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Global exponential convergence of gradient methods over
the nonconvex landscape of the linear quadratic regulator

Hesameddin Mohammadi, Armin Zare, Mahdi Soltanolkotabi, and Mihailo R. Jovanovié

Abstract—In large-scale and model-free settings, first-order
algorithms are often used in an attempt to find the optimal
control action without identifying the underlying dynamics.
The convergence properties of these algorithms remain poorly
understood because of nonconvexity. In this paper, we revisit the
continuous-time linear quadratic regulator problem and take
a step towards demystifying the efficiency of gradient-based
strategies. Despite the lack of convexity, we establish a linear
rate of convergence to the globally optimal solution for the
gradient descent algorithm. The key component of our analysis
is that we relate the gradient-flow dynamics associated with the
nonconvex formulation to that of a convex reparameterization.
This allows us to provide convergence guarantees for the
nonconvex approach from its convex counterpart.

Index Terms— Linear quadratic regulator, gradient descent,
gradient-flow dynamics, model-free control, nonconvex opti-
mization, Polyak-Lojasiewicz inequality.

I. INTRODUCTION

The design of feedback controllers that provide desired
performance of engineering systems has been an active area
since the 1940’s. There have been many developments aimed
at broadening the range of applications, improving the speed
and scalability of algorithms, and addressing important issues
of uncertainty in modeling and data acquisition. In spite of
these successes, a significant body of literature focuses on
known dynamics and asymptotic analysis. In practice, the
plant dynamics are often unknown and only a limited number
of input-output measurements may be available. Such chal-
lenges have led to the adaptation of Reinforcement Learning
(RL) approaches which can be broadly divided into model-
based [1], [2] and model-free [3], [4]. While model-based
RL relies on an approximation of the underlying dynamics,
its model-free counterpart prescribes control action based on
estimated values of a cost function without knowledge of
the plant. In spite of the impressive empirical success of
modern RL in a variety of domains, fundamental questions
surrounding algorithmic convergence and sample complexity
remain unanswered even for classical control problems,
including the Linear Quadratic Regulator (LQR). This is
mainly because of nonconvex nature of these algorithms.

The LQR problem is the cornerstone of control theory.
The globally optimal solution can be obtained by solving
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the Riccati equation and efficient numerical schemes with
provable convergence guarantees have been developed [5].
However, computing the optimal solution becomes challeng-
ing for large-scale problems, when prior knowledge is not
available, or in the presence of structural constraints on the
controller. This motivates the use of direct search methods for
controller synthesis. Unfortunately, the nonconvex nature of
this formulation complicates the analysis of first- and second-
order optimization algorithms. To make matters worse, struc-
tural constraints on the feedback gain matrix may result in a
disjoint search landscape limiting the utility of conventional
descent-based methods [6].

In this paper we take a step towards providing model-
free gradient-based strategies for solving the continuous-time
LQR problem by directly searching over the parameter space
of controllers. Despite the nonconvex nature of LQR formu-
lation, we establish exponential convergence of the gradient-
flow dynamics and linear convergence of the gradient descent
method. A salient feature of our analysis is that we connect
the gradient-flow dynamics of this nonconvex formulation
to that of a standard convex reparametrization of the LQR
problem [7], [8]. This connection allows us to provide a
simple convergence analysis for the nonconvex setting by
exploiting properties of its convex reparametrization.

For policy gradient methods applied to the discrete-time
LQR problem, global convergence guarantees were recently
provided for systems with known and unknown dynamics
in [9]. While this reference motivates our work, we study
the continuous-time LQR problem when the plant dynamics
are known. In a companion paper (that is currently under
preparation), we show how our results enable stronger guar-
antees in the model-free setting relative to [9].

The paper is structured as follows. In Section II, we revisit
the LQR problem and present continuous- and discrete-time
variants of the gradient descent algorithm. In Section III, we
highlight the main result of the paper. In Section IV, we
build on the convex characterization of the Ho optimal con-
trol problem and establish global convergence for gradient-
flow dynamics and its discretized variant with small-enough
stepsize. In Section V, we extend our analysis over the non-
convex landscape. In Section VI, we provide a computational
experiment to illustrate our theoretical developments. Finally,
we provide concluding thoughts in Section VII.

