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Abstract— We study the effect of white-in-time additive sto-
chastic base flow perturbations on the mean-square properties
of the linearized Navier-Stokes equations. Such perturbations
enter the linearized dynamics as multiplicative sources of uncer-
tainty. We adopt an input-output approach to analyze the mean-
square stability and frequency response of the flow subject
to additive and multiplicative uncertainty. For transitional
channel flows, we uncover the Reynolds number scaling of
critical base flow variances and identify length scales that are
most affected by base flow uncertainty. For small-amplitude
perturbations, we adopt a perturbation analysis to efficiently
compute the variance amplification of velocity fluctuations
around the uncertain base state. Our results demonstrate the
robust amplification of streamwise elongated flow structures in
the presence of base flow uncertainty and that the wall-normal
shape of base flow modulations can influence the amplification
of various length scales.

Index Terms— Multiplicative uncertainty, stability analysis,
stochastically forced Navier-Stokes, structured uncertainty.

I. INTRODUCTION

The linearized Navier-Stokes (NS) equations have been
shown to capture early stages of transition as well as struc-
tural and statistical features of wall-bounded flows. The non-
normality of the linearized dynamics induces interactions of
exponentially decaying normal modes [1], [2], that result
in the high sensitivity of velocity fluctuations to exogenous
sources of excitation. This feature has been used to explain
the large transient growth of velocity fluctuations [3]–[7] and
their amplification due to deterministic and stochastic distur-
bances in transitional and turbulent wall-bounded flows [8]–
[17]. In these studies, additive stochastic excitation is used
to model the effect of background exogenous disturbances
or the uncertainty caused by excluding nonlinear terms from
the linearized equations. A rather less studied aspect arises
from the uncertainty surrounding the choice of a base state
and its implications for stability analysis.

Typically, linearization happens around a base flow profile
that either describes a steady-state solution to the NS equati-
ons or a long-time averaged mean of a simulation-based flow
field or experimental dataset. This choice depends on the flow
configuration and its characteristic regime. The uncertainty
caused by insufficient data and imprecise measurements
(small-data issues) can often prevail over statistical avera-
ging procedures involved in obtaining the base flow profile.
Moreover, the use of modeling approximations/assumptions
outside their range of validity and parametric uncertainties
can imply a degree of uncertainty in the base state. This
motivates an in-depth investigation into the ramifications of
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base flow uncertainty on the validity and robustness of linear
analyses of fluid flows. Prior studies have adopted adjoint-
based variational procedures for examining the sensitivity
of eigenvalues of the linearized operator [18] or singular
values of the frequency response operator [19] to determi-
nistic (worst-case) base flow perturbations. There has also
been efforts to quantify the effect of random spatial base
flow variations using stochastic spectral projection based on
generalized polynomial chaos theory [20].

Additive uncertainty in the base flow enters the linea-
rized dynamics in a multiplicative and structured manner.
For deterministic and set-valued uncertainties, the structured
singular value can be used to provide a robust stability theory
for the uncertain dynamics [21], e.g., this approach was used
in [22] to analyze the effect of nonlinearity in transitional
channel flows. However, an approach that is based on a
worst-case analysis may not provide a realistic model for
studying the role experimental/numerical imperfections and
measurement noise that are unlikely to bear an optimal shape.

In this paper, we model structured base flow perturbations
as white-in-time stochastic processes in the linearized NS
equations. While there is no ambiguity in the treatment of
additive sources of excitation, the inclusion of multiplicative
noise calls for the adoption of a suitable stochastic calculus.
Inspired by [23], we provide an appropriate interpretation
for the multiplicative uncertainty and reformulate the ari-
sing stochastic differential equations (SDEs) as a feedback
interconnection of the linearized dynamics and structured
stochastic uncertainties thereby separating the nominal dyna-
mics from the sources of uncertainty. We provide specialized
conditions for mean-square stability (MSS) and provide a
perturbation analysis for studying the energy spectrum of
velocity fluctuations in a computationally efficient manner.
We use this framework to study the stability and receptivity
of channel flow around canonical Couette and Poiseuille
profiles that are contaminated with persistent stochastic per-
turbations as well as the Reynolds number dependence of
the energy spectrum of streamwise-constant fluctuations.

