
The effect of sponge layers on global stability analysis

of Blasius boundary layer flow

Wei Ran ∗

University of Southern California, Los Angeles, CA, 90089, USA

Armin Zare†

University of Southern California, Los Angeles, CA 90089, USA

Joseph W. Nichols ‡

University of Minnesota, Minneapolis, MN 55455, USA.

Mihailo R. Jovanović §
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In this paper, we conduct a parametric study on the influence of sponge layer strength
on temporal eigenvalue problems arising from the one-dimensional wave equation and the
linearized Navier-Stokes equations. Sponge layers have shown to stabilize eigenmodes and
introduce additional spatial growth to eigenfunctions. As the strength of sponge layers
increases, temporal eigenvalues are displaced and the spatial growth rates of their associated
eigenfunctions are modified. In both wave and linearized Navier-Stokes equations, the
linear relationship between temporal damping and spatial growth can be specified as an
approximate dispersion relation. It can also be shown that an over strengthened sponge
layer can reflect spatially propagating waves. This reflection can lead to a destabilization
of the otherwise stable eigenspectrum with alteration of eigenfunction wavelengths. We
provide an empirical guideline for determining the desirable sponge layer strength and
demonstrate the efficacy of our method in the global stability analysis of the linearized
Navier-Stokes equations.

I. Introduction

The stability analysis of boundary layer flows is crucial to the prediction of laminar-turbulent transition.
After the transition of boundary layer flow over an airfoil, skin-friction drag increases significantly. Since
extra thrust is required to overcome the increase in drag, transition is considered as a major contributor to
airplane fuel expenditure. High-fidelity simulations are able to predict different transition scenarios for a
zero-pressure gradient flat-plate boundary layer [1]. However, the computational expense of such simulations
prevents their use in fast-turnaround design cycles, thus, predictive reduced-order models are essential in
the design process.

Linear stability analysis based on the assumption of locally parallel flow has explained many features
of boundary layer transition and provides one such model. The assumption of a locally parallel base flow
is rather severe, however, and quickly becomes invalid in the presence of complex geometry [2]. To treat
more realistic base flows that vary in the streamwise direction, stability solutions based on the parabolized
stability equations have also seen some success [3, 4]. Because such formulations rely on a slowly varying
base flow in the streamwise direction, recent efforts have examined boundary layer stability in the context
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of global mode analysis [5–7]. Since global mode analysis does not rely on the slowly varying nature of the
base flow, it can be used to analyze the stability of flows over complex geometries in a natural way.

Due to the convective nonnormality of the flow dynamics [8], however, previous studies have found
global modes to be sensitive to the size of the computational domain as well as the streamwise boundary
conditions. As an example, figure 1b shows two eigenspectra resulting from global stability analysis of a flat-
plate boundary layer with different streamwise boundary conditions. This illustrates how different artificial
boundary conditions can result in drastically different eigenspectra, and can even change the stability of the
system. Typically, the influence of boundary conditions can be mitigated by applying sponge layers in the
streamwise direction of the flow [9,10].

(a)
Im

(ω
)

Re(ω)

(b)

Figure 1: (a) Truncated computational region (dashed box) for a flat-plate boundary layer. The red dash-
dotted line indicates where different boundary conditions are applied. (b) The temporal eigenspectrum
of a flat-plate boundary layer flow subject to Robin-Robin (×) and Dirichlet-Extrapolation (◦) boundary
conditions. The Dirichlet-Extrapolation boundary conditions result in a stable spectrum.

In this paper, we investigate the sensitivity of global modes of the boundary layer flow in the presence of
wave-absorbing sponge layers in the streamwise direction. The paper is organized as follows. In section II,
we consider global stability analysis of the wave equations to gain insight into the effect of sponge layers. In
section III, we focus on the global stability analysis of the Blasius boundary layer flow with sponge layers
to study the effect of sponge layers on temporal eigenvalues and eigenfunctions. In section IV, we verify our
observations by solving the infinite-time horizon problem for steady-state velocity covariances in the Blasius
boundary layer flow. Finally, we provide concluding thoughts in section V.