Notation: We use || - ||2 to denote the maximum sin-
gular value of linear operators and matrices, |M|p =
trace (MT M) to denote the Frobenius norm, and (X,Y) :=
trace (XTY) to denote the standard matricial inner product.
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The smallest eigenvalues of the symmetric matrix M is
Amin(M) and we use E to denote the expected value.

II. PROBLEM FORMULATION AND GRADIENT METHODS

Consider the linear time-invariant system
z(0) = zo (1)

where x(t) € R™ is the state, u(t) € R is the control input,
and A, B are constant matrices of appropriate dimensions.
The LQR problem associated with system (1) is given by

i = Az + Bu,

minimize E,,~p /00 (T () Qx(t) +uT (t)Ru(t))dt (2)
0

T, u

where () and R are positive definite matrices and z is a ran-
dom initial condition with distribution D. For a controllable
pair (A, B), the solution to the LQR problem is given by

u=-K*z = —R'B"Px

where P is the unique positive definite solution to the
algebraic Riccati equation (ARE)

ATP + PA+ Q- PBR'BTP = 0.

However, conventional approaches for solving ARE are not
applicable in the model-free setting. Furthermore, imposing
structural constraints (e.g., sparsity) on the feedback gain ma-
trix comes with additional challenges that require developing
customized optimization algorithms [10]-[12].

An alternative approach to solving ARE is to search for
the optimal solution over the set of stabilizing feedback gains

Sk = {KeR™"| A — BK is Hurwitz} 3)

which is known to be nonconvex [6]. Specifically, we can
minimize the LQR cost with respect to the gain matrix K as
mini}gnize f(K) 4)
where
) = trace ((Q + KTRK)X), K €Sk
o 00, otherwise.

Here, the matrix X is given by

X = /Ooe(A*BK)th(A*BK)Ttdt (5a)
0

and it can be obtained by solving the Lyapunov equation
(A-BK)X + X(A-BEK)T+ Q=0 (5b)

where ) := E, . pzoxl is the covariance of the initial

condition, which we assume to be positive definite. In (4),

K is the optimization variable, and (A4, B, @, R, ) are the

known problem parameters. We note that K € Sk if and

only if the solution X to Eq. (5b) is positive definite [13].
The gradient of the function f(K) is given by [14]

Vf(K) = 2(RK - B"P)X (6)
where P is the unique positive definite solution to

(A - BK)'P + P(A - BK) = —-Q —KTRK. (7)

In this paper, we study the convergence properties of the
gradient-flow dynamics associated with problem (4)

K = —Vf(K), K(0) € Sk. (GF)

We also examine the convergence of a discretized version
of (GF), namely the gradient descent method

KM = KF — aVf(KY), K° e Sk (GD)

where a > 0 is the stepsize.

III. MAIN RESULTS

Our first result shows that (GF) converges exponentially
to the LQR solution K* for any K (0) € Sk despite the
nonconvex optimization landscape.

Theorem 1: For any initial stabilizing feedback gain
K(0) € Sk, the solution K(t) to (GF) satisfies

FE() = F(K") < (F(K(0)) — f(E*))e !

where the convergence rate p depends on f(K(0)) and the
parameters of optimization problem (4).

The proof of Theorem 1 along with explicit expressions for
convergence rate are provided in Section V-A. Moreover,
we show that for a sufficiently small stepsize « the discrete
analog (GD) also converges over Sk with a linear rate.

Theorem 2: For any initial stabilizing feedback gain
KV ¢ Sk, the iterates of gradient descent (GD) satisfy

FIK®) = F(E") < A" (F(K°) = F(K™))

where the convergence rate  and the stepsize a depend on
f(K?) and the parameters of optimization problem (4).

We prove Theorem 2 and provide explicit expressions for
~ and « in Section V-B.

IV. CONVEX REPARAMETERIZATION

Because of the nonconvexity of problem (4), it is unclear
if gradient-based methods can be used to compute the LQR
solution. Indeed, gradient descent may not even converge
to local optima for nonconvex problems. Herein, we use
a standard change of variables to reparameterize (4) into a
convex problem, for which we can provide exponential/linear
convergence guarantees for gradient flow/descent. In the next
section, we connect the gradient flow on this convex repa-
rameterization to its nonconvex counterpart; this allows us to
prove global convergence for gradient flow/descent on (4).