The paper is organized as follows. In Sec. II, we present
the linearized NS equations around an uncertain base profile
and describe our model for base flow perturbations. In
Sec. III, we rewrite the linearized dynamics as a feedback in-
terconnection between the nominal dynamics and the sources
of uncertainty, provide MSS conditions, and characterize the
frequency response. In Sec. IV, we study the stability and
receptivity of Couette and Poiseuille flows. In Sec. V, we
study the Reynolds number dependence of variance amplifi-
cation for streamwise elongated flow structures. Finally, we
provide concluding remarks in Sec. VI.
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Fig. 1. (a) Pressure driven channel flow with base flow u = [1 −
y2 0 0 ]. Side view of three-dimensional Couette (b) and Poiseuille (c)
flows along with various realizations of stochastic base flow perturbations
γu(t) represented by the shaded area surrounding the base flow profiles.

II. DYNAMICS OF VELOCITY FLUCTUATIONS

The hydrodynamic stability of flows is concerned with the
behavior of fluctuations around a base state of interest. In
plane channel flow (Fig. 1(a)), the dynamics of velocity v =
[u v w ]T and pressure p fluctuations around an arbitrary,
parallel base flow u = [U(y) 0 W (y) ]T and pressure P
are governed by the linearized NS equations,

vt = − (∇ · u)v − (∇ · v))u−∇p+
1

R
∆v + f

0 = ∇ · v
(1)

where ∇ is the gradient, ∆ = ∇ · ∇ is the Laplacian, t
is time, and R = Ūh/ν is the Reynolds number defined
by the maximum nominal velocity Ū, the channel half-
height h, and the kinematic viscosity ν. In these equations,
f is a three-dimensional zero-mean white-in-time stochastic
forcing, which is typically introduced to capture the impact
of exogenous excitation sources and initial conditions [11],
[16], or to capture the effect of the neglected nonlinearity in
the NS equations [14], [15]. We assume the base flow u to
be contaminated with an additive source of uncertainty, i.e.,
u(y, t) = ū(y) + γ(y, t). Here, ū = [ Ū(y) 0 W̄ (y) ]T is
the nominal base flow and γ is a zero-mean white-in-time
stochastic process given by γ = [ γu(y, t) 0 γw(y, t) ]

T .
The uncertain base flow ū enters the linearized Eqs. (1) as

a coefficient that multiplies the vector of velocity fluctuations
v. As a result, the evolution of v is affected by not only the
additive source of uncertainty f , but multiplicative sources of
uncertainty γ that arise form base flow perturbations. While
u includes the sources of uncertainty γ, it remains constant
in x and z. Elimination of pressure and application of
the Fourier transform in the spatially invariant wall-parallel
directions brings Eqs. (1) into the evolution form

φt(y,k, t) = [A(k, t)φ(·,k, t)] (y) + [B(k) f(·,k, t)] (y)

v(y,k, t) = [C(k)φ(·,k, t)] (y) (2)

where the state variable φ = [ v η ]T contains the wall-
normal velocity v and vorticity η = ∂zu − ∂xw, k =
[ kx kz ]

T is the vector of horizontal wavenumbers over the
streamwise and spanwise dimensions, and v(±1, k, t ) =
vy(±1, k, t ) = η(±1, k, t ) = 0 indicating no-slip/no-
penetration boundary conditions on velocity fluctuations.

(a) (b)

y y
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Fig. 2. (a) A shape function f(y) in Eq. (3) with {y1, y2} = {−0.9, 0.9}
and a = 200; and (b) a two-sided shape function f(y) = f1(y) + f2(y)
in which f1(y) and f2(y) are determined using Eq. (3) with {y1, y2} =
{−1,−0.95} for f1(y), {y1, y2} = {0.95, 1} for f2(y), and a = 200.