II. Wave equation

In this section, we study the eigenvalue problem for the one dimensional linear wave equations. Since
the essence of the complex dynamics of boundary layer flows can be captured by the spatial growth (decay)
of propagating waves, we use this simple model to gain insight into the influence of sponge layers on the
dynamics.

The two-way wave equation can be considered as a coupled system of two first-order equations

∂u

∂t
= − ∂v

∂x
− σ(x)u

∂v

∂t
= − ∂u

∂x
− σ(x) v,

(1)

where u and v are the wave functions defined in the domain x ∈ [−1, 1]. Homogeneous Dirichlet boundary
conditions are imposed for u at both ends of the domain. Without sponge layers, waves striking either
end of the domain are perfectly reflected back into the domain. To model open boundaries, however, we
include sponge layers represented by the function σ(x), which is non-zero only close to the boundaries. When
σ(x) > 0, waves are gradually driven back to zero.
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To form the temporal eigenvalue problem, the wave functions are expressed in wave form as u(x, t) =
û(x) exp(−iωt) and v(x, t) = v̂(x) exp(−iωt). This yields the eigenvalue problem

− i ω û = − ∂v̂

∂x
− σ(x) û

− i ω v̂ = − ∂û

∂x
− σ(x) v̂.

When the sponge layer is not applied (σ(x) = 0), eigenvalues and corresponding eigenfunctions can be
analytically derived as ω = nπ/2 (n ∈ Z), û = sin(ωx) and v̂ = −i cos(ωx), respectively.

Parabolic shaped sponge layers are placed at both ends of the computational domain. The thickness of
each sponge layer is Ls = 0.1225 (σ(x) = 0, x ∈ [−0.8775, 0.8775]). The strength of the sponge layer is
defined as Ss := σ(±1). Chebyshev polynomials are adopted to discretize the computational domain with
200 collocation points. We study 20000 cases of sponge layer strengths growing linearly from 1 to 106.

Im
(ω

)

Re(ω)

(a)

Im
(ω

)

Ss

(b)

Figure 2: Displacement of eigenvalues as the sponge layer strength increases; (a) the displacement trajectories
of eigenvalues start from ω0 = 9π/2 (Ss = 0, red square) and end at ω = 5.2923− 0.1114i (Ss = 106, black
dot); (b) Imaginary parts of eigenvalues from three different trajectories starting at ω0 = π/2 (◦), 10π (×),
and 50π (4) as a function of sponge layer strength.

Figure 2a shows the trajectories of eigenvalues. Blue arrows show the approximate path of eigenvalues
starting from ω0 = 9π/2 due to the increase in the sponge layer strength. Other eigenvalues in the spectrum
follow similar trajectories. Starting from the real axis, the eigenvalues move down, but eventually turn
around after the sponge strength exceeds a certain value. In the limit of Ss →∞, the eigenvalues move back
to a shifted position on the real axis; see black dot at the end of the trajectory in figure 2a. Figure 2b shows
how the imaginary part of various eigenvalues can change as a function of sponge layer strength. After an
initial decrease in the imaginary part of these eigenvalues we observe a turn-around behavior followed by an
increase happening beyond a critical sponge layer strength of Ss ≈ 300.

The increase in Im(ω) is caused by a reflection of waves from the sponge layer. The damping rate of

waves passing though the sponge layer is proportional to exp(−2
∫ Ls

0
σ(x) dx) [10]. This implies that stronger

sponge layers better absorb waves. However, it is also observed that significantly strong sponge layer can
cause wave reflection [10]. This is a similar phenomenon to the echo of sound (waves) when they hit a
solid wall, or an infinitely strong sponge layer. As shown in figure 3, in the extreme case (Ss = 106), the
eigenfunction retains its sinusoidal shape, but with a different wavelength. Figure 3b shows that infinitely
strong sponge layers form new boundaries with homogeneous Dirichlet boundary conditions, ultimately
shrinking the computational domain. We thus infer that strong sponge layers can shrink the domain and
detune eigenfunctions.
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v̂

x

(a)

v̂

x

(b)

Figure 3: Real (dashed) and imaginary (solid) parts of the eigenfunction v̂ corresponding to the trajectory
originating at ω0 = 9π/2 with (a) no sponge layer (Ss = 0), and with (b) a sponge layer of strength Ss = 106.