A. Change of variables

The stability constraint on the closed-loop dynamics (X >
0) in problem (4) allows for a standard change of variables
Y := KX to reformulate the LQR synthesis as a convex
optimization problem [7], [8]. In particular, for any K € Sk
and the corresponding X given by (5a), we have

f(K) = h(X,Y)

where h(X,Y) = trace (Q X + YTRY X 1) is a jointly
convex function of (X,Y) for X > 0. In the new set of
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variables, the Lyapunov equation (5b) takes the affine form
A(X) = BY)+ Q = 0 (8)
where the linear maps A and B are given by
AX) = AX + XAT B(Y) = BY + Y'BT.

For an invertible map A, we can express the matrix X as an
affine function of Y

X(Y) = AYBY) - Q)

and bring the LQR problem into the convex form

min%;nize h(Y).
Here,
h(X(Y),Y), Yes§
o { (X(M).¥), ¥ esy
00, otherwise

where Sy is the set of matrices Y that correspond to
stabilizing feedback gains K = Y X!,
Sy = {Y e R™" | A~YB(Y) — Q) = 0}.

We note that similar to Sk, the positive definite condition in
Sy is equivalent to A — BY X ~!(Y) being Hurwitz. When
the map A is not invertible, the change of variables A=
A-BK° K := K—KY and Y := KX can be alternatively
used without loss of generality; details are omitted for brevity
and will be reported elsewhere. Our convergence analysis
for gradient descent relies on lower and upper bounds on
the second-order approximation to the function h(Y'). We
next quantify these bounds by showing that h(Y") is strongly
convex and smooth over its sub-level sets.

B. Strong convexity and smoothness of h(Y')
The gradient of A(Y") is given by [12]
Vh(Y) = 2RYX ! — 2BTW 9)
where W is the solution to the Lyapunov equation
ATW + WA = —Q + X~ 'YTRYX"'.  (10)

While the gradient VA(Y") is not Lipschitz continuous over
the set Sy, we show Lipschitz continuity over sublevel sets

Sy(a) == A{Y € Sy | MY) < a}

of the function A(Y"). We also show that over any sublevel
set Sy (a) the function h(Y') is strongly convex. The next
lemma is borrowed from [12, Lemma 3] and it provides an
expression for the second-order approximation of h(Y").

Lemma 1: The Hessian of the function h(Y) satisfies
(V,V2h(v57)) = 2||RE(Y — KX)X 3|}
where X is the unique solution to

AX) = B(Y). (11)
The following proposition provides expressions for Lips-
chitz continuity parameter L of Vh(Y") and strong convexity

module p of A(Y) over sublevel sets Sy (a) in terms of a
and parameters of the LQR problem. These are obtained
by finding upper and lower bounds on the second-order
approximation of A(Y") from Lemma 1.

Proposition 1: Over any non-empty sublevel set Sy (a),
the gradient VA(Y") is Lipschitz continuous with parameter

2
2a||Rll al[A7(B)l2
L = 1+ 12)
v Vy/ )\min(R) (
and the function h(Y") is u-strongly convex with
2 )\min R Amin
a(l + a?n)
where the constants
n = 5] (14a)
Amin(Q) Amin(Q) v )\min(R)
2
AN (¢) < lAl:_,  IBl: > (14b)
4 \/Amin(Q) \/>\min(R>

only depend on the problem parameters.
Proof: See Appendix A. [ ]
C. Exponential stability

The above results can be utilized to establish exponential
stability of the gradient-flow dynamics

Y = —VA(Y), Y(0) € Sy (15)
and the gradient descent method
Y = Y — aVA(YF), YO e Sy. (16)

Proposition 2: The gradient flow dynamics (15) are ex-
ponentially stable, i.e.,

IY(t) = Y[ < (L/w[Y(0) — Y*|[Fe?n!
for Y(0) € Sy, where p and L are strong convexity and
smoothness parameters over the sublevel set Sy (hA(Y(0))).