Operators A, B, and C can be found in [24, Eq. (5)].
Herein, we consider the class of stochastic base flow

perturbations of the form γ(y, t) = α γ̄(t)f(y), where α is
the constant amplitude, γ̄(t) is a unit-amplitude zero-mean
stochastic parameter of unite amplitude, and

f(y) :=
1

π
[ arctan (a(y − y1))− arctan (a(y − y2)) ] (3)

is a smooth filter function that determines the wall-normal re-
gion influenced by the stochastic uncertainty. Here, y1 and y2
determine the wall-normal extent of f(y) and a specifies the
roll-off rate. We study the influence of stochastic base flow
perturbations with wall-normal dependence corresponding to
those shown in Fig. 2, as well as a normalized variant of the
associated nominal base flow f(y) = Ū(y)/max(|Ū(y)|).

The operator-valued matrix A in evolution model (2) can
be decomposed into nominal and perturbed components as

A(k, t) = Ā(k) + α (γ̄u(t)Au(k) + γ̄w(t)Aw(k)) (4)

where operators Ā, Au, and Aw are given in [24, Appendix
A]. Here, the nominal base profile ū(y), and shape func-
tions fu(y) and fw(y) enter operators Ā, Au, and Aw as
deterministic parameters, respectively.

We discretize operators in (2) in the wall-normal direction
using a pseudospectral scheme with N Chebyshev collo-
cation points and follow a change of variables that yields
a state-space representation in which the kinetic energy is
determined by the Euclidean norm of the state vector [15,
Appendix A]. In the resulting state-space model,

ψ̇(k, t) = A(k, t)ψ(k, t) + B(k) f(k, t)

v(k, t) = C(k)ψ(k, t)
(5)

matrices A, B, and C, and state and output vectors ψ ∈
C2N and v ∈ C3N represent discretized versions of the
corresponding operators in (2).

III. MEAN-SQUARE STABILITY AND INPUT-OUTPUT
ANALYSIS

In this section, we adopt an Itō interpretation to treat
the sources of multiplicative uncertainty in SDE (5), use
a linear fractional transformation to extract these sources
of uncertainty from the nominal dynamics, and establish an
input-output relation between sources of stochastic excitation
and the output velocity fluctuations of system (5).
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A. Stochastic feedback interconnection
In input-output form, SDE (5) can be rewritten as[

v(k, t)
z(k, t)

]
=

∫ t

0

M(k, t − τ)

[
f(k, τ)
r(k, τ)

]
dτ

r(k, t) = αD(γ̄(t)) z(k, t) (6)

where γ̄ has been extracted by rearranging the dynamics as
a feedback connection between the nominal dynamics and
the structured uncertainty D(γ̄(t)) := diag{γ̄u(t)I, γ̄w(t)I},
M denotes the finite-dimensional approximation to the im-
pulse response operator M, v is the output velocity vector
(cf. Eqs. (5)), and z is computed from ψ. Moreover, the
exogenous stochastic input f , the uncertain feedback signal r,
and the sources of uncertainty γ̄u and γ̄w are white processes
that are defined as derivatives of Wiener processes [25], i.e.,

γ̄i(t) :=
dγ̃i(t)

dt
; f(k, t) :=

df̃(k, t)

dt
; r(k, t) :=

dr̃(k, t)

dt
.

Here, γ̃i(t) are zero-mean processes of variance σ2
i with

index i denoting u or w, f̃(t) is a zero-mean process
with instantaneous covariance

〈
f̃(k, t) f̃∗(k, t)

〉
= Ω(k) t

where Ω(k) = Ω∗(k) ⪰ 0 is the spatial covariance matrix.
Following [23], we assume that γ̃i and f̃ are uncorrelated at
all times, adopt the Itō interpretation, and assume that r(k, t)
has temporally independent increments, i.e., its differentials
(dr(k, t1),dr(k, t2)) are independent when t1 ̸= t2. Based
on this, the differential form of Eqs. (6) is given by[

v(k, t)
z(k, t)

]
=

∫ t

0

M(k, t − τ)

[
df̃(k, τ)
dr̃(k, τ)

]
dr̃(k, t) = αD(dγ̃(t)) z(k, t) (7)

and is described by the block diagram in Fig. 3. A corre-
sponding state-space model is given by

M :


dψ(t) = Āψ(t)dt + B0 dr̃(t) + B df̃(t)

z(t) = C0ψ(t)

v(t) = C ψ(t)

dr̃(t) = αD(dγ̃(t)) z(t). (8)

In these equations, the dependence of vectors and matrices
on horizontal wavenumber pair k is omitted for brevity, and

B0(k) :=
[
I I

]
, C0(k) :=

[
Au(k)

T Aw(k)
T
]T

. (9)

Here, ψ, z, and v are complex-valued vectors of appropriate
dimension, B, C, Ā, Au, and Aw are finite-dimensional
approximations of the operators in Eqs. (5) and (4).