Figure 4 shows the amplitude of two eigenfunctions from the trajectory that starts at ω0 = 10π. Even
though the wave equation provides no instability mechanism, figures 4a and 4b show that the eigenfunctions
experience significant spatial growth. This growth is required for each crest to maintain constant amplitude
as it propagates away from the center of the domain, even though the entire mode is damped in time.
Figures 4c and 4d illustrate the exponential spatial growth in the amplitude of v̂. In the exponential growth
region, the amplitude of the wave perfectly collapses on lines denoting a |Im(ω)| growth-rate for upstream
and downstream traveling waves. To explain this, without loss of generality, we only consider the right
propagating waves. The solution to the wave equation can be formed as exp(ikx)× exp(−iωt) + c.c., where
k is the complex wavenumber and ω is the eigenvalue. The phase speed of traveling waves is 1 in the non-
sponged domain with no dispersion, i.e., ω/k = c = 1, and as a result k = ω. As a consequence the spatial
growth rate −Im(k) is the negative of the temporal damping rate Im(ω), i.e., −Im(k) = −Im(ω). Moreover,
the spatial wavenumber Re(k) is equal to temporal frequency Re(ω). As a result, the nontrivial shift in the
real part of the eigenvalues Re(ω) entails a shift in Re(k), which can be related to the reflecting property
of the sponge layer. While figure 4c shows a smooth decay of |v̂| within the sponge region, figure 4d shows
that a strong sponge layer can result in significant oscillations. We relate such oscillations to the reflection
of waves from sponge layers.

III. Global stability analysis of the Blasius boundary layer

The lack of streamwise homogeneity significantly complicates the dynamics of spatially evolving flows. In
this section, we consider the global stability analysis of temporal eigenvalues in the Blasius boundary layer
flow. The Reynolds number Re = U∞δ0/ν based on the free stream velocity U∞ = 1 and the boundary
layer thickness at the inlet δ0 = δ(0) is 400. The Navier-Stokes (NS) equations are linearized around the
Blasius velocity profile [U(x, y) V (x, y) ]T , which yields the governing equations for fluctuations in velocity
[u v ]T and pressure p. Assuming wavelike solutions, u(x, y, t) = û(x, y) exp(−iωt), we arrive at the temporal
eigenvalue problem

−iω û =

(
C − ∂U

∂x

)
û − ∂U

∂y
v̂ − ∂p̂

∂x
− σ(x) û

−iω v̂ =

(
C − ∂V

∂y

)
v̂ − ∂V

∂x
û − ∂p̂

∂y
− σ(x) v̂

0 =
∂û

∂x
+

∂v̂

∂y
,

(2)

where C = ∆/Re− U∂/∂x− V ∂/∂y and ∆ = ∂2/∂x2 + ∂2/∂y2.
We consider a computational domain of Lx = 900δ0 and Ly = 35δ0. We employ a pseudospectral
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v̂

x

(a)

v̂

x

(b)

|v̂
|

x

(c)

|v̂
|

x

(d)

Figure 4: Eigenfunctions v̂ from the trajectory starting at ω0 = 10π; left column is at ω = 31.4126−10.2352i
with Ss = 251 and right column is at ω = 32.3432 − 10.5801i with Ss = 871. (a, b) Envelopes (thin
black lines), real (red thick lines) and imaginary (thick blue dashed lines) parts of eigenfunctions. (c, d)
Amplitudes of eigenfunctions (thick black lines) and the estimated amplitudes of downstream (thin red
lines) and upstream (thin blue dashed lines) propagating eigenfunctions, which are respectively obtained as
|v̂(0.5)| exp(−ωi(x− 0.5)) and |v̂(−0.5)| exp(ωi(x+ 0.5)). Here, ωi is the imaginary part of ω.