Proof: The time-derivative of the Lyapunov function
candidate V(Y) := h(Y) — h(Y™) satisfies

—||[VR(Y)|]?

e,
h(Y) — h(Y™*)

where Y* is the global minimizer. Inequality (17) fol-
lows from the strong convexity of A(Y) and it yields [15,
Lemma 3.4]

v
v = a7)

V(Y (1) < V(Y(0)e ?r (18)

Thus, for any Y (0) € Sy, the objective function h(Y (¢))
converges exponentially to h(Y™*). Moreover, since h(Y) is
p-strongly convex and L-smooth, V(Y') can be upper and
lower bounded by quadratic functions. Based on this, the
exponential stability of (15) follows from standard Lyapunov
theory [15, Theorem 4.10]. |

Similarly, we can develop convergence guarantees for the
gradient descent method (16) with sufficiently small stepsize.
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Fig. 1. Flow trajectories of (GF) (solid black) and Kj,q from Eq. (19)
(dashed blue) over sublevel sets Sk (a) of the function f(K).

In particular, since the function h(Y") is L-smooth over the
sublevel set Sy (h(Y?)), for any stepsize « € [0,1/L], the
iterates Y'* remain within Sy (h(Y?)). Based on this and the
u-strong convexity of h(Y'), we conclude that the iterates
Y* converge to the optimal solution Y* at a linear rate v =
1 — a p. We next use this result to prove convergence for
gradient flow/descent on the nonconvex formulation.

V. ANALYSIS OF THE NONCONVEX FORMULATION

The trajectories Y'(¢) of (15) defined over the set Sy
induce the flow

Kina(t) == Y(t) (XY (1))} (19)

over the set of stabilizing feedback gains Sk . The result es-
tablished in Proposition 2 implies that the objective function
f(Kina(t)) converges with the exponential rate

f(Eina(t) = f(K*) _ R(Y(#) = M(Y™)
f(Kina(0)) — f(K*)  w(Y(0)) — R(Y*) —
This inequality follows from (18) where p denotes the
strong-convexity module of the function A(Y) over the
sublevel set Sy (h(Y(0))); see Proposition 1.

Figure 1 illustrates a trajectory of the induced flow Kj,q(t)
and a trajectory K (t) of gradient-flow dynamics (GF) that
start from the same initial condition. Although the stable
flow Kinq(t) traverses a different curve on Sk than K(t),
we establish a relation between them which allows us to
show that K(¢t) also converges to the LQR solution K™.

—2pt

A. Gradient flow dynamics: proof of Theorem 1

We start our analysis by relating the convex and nonconvex
formulations of the LQR objective function. Specifically, in
Lemma 2, we establish a relation between the gradients
Vf(K) and Vh(Y) over the sublevel sets Sk (a).

Lemma 2: For any stabilizing feedback gain K € Sk (a),
X given by (5a), and Y := K X, we have

IVFE)lF = cl|VA(Y)|r (20)

where the constant c is given by

. V\/V Amin(R) 1)
202 A2 [|Bll2 + a /v Amin(R)
and the scalar v (Eq. (14b)), depends on the problem data.

Proof: See Appendix C. [ ]

We next consider the error in the objective value as a
Lyapunov function candidate V(K) := f(K) — f(K*). For
any initial condition K (0) € Sk (a), the time-derivative of
V(K) along the solutions of (GF) satisfies

Vo IV VAW
A —2puc.
v TR - FE T ORY) = Ay ©
(22)
Here, the first inequality follows from f(K) = h(Y)

combined with (20) and the second follows from (17) (which
in turn is a consequence of the strong convexity of h(Y")).
Following [15, Lemma 3.4], inequality (22) guarantees that
system (GF) converges exponentially in the objective value
at rate p = 2 puc®. This completes the proof of Theorem 1.

Remark 1 (Geometric interpretation): For any trajectory
Y (t) € Sy of (15), the LQR objective function satisfies

h(Y (t)) = f(Kina(?))
where Kinq(t) = Y (¢)(X(Y(t)))~! denotes the trajectory

induced by Y'(¢) over the set Sk. Differentiating both sides
of this equality with respect to time ¢ yields

VA )I? = (VF (Kina): Kina) -
Thus, Eq. (20) in Lemma 2 can be equivalently restated as
IV F () 3/ (=9 (Kina): Kina ) >

In words, the ratio between |V f(Kinq)||r and the norm
of the projection of vector field K ind (associated with flow
Kina(t)) on vector field —V f(Kina) (associated with (GF))
is bounded from below. Due to this feature, we can deduce
exponential convergence for the gradient-flow dynamics (GF)
from the convergence properties of its convex counterpart.