B. Mean-square stability
For the causal LTI system (8), MSS certifies that for all

differential inputs, [ df̃ dr̃ ]T , with independent increments
and uniformly bounded variances, the output process[

v
z

]
=

[
M11 M12

M21 M22

]
︸ ︷︷ ︸

[
df̃
dr̃

]
M

M

α

[
dγ̃uI

dγ̃wI

]

df̃

dr̃

v

z

Fig. 3. Linear fractional transformation of an LTI system (8) with df̃ and
dγ̃i representing differentials of Wiener processes that model additive and
multiplicative sources of stochastic uncertainty, respectively.

has a uniformly bounded variance; see, e.g., [26]. Followi-
ng [27, Theorem 3.2], necessary and sufficient conditions for
MSS can be generalized for the continuous-time scenario,
i.e., the output v in (8) has a finite covariance if and only if
the feedback subsystem (M22,Γ) is MSS (see, e.g., [27]).
Based on this, the exact necessary and sufficient conditions
for the MSS of (8) are: (i) Ā is Hurwitz; and (ii) the spectral
radius of the loop gain operator

L(R) := Γ ◦
(∫ ∞

0

M22(τ)RM∗
22(τ)dτ

)
is strictly less than 1/α2, i.e., ρ(L) < 1/α2. Here, ◦ is
the Hadamard product, M22 is the impulse response of the
subsystem M22 : dr̃ → z, which is given by

M22(k, t) = C0(k) e
Ā(k,t)t B0(k)

and ∗ denotes complex-conjugate-transpose. The matrix Γ
is the mutual correlation of γ̃i, i.e., Γ :=

〈
γ̃i(t) γ̃

∗
j (t)

〉
.

In this study, we consider γ̄u and γ̄w to be mutually
independent, but repeated throughout the spatial domain,
i.e., Γ = diag{σ2

u 11
T , σ2

w 11
T }, where 1 represents the

vector of 2N ones. As explained in Sec. II, the wall-normal
support of each γ̄i will be captured by its corresponding
shape function fi(y) within operators Ai in Eq. (9).

The loop gain operator propagates the steady-state cova-
riance of dr̃ denoted by R through the feedback configurati-
on in Fig. 3. Equivalently, we have L(R) = Γ◦(C0 X C∗

0 ),
where X is the solution to the algebraic Lyapunov equation

ĀX + X Ā∗ = −B0 RB∗
0 .

The spectral radius of L can be numerically approximated
using a power iteration algorithm:

ĀXk+1 + Xk+1 Ā
∗ = −B0 Rk B

∗
0

Rk+1 :=
1

∥Rk∥F
(Γ ◦ (C0 Xk+1 C

∗
0 ))

ρk+1 := ⟨Rk,Rk+1⟩ .
Here, R0 ⪰ 0 and the algorithm terminates when the resi-
dual, (Rk+1 − ρk+1Rk) /∥Rk+1∥F , is sufficiently small.

C. Frequency response
The impulse response M in Eq. (7) corresponding to the

state-space representation (8) takes the form

M(k, t) :=

[
C(k)
C0(k)

]
e Ā(k,t)t

[
B(k) B0(k)

]
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For zero-mean white-in-time processes f , γ̄u, and
γ̄w with covariance matrix Ω, and variances σ2

u

and σ2
w, respectively, the steady-state covariance

X(k) = limt→∞ ⟨ψ(k, t)ψ∗(k, t)⟩ can be obtained
by as the solution to the generalized Lyapunov equation

ĀX +XĀ∗ + α2B0 (Γ ◦ (C0 X C∗
0 ))B

∗
0 = −B ΩB∗ (10)

which is parameterized over k. It can also be used to compute
the energy spectrum of velocity fluctuations v,

E(k) = trace (Φ(k)) = trace (C(k)X(k)C∗(k)) (11)

where Φ(k) = limt→∞ ⟨v(k, t)v∗(k, t)⟩ . The influence of
multiplicative uncertainty on the energy spectrum can thus
be computed as the discounted spectrum

Ec(k) = E(k) − E0(k) (12)

where E0 denotes the nominal energy spectrum in the
absence of multiplicative uncertainties.