scheme with Nx = 200 and Ny = 50 Chebyshev collocation points in the streamwise (x) and wall-normal (y)
directions, respectively [11]. Homogeneous Dirichlet boundary conditions for velocity fluctuations are applied
at the inflow (x = 0) as well as the wall (y = 0) and in the free-stream (y = 35δ0). Linear extrapolation is
employed as the boundary condition at the outflow (x = 900δ0) [12],

v̂(Nx, y) = a1 v̂(Nx − 1, y) + a2 v̂(Nx − 2, y)

û(Nx, y) = a1 û(Nx − 1, y) + a2 û(Nx − 2, y)

a1 =
x(Nx)− x(Nx − 2)

x(Nx − 1)− x(Nx − 2)
, a2 =

x(Nx − 1)− x(Nx)

x(Nx − 1)− x(Nx − 2)
.

We adopt the similar sponge layer shape as in section II; parabolas at both ends of x with a thickness of
Ls = 55, i.e., σ(x) = 0 for x ∈ [55, 845] (cf. Eq. (1)), and solve 50 temporal eigenvalue problems with
different sponge layer strengths growing exponentially from 10−2 to 100.8. We employ the shift and invert
technique for solving Eq. (2), which is a common strategy for solving large-scale generalized eigenvalue
problems [5, 12–14].
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Im
(ω

)

Re(ω)

(a)

|v̂
|

x

(b)

y

x

(c)

y

x

(d)

Figure 5: (a) Eigenspectra of TS modes are displaced as the sponge layer strength increases: The red crosses
(×) denote the spectrum obtained without a sponge layer (Ss = 0); Red squares represent the starting points
on the trajectories (Ss = 10−2); black dots are the final points on the trajectories (Ss = 100.8); the two black
boxes (�) represent the non-sponged and desirablely sponged cases selected for studying the properties of
eigenfunctions. (b) Amplitude of two wall-normal velocity component v̂ from the non-sponged case (Ss = 0,
thick red dashed line) with corresponding eigenvalue ω = 0.04058− 0.004325i and desirablely sponged case
(Ss = 0.235, thick black line) with corresponding eigenvalue ω = 0.03944 − 0.008787i. (c) The real part
of the streamwise velocity component û from the eigenfunction of the non-sponged problem; the amplitude
data in (b) is extracted from the black dashed line (y = 3δ0). (d) The real part of û from the eigenfunction
of the desirablely sponged case.

Figure 5a shows the temporal eigenspectra of Eq. (2) with different sponge layer strengths. The eigenfunc-
tions of these modes correspond to Tollmien-Schlichting (TS) waves. Similar to section II, the displacement
trajectories can be considered as starting at red squares and ending at black dots. Similar to figure 2a, a
turn-around phenomenon can also be observed, which is an indicator of significant reflection from the sponge
layer. As for the wave equation, an desirable sponge layer strength can be determined. We consider the
desirable sponge strength as the strength that corresponds to the turn-around point beyond which reflection
becomes significant. This value is Ss ≈ 0.235 for the problem considered in this section.

In figure 5a, two modes (on the same trajectory), which are marked with black squares, are selected for
further investigation: the upper eigenvalue ω = 0.04058 − 0.004325i corresponds to Ss = 0 and the lower
eigenvalue ω = 0.03944− 0.008787i corresponds to the desirablely-sponged case with Ss = 0.235. Figures 5c
and 5d show the real parts of the streamwise velocity component û of the eigenfunctions for the non-sponged
and desirablely sponged boundary conditions. Both show significant spatially evolving TS waves. The spatial
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growth of the TS wave for the desirablely sponged problem is more pronounced. This demonstrates the effect
of the sponge layer and is in harmony with the observations made for the wave equation.

