes (θi − θj << 1). This yields

Pij = bij(θi − θj) (2)

It is worth mentioning that in the absence of external distur-
bances, the system of equations has a stable operating point
(ωi = ω0, ω̇i = 0). As the swing equation with DC power flow
is linear, all nodal frequencies can be measured as deviations
from the stable operating point. Further we take phase angle
at one node (node 0) as reference and express phase angles at
all other nodes in terms of deviations from the reference node.
Abusing notation, from this point we use ωi, θi to denote the

deviations from the reference node at node i and restrict our
analysis to the reduced system with N non-reference nodes
(1, 2, ...N)). In vector form, the linearized swing equation for
the reduced system is given by:

θ̇ = ω, [M ]ω̇ + [D]ω = −LBθ + u (3)

Here, ω, θ, u are the N×1 vectors. [M ] and [D] are diagonal
matrices representing the nodal inertia and damping. LB is the
N×N susceptance weighted reduced graph Laplacian (without
node 0) in grid G with the following structure:

∀1 ≤ i, j ≤ N,LB(i, j) =


−bij if (ij) ∈ E∑

(ik)∈E bik if j = i

0 otherwise
(4)

The state of each node in this system thus comprises of the
voltage phase angle and the frequency. For the rest of the paper
we assume the following:
Assumption 1: At each node i, Mi, Di 6= 0
Assumption 2: The disturbance vector u has mean zero and
is uncorrelated in time and space with diagonal covariance
matrix E[uuT ] = Σu.

The assumption of non-zero inertia and damping is made
for convenience of presentation. The analysis in its absence
follows directly by modifying the swing equations for nodes
without inertia and damping. The assumption of ‘delta- cor-
related’ noise can be argued at short times scales where
ambient disturbances arise from fluctuations of loads or noise
at generators [14], [21], [22].

Writing Eq. (3) in standard Linear Time Invariant (LTI)
system form (ẋ = Ax+Bu) [23], we have[

θ̇
ω̇

]
=
[

0 I
−M−1LB −M−1D

] [
θ
ω

]
+
[

0
M−1

]
u (5)

where I is the identity matrix of size N × N , x =
[θTωT ]T is the system state, and (A,B) are the matrices[

0 I
−M−1LB −M−1D

]
,
[

0
M−1

]
, respectively. We assume

that parameters M,D,LB and hence system matrices A,B are
known to the observer. Additionally, under normal operation
we assume that the matrix A is Hurwitz [20] and system
(A,B) is controllable. In the next section we discuss properties
of the steady state covariance matrix of x and u in Eq. (5) that
is of interest for our reconstruction problem.

III. STEADY STATE STATISTICS OF LINEAR DYNAMICAL
SYSTEMS

For a general controllable linear dynamical system ẋ =
Ax+Bu, there is a rich literature on linear relations involving
steady state covariances of system states x when u is a
zero-mean input with bounded covariance. As the ambient
disturbance is assumed to be uncorrelated across time and
space, we have E[(ui(t)uj(t + τ)] = σiδi=jδτ=0. Using this
the following continuous time Lyapunov equation [23] holds
for the steady state covariance Rx = E[x(t)x(t)T ],

ARx +RxA
T = −BΣuB

T (6)



where Σu is the diagonal covariance matrix of the ambient
disturbance under Assumption 2. Further, by stability of A
and controllability of (A,B) it follows that Rx is positive
definite and unique for a given Σu [24]. Note that x is a
vector Ornstein-Uhlenbeck process [23]. As u(t) is ‘delta’-
correlated noise, it can be shown that the following holds for
the ‘delayed’ covariance Rτx = E[x(t+ τ)x(t)T ]

Rτx = eτARx (7)

where eτA is a matrix exponential. Note that both Eqs. (6,7)
are linear relations involving the state and noise covariance
matrices. We use these relations in the next section to analyze
recovery of state and noise covariance matrices in the regime
of incomplete observability where measurements are limited
to a few PMUs in the system.

IV. EXACT COVARIANCE COMPLETION USING PMUS

If covariance matrix Σu of noise is known, then Eq. (6) can
be solved (using numeric solvers) to derive the state covariance
matrix Rx. We are interested in estimating Σu along with Rx
when time-stamped nodal PMU measurements at a set O of
k ≤ N nodes are available. The set of nodes H denotes the
set of ‘hidden’ nodes with no resident PMUs. Note that the
total number of states for the system is 2N (each node has
frequency and phase angle as its state), while 2k states are
observed directly by the PMUs in set O.

Consider the division of matrices Rx and Rτx as follows:

Rx =
[
Rx(H,H) Rx(H,O)
Rx(H,O)T Rx(O,O)

]
, Rτx =

[
Rτx(H,H) Rτx(H,O)
Rτx(H,O)T Rτx(O,O)

]
where Rx(O,O) and Rτx(O,O) denote the 2k×2k submatrices
in the steady state and delayed covariance matrices respec-
tively that correspond to the phase angles and frequency at the
observed nodes. Similarly, other submatrices refer to covari-
ances between states at hidden nodes and/or observed nodes.
As time-stamped measurements are available, the observer can
empirically compute Rx(O,O) and Rτx(O,O) in Rx and Rτx
respectively.