(23)

Remark 2 (Gradient domination): Expression (22) im-
plies that the objective function f(K) over any given sub-
level set Sk (a) satisfies

IVFE)E > 2pe® (FK) = FOK7))

where the scalars ;1 and ¢ are functions of a. This condition
is known as the Polyak-Lojasiewicz (PL) inequality [16] and
it has been recently used to show convergence for gradient-
based methods in the case of discrete-time LQR [9].

B. Gradient descent dynamics: proof of Theorem 2

The main challenge in analyzing gradient descent (GD)
compared to its continuous counterpart is to find a suitable
stepsize « that guarantees convergence. Lemma 3 provides a
Lipschitz parameter for the gradient V f(K), which is useful
in finding such a stepsize. The proof of Lemma 3 relies on
the bounds provided in Appendix B and follows a similar
line of argument as in [12, Appendix D], but is omitted due
to page limitation.

Lemma 3: Over any non-empty sublevel set Sk (a), the
gradient V f(K) is Lipschitz continuous with the parameter
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Lf = Lfl + Lfg where Lfl = (IHRHQ/)\min(Q),

I1B]3 ||B||2R||2>

B 4a®
A?nin(Q))\min (Q) )‘min(Q)
and the constant v (Eq. (14b)) depends on problem data.

Lo :
72 VAmirl(R)

For any line segment in Sk (a) with endpoints K and
K + aK, the Ly-smoothness of the function f(K') implies

~ o 2 %
FUK +aR) — f(K) < o (VIK), K + R
24

Let K € R™*™ be a decent direction of the function f(K)
for some K € Sk (a), ie., f(K+aK)—f(K) < 0 for small
enough « > 0. If the right-hand side of (24) is negative for
all @ € (0, b] (for some scalar b), then inequality (24) follows
from the continuity of f(K). The negative gradient update
in (GD) is clearly a descent direction of the function f(K).
Now, let Ly be the Lipschitz parameter of V f(K) over the
sublevel set Si (f(K?)). It is easy to verify that the right-
hand side of (24) with K := K* and K := —Vf(K*)
is negative for all @ € (0,1/Ly]. Therefore, from (24) it
follows that the iterates of gradient descent (GD) satisfy

20— La?
— (K% < _%

This inequality in conjunctions with the PL condition
IVFENE > 2pe® (F(KF) — F(K7))

established in (22) guarantees convergence for gradient de-
scent (GD) with the linear rate v < 1 — apuc? for all
a € (0,1/Ly]. This concludes the proof of Theorem 2.

FERY)

A

IV £ (K5)|1 %

VI. AN EXAMPLE

We use a mass-spring-damper system with N masses to
compare the performance of gradient descent on K given
by (GD) and gradient descent on Y given by (16). We set all
spring and damping constants as well as masses to unity. In
state-space representation (1), the state vector x = [p? vT]|T
contains the position and velocity of masses and the dynamic
and input matrices are given by

RN

where O and [ are zero and identity matrices of suitable
size, and T is a Toeplitz matrix with 2 on the main diagonal
and —1 on the first super and sub-diagonals.

We solve the LQR problem with Q = I 4 100 elef, R=
I+100 e4eZ, and QQ = I for N = 10 and 50 masses (i.e., n =
2N states) where e; is the ith unit vector in the standard bases
of R™. The algorithms were initialized with Y° = K% = 0.
Figure 2 illustrates the convergence curves of both algorithms
with a stepsize selected using a backtracking procedure that
guarantees stability of the feedback loop. We observe that
the asymptotic rates of convergence for gradient descent on
Sk and Sy demonstrate similar trends.

@ 100 (b) 10°
Sl
S
=[= 10° 10°
I
R
X 3 10710 10710
| 0 0.5 1 15 2 0 0.5 1 15 2
x10* x10*
iteration iteration

Fig. 2. Convergence curves for gradient descent (blue) over the set Sk, and
gradient descent (red) over the set Sy . (a) and (b) correspond to N = 10
and N = 50 masses, respectively.