To determine the spatial growth of the selected modes, we consider the amplitude of the wall-normal
velocity component v̂ at the wall-normal location y = 3δ0 marked by black dashed lines in figures 5c and 5d.
In figure 5b, the amplitude of the mode corresponding to the non-sponged problem is denoted by the thick
red dashed line. Its growth in the streamwise direction is almost exponential. The oscillations in the vicinity
of the inlet are a result of numerical error. The black solid line in figure 5b corresponds to the desirablely
sponged mode with Ss = 0.235. For this case, a branch of significant upstream propagating waves is observed
close to the inlet. Unlike the wave equation results, however, the spatial growth rates of downstream and
upstream propagating waves are different. This is because the phase speeds of downstream and upstream
propagating waves are different. On the other hand, the spatial growth rate of the downstream branch from
the desirablely sponged mode is significantly larger than that of the non-sponged mode. The weak upstream
propagating waves experience very slow growth, which is negligible. Thus, only the downstream propagating
branches are considered in the later analyses.

Im
(ω

)

Im(k)

(a)

|v̂
|

x

(b)

Figure 6: (a) Relationship between the imaginary part of eigenvalues ω (◦) and the imaginary part of the
wavenumber α for the downstream propagating wave when the sponge layer strength grows from 10−2 to
100.8. The red square denotes the beginning of the trajectory and the black dot denotes the end. The
non-sponged case is marked by the red cross (×). The red line is the fitted linear relationship. (b) Evolution
of amplitudes of non-sponged and desirablely sponged modes: non-sponged mode at t = 0 (thick red dashed
line); desirablely sponged mode at t = 0 (thick black line); non-sponged mode at t = 200 (thin red dashed
line); desirablely sponged mode at t = 200 (thin black line).

As we observed in the previous section, sponge layers can suppress the temporal growth of eigenfunctions
while amplifying their spatial growth. This hints at a relationship between temporal and spatial growth
rates. However, since the dispersion relation is more complicated here, the relationship is not as obvious
as in the wave equation. To identify this relationship, the eigenfunctions are approximated with the wave
packet form: the phase function is exp (i(αx− ωt)), where Im(ω) is the temporal damping rate and −Im(α)
is the spatial growth rate of eigenfunctions. This is a reasonable approximation because the temporal
frequency Re(ω) and spatial wavenumber Re(α) of eigenfunctions from the same displacement trajectory are
approximately equal, and the amplitude of eigenfunctions grow exponentially in the streamwise direction.
Using this approximation, we can extract Im(α) from the amplitude of each eigenfunction via linear fitting
and as the slope of the red line in figure 5b.

Figure 6a shows the relation between Im(ω) and Im(α) for all eigenvalues on a single trajectory. We
obtain an almost perfect linear mapping between the temporal damping rate and the spatial growth rate as

Im(ω) = 0.372 Im(α) + 0.000475, (3)

which holds even after the turn-around phenomenon. The relationship is likely to show the dispersion
relation since the slope 0.372 is close to the phase velocity of TS waves which is typically 0.3 ∼ 0.4. To
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verify this, the two eigenfunctions considered in figure 5b are adopted again. For visual convenience, we
decrease the amplitude of the eigenfunction corresponding to the non-sponged problem by a factor of 10.
The eigenfunctions are then evolved from t = 0 to t = 200. Figure 6b shows the amplitude of the wall-
normal component of the eigenfunctions at t = 0 and t = 200. As shown in this figure, the amplitude
of eigenfunctions for both non-sponged and desirablely sponged cases decreases. On the other hand, this
decrease in time can be viewed as the propagation of a wave packet in space. Since the phase speed of a
wave does not change in the domain with no sponge layers, we choose the point of crossing of red and black
lines as two points of interest with the first located at x = 579.7 (+) and the second at x = 654.2 (×). The
wall-normal amplitude of the mode is 3.27 × 10−5 at x = 579.7 and is 3.61 × 10−5 at x = 654.2. Based on
this, a phase speed can be computed for the two eigenfunctions as c = 0.3725. This value is equivalent to
the slope identified for the in Eq. (3) from figure 6a.