We consider the case where k ≥ N/2, i.e., PMUs are
located at at least half the number of grid nodes. Thus
|O| ≥ |H|. The following theorem demonstrates that direct
computation of state and error covariances is possible in this
setting.

Theorem 1. If time-stamped PMUs measuring voltage phase
angle and frequency at half the grid nodes are available,
then the steady state covariance matrix and noise covariance
matrix can be reconstructed.

Proof. Consider a division of matrices A and eAτ into blocks
corresponding to observed and hidden states like Rx and Rτx.
Using Eq. (7), we can derive

Rτx(O,O)− eτA(O,O)Rx(O,O) = eτA(O,H)Rx(H,O)

As |O| ≥ |H| and A has full-rank, select τ such that
eτA(O,H) has full column rank. The preceding equation can
hence be used to derive unknown submatrix Rx(H,O). From

Eq. (5) and Assumption 2, it follows that BΣuB
T is a diagonal

matrix with first N entries of its diagonal being 0. The equality
relation for the principal k×k submatrix of BΣuB

T in Eq. (6)
gives

A(H,H)Rx(H,O) +A(H,O)Rx(H,H)+

Rx(H,H)A(H,O)T +Rx(H,O)A(O,O)T = 0 (8)

which can be used to derive Rx(H,H). Once all missing
entries in Rx are estimated, Eq. (6) can be used to compute
Σu.

In the next section, we discuss covariance estimation when
PMUs are placed at less than half the grid nodes.

V. CONVEX OPTIMIZATION BASED COVARIANCE
ESTIMATION

Here we consider the problem where the system matrices
A and B are known, but the input time-series comprise of
phase angles and frequencies in set O of size less than N/2.
In this setting, we present the following convex optimization
formulation to estimate both Σu and Rx.

arg min
R,Σ

‖AR+RAT +BΣBT ‖F (P-1)

s.t. R � 0 (9)

Σij =

{
≥ 0 N < i = j ≤ 2N

= 0 otherwise
(10)

R(O,O) = Rx(O,O), [eτAR](O,O) = Rτx(O,O) (11)

Note that the optimization function in Problem (P-1) min-
imizes the Lyapunov equality (6). Eq. (9) follows from the
positive definiteness of the steady state covariance matrix as
the system is controllable. The noise covariance matrix, by
Assumption 2, is diagonal with sparsity pattern constrained by
Eq. (10). The linear constraints of Eq. (11) match the values
in the optimizer R and the delayed covariance matrix (see
Eq. (7)) at the observed nodes with true values in Rx and Rτx.
Note that positive semi-definiteness of Σ ensures a unique
positive-definite covariance R [24], and makes constraint (9)
redundant. In practice, we also observe that the true covari-
ance matrix Rx, though positive-definite, is close to being
singular (rank deficient) for several IEEE test cases. We thus
ignore constraint (9). Note that closeness to singularity creates
numerical issues for functions like log det that can be used
as surrogate for positive definiteness [19]. Next, we discuss
the performance of this formulation in estimating steady state
covariance matrix of system states and noise.

VI. NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness of solving
optimization problem (P-1) on the IEEE 39 bus test system
[25], [26] shown in Fig. 2. The test case originally has 10
generators. We insert small additional damping and inertia
at the non-generator nodes following Assumption 1. In each



Fig. 2. IEEE 39 bus system

simulation, we take a random noise covariance matrix and gen-
erate the true steady state and two delayed covariance matrices
(with τ ’s taken as .45 and .4) using lyap function in Matlab
R2015. We then randomly select a fixed number of nodes
as PMU locations and separate the covariances corresponding
to those nodal states as available information. We estimate
the full state covariance matrix and noise statistics by solving
problem (P-1) using the CVX package [27]. For comparison,
we also run problem (P-1) without the delayed covariance
constraints. The error (averaged over multiple simulations) in
steady state covariance matrix estimation is presented in Fig. 3
using two metrics. Fig. 3(a) includes the Frobenius norm of the
difference between the true and estimated covariance matrices.
Fig. 3(b) shows the relative error per entry of the covariance
matrix. As relative errors diverge for entries extremely close
to zero, we consider matrix entries with magnitude greater
than 10−8 (holds for > 98% of all entries). Unlike Frobenius
norm, the relative error per entry does not depend on the
size of the matrix. Note that errors for either metric decrease
with an increase in the number of available PMUs. The
performance due to inclusion of delayed covariances outshines
the traditional case with no temporal statistics, the effect being
more prominent at low PMU installation. In Fig. 4, we present
an instance of the estimation of nodal noise statistics with
or without inclusion of delayed covariances with 3 PMUs.
Observe that the inclusion of delayed covariance constraints
leads to almost exact matching between the estimated and true
values. For the same instance, Figs. 5(a) and 5(b) provide the
heat maps of true and estimated covariance matrices (with
two delayed constraints) of phase angles that compare well
on inspection.