Following (9) and the form of Γ, Eq. (10) can be expanded
to reflect contributions from uncertainties that affect the
streamwise and spanwise components of the base flow as

ĀX + XĀ∗ +

α2
(
σ2
u(Au X A∗

u) + σ2
w(Aw X A∗

w)
)

= −B ΩB∗ (13)

A direct approach to solving (13) as a linear system of
equations would involve the use of operator vectorization and
matrix inversion. In the absence of sparse matrix structures,
this approach can be challenging even for medium-size
problems. In what follows, we consider small-amplitude
perturbations (α ≪ 1) and utilize a perturbation analysis
to achieve computational efficiency in obtaining the energy
spectrum. This approach allows us to compute the second-
order statistics of the uncertain model by solving a sequence
of standard algebraic Lyapunov equations instead of (13). In
addition to the computational benefit, the choice of small
perturbations is motivated by the desire to account for
uncertainties arising from measurement imperfections, small-
data issues in the statistical averaging process, or the effect
of active/passive boundary actuation strategies that influence
the base flow. Based on this, X is given by the series

X(k) = X0(k) + α2 X2(k) + O(α4) (14)

where X0 and X2 are the state covariance of the nominal
dynamics (γ̄ = 0) and its second-order correction induced
by random base flow uncertainty, respectively, and are ob-
tained from a set of decoupled Lyapunov equations; see [24,
Appendix B] for details. The energy spectrum of velocity
fluctuations v (Eq. (11)) follows a similar perturbation series:

E(k) = E0(k) + α2E2(k) + O(α4) (15)

where E0 = trace(CX0C
∗) is the nominal energy spectrum

and E2 = trace(CX2C
∗) captures the effect of base flow

perturbations at the level of α2. When α ≪ 1, the correction
α2E2(k) provides a good approximation of the discounted
spectrum Ec(k) in Eq. (12), and as α grows, higher-order
terms may be needed to approximate E(k).

(a) (b)

σ
2 u

R R

Fig. 4. Stability curves for fluctuations with k = (1, 1) in (a) Couette;
and (b) Poiseuille flow demonstrating the Reynolds number dependence of
the maximum tolerable variance for base flow perturbations entering the
dynamics through f(y) = Ū(y)/max(|Ū(y)|) (+) or shape functions
f(y) in Figs. 2(a) (∗) and 2(b) (◦). Shaded areas denote variances of
stochastic base flow uncertainty that do not violate MSS (ρ(L) < 1 with
α = 1). The R−1 slope is illustrated by the triangles.

(a) (b)

k
x

kz kz
Fig. 5. Logarithmically scaled critical variance levels for stochastic
multiplicative uncertainty γ̄u with α = 1 and f(y) = Ū(y)/max(|Ū(y)|)
over the horizontal wavenumber spectrum in (a) Couette flow with R =
500; and (b) Poiseuille flow with R = 2000.

IV. BASE FLOW VARIATIONS IN TRANSITIONAL FLOW

We study the effect of zero-mean white-in-time stochastic
uncertainty entering the streamwise component of transitio-
nal channel flow with ū = [ Ū(y) 0 0 ]T . For Couette flow
Ū(y) = y and for Poiseuille flow Ū(y) = 1 − y2. We use
N = 101 Chebyshev collocation points to discretize the
operators in the linearized equations to examine the MSS of
horizontal wavenumber pair k = (1, 1) corresponding to an
oblique flow structure. Nonlinear optimal perturbation analy-
sis [28] has demonstrated the fragility of such flow structures
in transition mechanisms, i.e., oblique modes require less
energy to induce transition than streamwise elongated modes.
The MSS conditions provided in the previous section can
be used to identify the minimum de-stabilizing variance
σ2
u. Figure 4 shows the dependence of the critical variance

of perturbations on the Reynolds number with the shaded
areas under the curves representing asymptotically MSS
conditions. Clearly, by confining the wall-normal extent of
stochastic perturbations to the vicinity of the walls, larger
variances σ2

u can be tolerated. While both flows become less
robust to perturbations as the region of influence grows in
the wall-normal dimension, the oblique mode in Poiseuille
flow is generally more sensitive to channel-wide base flow
perturbations (f(y) = Ū(y)/max(|Ū(y)|) and Fig. 2(a)).