The offset in the linear relation (3) denotes a factor of 1.104 increase in the amplitude of the wave. From
the phase function exp (i(αx− ωt)), the convective amplitude growth can be computed as exp (−αi∆x+ ωi∆t),
where αi and ωi denote the imaginary parts of α and ω. From linear relation (3) and ∆x = c∆t we arrive
at an amplitude growth of exp (0.001279∆x). This results in a factor of 1.0997 amplitude growth after
∆x = 74.5 (the distance between two points of interest on figure 6b. This is in agreement with the actual
growth of 1.104. We can thus write the linear relationship between Im(ω) and Im(α) as:

Im(ω) = c Im(α) + c0,

where c is the phase speed and c0 is the convective spatial growth rate. For the wave equation, the phase
speed is 1 and the convective spatial growth rate is 0, which satisfy this relationship. In fact, if the spatial
eigenproblem of the Orr-Sommerfeld equation at x = 579.7 (Re = 626) is solved using the eigenvalue ω from
the global stability analysis in figure 6a, the approximate linear dispersion relation is obtained as

Im(ω) = 0.3707 Im(α) + 0.000458,

which is very close to the linear relationship we obtained above.

IV. Stochastically-forced linearized NS equations

The flat-plate boundary layer flow, e.g., the Blasius boundary layer flow, is globally stable, i.e., all
eigenvalues of the dynamic generator matrix are in the stable half-plane [15]. This allows us to study the
long-term response of velocity fluctuations to continuous input disturbances using the steady-state Lyapunov
equation corresponding to the linearized NS equations. However, the discretized operators in the linearized
NS equations are ill-conditioned and unstable non-physical modes often appear, which limits the utility of
the Lyapunov framework. Herein, we build on the insight gained in previous sections to design desirable
sponge layers that can stabilize such non-physical modes.

The NS equations are linearized around the Blasius boundary layer profile [U(x, y) V (x, y) 0 ]T . We
use a similar computational region (Lx, Ly) and free stream velocity (U∞) as in section III. The Reynolds
number is also definied in a similar manner. We bring the linearized equations into its evolution form [16]
with state ψ = [v, η]T . Here, v and η denote wall-normal velocity and vorticity, respectively. We leverage
spatial homogeneity in the spanwise direction and apply Fourier transform to the governing equations. The
state can thus be expressed as ψ = ψ̂(x, y, t) exp (iβz), where β is the spanwise wavenumber and ψ̂ = [v̂, η̂]T .
This brings the linearized NS equations into the following form:[

˙̂v
˙̂η

]
=

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

A

[
v̂

η̂

]
+

[
B11 0

0 B22

]
︸ ︷︷ ︸

B

[
dv

dη

]
(4)

 û

v̂

ŵ

 =

 C11 C12

1 0

C31 C32


︸ ︷︷ ︸

C

[
v̂

η̂

]
(5)

The definition of operators A, B and C is provided in the appendix. Here, [ ˙̂v, ˙̂η]T denotes the time derivative
of the state and d = [dv, dη]T represent the input forcing corresponding to the dynamics of v and η. We
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use a similar pseudospectral scheme as in section III to discretize the operators in the streamwise and wall-
normal directions using Nx = 101 and Ny = 50 collocation points in x and y, respectively. Configuration of
boundary conditions and sponge layers follow section III.

When the dynamic generator A is stable, the steady-state covariance of the state ψ

X = lim
t→∞

〈
ψ̂(t) ψ̂∗(t)

〉
,

can be obtained as the solution to the algebraic Lyapunov equation

AX + X A∗ = −B ΩB∗ (6)

where 〈·〉 is the expectation operator, ∗ denotes the adjoints of operators A and B, Ω is the covariance of
zero mean white-in-time stochastic forcing

〈d(t1)d∗(t2)〉 = Ω δ(t1 − t2).

For simplicity, we consider Ω = I. The operator B specifies the wall-normal region in which the forcing enters.
In this section, we restrict the forcing to a region in the vicinity of the wall (from y = 0 to y = 5δ0) [17]; see
the appendix for details. The covariance of velocity fluctuations can be obtained from X as Φ = CXC∗. The
steady-state flow structures in the boundary layer flow can be extracted from eigenfunctions of the matrix
Φ. The corresponding eigenvalues represent the energy of flow structures [16,18].