VII. CONCLUSION AND FUTURE WORK

This paper analyzes the problem of estimating the state
covariance matrix and statistics of ambient disturbance in
power grids using PMU measurements at a limited number
of grid nodes. Using delayed covariances of nodal states, it
is shown that PMUs placed at half the grid nodes ensures
exact recovery. Further a convex optimization formulation
is presented to estimate the statistics when the number of
available PMUs is much less. Simulations show that inclusion
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Fig. 3. Average error metrics in estimation of state covariance matrix by
Problem (P-1) vs number of available PMUs in IEEE 39 bus system; (a)
Forbenius norm of difference in estimate and true covariance matrices (b)
Relative error per entry of true covariance matrix with magnitude greater
than γ = 10−8

bus number
0 5 10 15 20 25 30 35 40

co
va

ria
nc

e 
of

 n
oi

se

0

0.5

1

1.5

2

2.5

3
estimate, with 2 delays
estimate, no delay
true value

Fig. 4. One instance of estimation of noise covariances in IEEE 39 bus
system by Problem (P-1) with 3 PMUs

of delayed covariance in the optimization framework leads
to significant improvement in estimating unknown statistics.
This demonstrates the benefit of using ‘time-stamped’ PMU
measurements in estimation problems on power grids.

The use of delayed covariances leads to several future
research directions. For the estimation problems considered in
this paper, we have assumed accurate estimate of covariances
at observed nodes. Covariance completion in the presence of
measurement errors is a direction we plan to pursue in the
future. We also plan to analyze the problem of optimal PMU
placement to improve the performance of our algorithms.

(a) (b)
Fig. 5. One instance of heat map of phase covariances in IEEE 39 bus system;
(a) true value (b) estimated by Problem (P-1) with 3 PMUs



REFERENCES

[1] P. Kundur, Power system stability and control, vol. 7.
[2] C. Nwankpa, S. Shahidehpour, and Z. Schuss, “A stochastic approach

to small disturbance stability analysis,” IEEE Transactions on Power
Systems, vol. 7, no. 4, pp. 1519–1528, 1992.

[3] A. Ulbig, T. S. Borsche, and G. Andersson, “Impact of low rotational
inertia on power system stability and operation,” IFAC Proceedings
Volumes, vol. 47, no. 3, pp. 7290–7297, 2014.

[4] J. Matevosyan, S. Sharma, S.-H. Huang, D. Woodfin, K. Ragsdale,
S. Moorty, P. Wattles, and W. Li, “Proposed future ancillary services
in electric reliability council of texas,” in PowerTech, 2015 IEEE
Eindhoven. IEEE, 2015, pp. 1–6.

[5] F. O. No, “755,frequency regulation compensation in the organized
wholesale power markets, issued october 20, 2011.”

[6] E. Cotilla-Sanchez, P. D. Hines, and C. M. Danforth, “Predicting critical
transitions from time series synchrophasor data,” IEEE Transactions on
Smart Grid, vol. 3, no. 4, pp. 1832–1840, 2012.

[7] M. Chertkov, S. Backhaus, K. Turtisyn, V. Chernyak, and V. Lebedev,
“Voltage collapse and ode approach to power flows: analysis of a feeder
line with static disorder in consumption/production,” arXiv preprint
arXiv:1106.5003, 2011.

[8] D. Podolsky and K. Turitsyn, “Random load fluctuations and collapse
probability of a power system operating near codimension 1 saddle-node
bifurcation,” in Power and Energy Society General Meeting (PES), 2013
IEEE. IEEE, 2013, pp. 1–5.

[9] X. Wang and K. Turitsyn, “Data-driven diagnostics of mechanism and
source of sustained oscillations,” IEEE Transactions on Power Systems,
vol. 31, no. 5, pp. 4036–4046, 2016.

[10] G. Ghanavati, P. D. Hines, and T. I. Lakoba, “Identifying useful statis-
tical indicators of proximity to instability in stochastic power systems,”
IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1360–1368,
2016.

[11] B. Gao, G. Morison, and P. Kundur, “Voltage stability evaluation using
modal analysis,” IEEE Transactions on Power Systems, vol. 7, no. 4,
pp. 1529–1542, 1992.

[12] P.-A. Lof, G. Andersson, and D. Hill, “Voltage stability indices for
stressed power systems,” IEEE Transactions on Power Systems, vol. 8,
no. 1, pp. 326–335, 1993.

[13] Y. C. Chen, J. Wang, A. D. Domı́nguez-Garcı́a, and P. W. Sauer,
“Measurement-based estimation of the power flow jacobian matrix,”
IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2507–2515, 2016.

[14] X. Wang and K. Turitsyn, “PMU-based estimation of dynamic state
jacobian matrix,” arXiv preprint arXiv:1510.07603, 2015.

[15] A. G. Phadke, “Synchronized phasor measurements in power systems,”
IEEE Computer Applications in power, vol. 6, no. 2, pp. 10–15, 1993.

[16] A. von Meier, D. Culler, A. McEachern, and R. Arghandeh, “Micro-
synchrophasors for distribution systems,” pp. 1–5, 2014.
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