While the flow becomes less stable at higher Reynolds
numbers, the critical variance levels show different Reynolds
number scaling when the perturbations are bound to dif-
ferent wall-normal regions. In both Couette and Poiseuille
flows the critical variance of near-wall base flow pertur-

5053



(a) (b)

kx

(c) (d)

kx

(e) (f)
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kx
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Fig. 6. Nominal energy spectra of (a) Couette flow with R = 500 and
(b) Poiseuille flow with R = 2000 together with corrections E2(k) due to
multiplicative uncertainty γ̄u with α = 0.01 (c-h). Shape functions: (c,d)
f(y) = Ū(y)/max(|Ū(y)|); (e,f) Fig. 2(a); (g,h) Fig. 2(b). Variances σ2

u:
(c) 4.38× 10−3; (d) 6.25× 10−4; (e) 0.004; (f) 6.25× 10−4; (g) 0.005;
(h) 0.001. Color plots show log10(E2(k)). The symbols (×) and (•) mark
wavenumber pairs associated with oblique and TS waves, respectively.

bations (Fig. 2(b)) scale as R−1. However, when f(y) =
Ū(y)/max(|Ū(y)|), the critical variance levels decrease at
a slower rate (R−1/2). Notably, the Reynolds number scaling
obtained using our stochastic approach is in agreement with
that of [18] for the magnitude of deterministic (worst-case)
base flow perturbations. Fig. 5 shows the critical variance
levels σ2

u for flow fluctuations with different spanwise and
streamwise wavenumbers for f(y) = Ū(y)/max(|Ū(y)|) in
Couette (R = 500) and Poiseuille (R = 2000) flows. While
smaller streamwise wavenumbers corresponding to stream-
wise elongated structures exhibit more robustness towards
base flow perturbations, streamwise elongated structures
(streaks) that are thin in the spanwise dimension exhibit the
least sensitivity to such base flow uncertainty in both flows.

Using the maximum tolerable variance corresponding to
k = (100, 0.01) in both flows (cf. Fig. 5), we examine the
effect of stochastic base flow perturbations on the energy

spectrum of velocity fluctuations. For Couette flow with R =
500, the critical σ2

u of streamwise base flow perturbations
corresponding to f(y) = Ū(y)/max(|Ū(y)|), Fig. 2(a), and
Fig. 2(b) are 0.44, 0.09, and 8.3, respectively. These values
change to 0.03, 0.008, and 2.09 for Poiseuille flow with
R = 2000. The nominal energy spectra E0 of plane Couette
and Poiseuille flows computed as the solution of (10) with
γ̄u = 0 are shown in Fig. 6(a,b). We use perturbation analysis
to compute the effect of base flow perturbations on the energy
of velocity fluctuations; see [24, Sec. IVB] for a validation
study. Figure 6(c-h) shows the second-order correction to the
energy spectrum (E2(k)) of channel flow induced by base
flow perturbations of various shape f(y). Clearly, base flow
perturbations result in the amplification of all spatial scales.
While amplification of streamwise elongated flow structures
(streaks) dominates the energy spectra of unperturbed flows,
small-amplitude channel-wide base flow perturbations (when
f(y) = Ū(y)/max(|Ū(y)|) or Fig. 2(a)) predominantly
influence the oblique modes with kx ≈ 1 and kz ∼ O(1),
and near-wall perturbations (Fig. 2(b)) result in the dominant
amplification of 2D Tollmien–Schlichting (TS) waves. As
shown in Fig. 6(e,f), streaks are most robust to non-wall-
restricted base flow perturbations (Fig. 2(a)), which is in
agreement with the worst-case adjoint-based analysis of the
zero-pressure-gradient boundary layer [19]. The insensitivity
of streaks is because the main diagonal blocks of Au and Aw

are zero for kx = 0; see [24, Appendix A]. Obviously, streaks
would become susceptible to such sources of uncertainty if
variations were allowed to enter other components of the
base state (cf. Figs. 6(c,d) and 6(g,h)).