VII. CONCLUDING REMARKS

We prove exponential/linear convergence of gradient
flow/descent algorithms for solving the continuous-time LQR
problem based on a nonconvex formulation that directly
searches for the controller. A salient feature of our analysis is
that we relate the gradient-flow dynamics associated with this
nonconvex formulation to that of a convex reparameteriza-
tion. This allows us to deduce convergence of the nonconvex
approach from its convex reparameterization. While in this
paper we focus on known dynamics, in a companion paper
we extend our results to the model-free setting with unknown
A and B. Our efforts serve as a first step towards providing a
general sample-based framework for the learning and control
of large-scale dynamical systems. Some future directions in-
clude: (i) developing data-driven synthesis with convergence
guarantees that involves finite-time stochastic approximation
of the objective and its gradient; and (ii) providing theoretical
guarantees for the convergence of gradient-based methods for
structured control synthesis.

APPENDIX
A. Proof of Proposition 1

Here we only show that the function A(Y") is u-strongly
convex. See [12, Appendix D] for a proof of smoothness.
The proof relies on the bounds provided in Appendix B and
Lemma 4 that provides an upper bound on the norm of the
inverse Lyapunov operator for stable systems. The proof of
Lemma 4 is omitted due to page limitations.

Lemma 4: For any Hurwitz matrix F' € R™*", the linear
map F :S" — S”

FW) = / Pt W eF t dt (25)
0
is well defined and for any 2 > 0,
|Fll2 < trace (F(I)) < trace (F(2))/Amin(2). (26)

We show that for any ¥ € R”*" and Y € Sy(a), the
Hessian of h(Y') satisfies Y,Vzh(Y;?)> > u|Y%
where p is given by (13). Using Lemma 1, we can write

v > 1 1 I\
<Y,V2h(Y;Y)> = 92 HRQ HX 2 H%‘ > /\rnm(R)

2
> e
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where H =Y — K X. Next, we show that
IH e/ 1 X7 > Amin()/trace(X) || B2

(28)

To do so, we substitute H + K X for Y in (11), which
yields

I' = BH + H'B”, (29)

where I' := (A — BK)X + X(A — BK)T. Equation (29)
allows us to lower bound the norm of H as

1H[7 = [T /11Bll2: (30)

From the stability of the closed loop system, we have

X = _ /OO o(A=BE)t Fe(AfBK)Tt dt.
0
Now, we use Lemma 4 with I’ := A — BK to lower bound
the norm of I' as follows
IX[e - Amin(@1X]#

I > > =
Pl = IFll2 — trace(F(£2))

Amin(2) [| X |7
trace(X)
(3D

where the linear map F is defined in (25). Inequality (28)
follows from combining (30) and (31).

An upper bound on ||Y || can thus be established as

IYllr = |H+ KX|lr < |H|lr + |K|lF|IX|lF
atrace(X) ||B
Amin(Q) V)\min(R)
< |H[r (1 + a®n) (32)

where 7 is given by (l4a). Here, the second inequality
follows from (34c) and (28) and the last inequality follows
from (34a). Finally, inequalities (27) and (32) yield

(V.V21000)) o)

FB X2 Y%
2 Amin(—R) 2 )\min(R)Amin(Q)
= 33
2 X tm? = a(t +anz  _F O

where the last inequality follows from (34a). This completes
the proof.

B. Bounds on optimization variables

The following bounds on the variables X and K hold [12],
[14]. Over a sublevel set Sk (a), we have

trace(X) < ﬁ@) (34a)
= < Anin(X) (34b)

a
K < 34
[K[F < () (340)

where the constant v is given by (14b).

C. Proof of Lemma 2

The gradients can be written as Vf(K) = EX and
Vh(Y) = E+2(BT(P-W)), where E := 2(R K — BT P),
and the matrices P and W are given by Eqgs. (7) and (10),
respectively. Subtracting (10) from (7) yields

1

AT(P-W)+(P-W)A = 5 (K"E + E"K).

This equation gives us
all A~ |2 | Ell
v /\min(R)

where the second inequality follows from (34c) in Ap-
pendix B. We thus have

VA )e /1Bl < 1+ 2all A2 [1Bll2/ /¥ Amin(R)-
(35)

On the other hand, using the lower bound (34b) on
Amin (X), it follows that

1P =Wl < A 2 K] r [E]r <

v
IVFE)r = IEX]F = — IE]lp-
Combining this inequality and (35) completes the proof.
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