V. REYNOLDS NUMBER DEPENDENCE

For any finite R, the dynamics of streamwise constant
velocity fluctuations (kx = 0) around any parallel base flow
subject to streamwise perturbations γ̄u are MSS. Theorem 1
establishes an explicit Reynolds number scaling for the
energy spectrum E(kz) of streamwise constant fluctuations
in channel flow subject to streamwise base flow uncertainty.

Theorem 1: The variance amplification of streamwise
constant velocity fluctuations in channel flow with nominal
velocity Ū(y) subject to base flow perturbations is given by

E(kz) = f(kz)R + g(kz)R
2 + h(kz)R

3

where the f , g, and h functions are independent of R.

A proof is provided in [24, Appendix D]. Function f does not
depend on Ū(y) and is the same for all parallel channel flows.
On the other hand, functions g and h depend on the under-
lying parallel base flow due to their dependence on Ū ′(y).
In nominal conditions, the energy spectrum of streamwise
constant velocity fluctuations of a parallel channel flow can
be decomposed into two components that scale with R and
R3 [11, Corollary 4]. The effect of base flow uncertainty is
exclusively captured by the function g, which introduces a
R2 scaling to the energy spectrum of velocity fluctuations.

Figure 7 illustrates the kz dependence of functions f , g
and h for streamwise constant laminar channel flow subject
to both white-in-time exogenous excitation and white-in-time
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(a) (b)
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kz kz

(c)

g

kz

Fig. 7. The kz-dependence of functions f , g, and h in Theorem 1 for
Couette flow with R = 500 (—) and Poiseuille flow with R = 2000 (—)
subject to base flow perturbations of shape f(y) = Ū(y)/max(|Ū(y)|)
and variances σ2

u = 1.13× 105 and σ2
u = 3223, respectively.

base flow perturbations with f(y) = Ū(y)/max(|Ū(y)|).
The function h, which corresponds to the dominant Reynolds
number scaling (O(R3)) at high Reynolds numbers, peaks at
around the same spanwise wavenumber (kz = 1.59, 2.09 in
Couette and Poiseuille flows, respectively) as the nominal
energy spectra peak (cf. Figs. 6(a) and 6(b)). Figure 7(c)
shows the kz dependence of the function g, which scales as
R2, in the presence of streamwise base flow perturbations
γ̄u with α = 1. The spanwise wavenumbers at which the
function g peaks for these two flows (kz = 1.91, 3.02, in
Couette and Poiseuille flows, respectively) is in agreement
with the energy spectra in Figs. 6(c) and 6(d) for kx ≈ 0.

VI. CONCLUDING REMARKS

In this study, we provide an input output analysis to study
the stability and frequency response of velocity fluctuations
in channel flow subject to stochastic perturbations in the
base profile. We provide verifiable conditions for the MSS of
the linearized dynamics around the uncertain base flow and
obtain the second-order statistics of flow by solving a set of
generalized Lyapunov equations. As case studies, we consi-
der the plane Couette and Poiseuille flows subject to white-
in-time base flow variations entering at different wall-normal
regions. We show that the Reynolds number dependence of
critical destabilizing uncertainty variances uncovered by our
method are in agreement with previously reported scaling
laws for the magnitude of deterministic base flow variations.
Furthermore, for small-amplitude base flow perturbations, we
adopt a perturbation analysis to compute the energy spectrum
of velocity fluctuations using a computationally efficient
method that bypasses the need to solve generalized Lyapunov
equations. Our results demonstrate the robust amplification of
streamwise elongated flow structures as well as the dominant
amplification of oblique modes and TS waves in the presence
of base flow perturbations of different wall-normal shape
and variance levels. Finally, we study the Reynolds number

dependence of the energy spectrum (square of H2 norm) of
streamwise constant fluctuations and uncover an additional
scaling term relative to the nominal case that scales as R2.
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