The temporal eigenspectrum for the linearized NS equations with β = 0.01 is shown in figure 7a. Due
to the presence of unstable (non-physical) modes in the upper left region of the spectrum, it is essential to
design sponge layers that can stabilize the spectrum and at the same time have minimal effect on the physics
of relevant modes. Figure 7b shows the displacement trajectory of eigenvalues that correspond to TS modes.
The location corresponding to the desirable sponge layer strength is marked by the black squares (sponge
layer strength Ss = 0.2), and provides the largest temporal decay. Application of the desirable sponge layer
stabilizes the eigenspectrum and sufficiently suppresses the non-physical modes; see figure 7a. In contrast,
the eigenvalues corresponding to the TS modes are less decayed.

Im
(ω

)

Re(ω)

(a)

Im
(ω

)

Re(ω)

(b)

Figure 7: (a) The temporal eigenspectrum of the linearized NS equations with no sponge layer (×), and with
the desirablely strengthened sponge layer Ss = 0.2 (◦). (b) The displacement of the eigenvalues corresponding
to the TS modes as the sponge layer strength increases; the spectrums without the sponge layer (×), red
squares show the beginning of trajectories (Ss = 10−2), black dots are the final points on the trajectories
(Ss = 100.8). The black boxes (�) represent the desirablely sponged case (Ss = 0.2).

Figure 8 shows the real part of the streamwise velocity component of the principle and second most
energetic modes of Φ. The covariance matrix Φ results from solving the Lyapunov equation in the presence
of sponge layers with strength Ss = 0.2. The physical structure of these modes is similar to TS waves
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y

x

(a)

y

x

(b)

Figure 8: Flow structures (real part of streamwise velocity fluctuation) extracted from the eigenvalue de-
composition of the covariance matrix Φ; (a) the principle (most energetic) mode, (b) the second mode.

extracted from the corresponding dynamic generator A. Due to this visual similarity, one may conclude that
they are resonant forms of multiple TS waves excited by white stochastic forcing. However, this remains to
be proven.

en
ve

lo
p

e
of
v̂

x

(a)

λ
i

i

(b)

Figure 9: (a) The envelope of v̂ at y = 3δ0 extracted from the second most significant mode of Φ with a
sponge layer strength of Ss = 0.2 (dashed line) and Ss = 4 (solid line). (b) The first 50 eigenvalues of Φ
with a sponge layer strength of Ss = 0.2 (◦) and Ss = 4 (×).

We next investigate the influence of different sponge strengths (Ss = 0.2, 4) on the steady-state response.
Figure 9a shows the normalized envelope of the wall-normal component of the second eigenfunction of Φ at
y = 3 as a function of x. This figure shows that the strength of the sponge layer has minimal influence on the
envelope of the second mode. Our observations show that unlike the eigenfunctions studied in section III,
no additional spatial growth is introduced by the sponge layers. In addition, as shown in figure 9b, the
first 50 eigenvalues of the covariance matrix Φ do not significantly change due to different sponge layer
strengths. Figure 9a also shows the effect of a strong sponge layer in shrinking the computational domain
in the streamwise direction, as well as inducing wave reflections into the solution. As shown in figure 9b,
when the sponge layer strength increases, the energy of the principle mode increases whereas the energy of
the second mode decreases. As a result, the total energy (

∑
λi) is kept approximately intact. This shows

the ability of the sponge layer in affecting the receptivity of individual modes to exogenous disturbances.
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V. Conclusion

In the present study, we have investigated the effect of sponge layers on the global stability analysis of
the two-way wave equation and the linearized Navier-Stokes equations. Sponge layers can cause temporal
damping of eigenmodes, and at the same time, introduce additional spatial growth to eigenfunctions. They
can also induce the reflection of waves. For temporal eigenvalue problems derived from wave and linearized
Navier-Stokes equations, the eigenspectra are displaced as the sponge layer strength increases. In particular,
we have identified a turn-around behavior in the displacement trajectories of eigenmodes that allowes us
to determine the desirable strength of sponge layers in these problems. In addition, we have deduced the
relationship between the temporal damping rate and spatial growth rate of eigenmodes. In the future, we
will investigate the effect of other parameters, e.g., width and shape of sponge layers in the global stability
analysis of spatially evolving flows. We have recently employed our findings to compute the desirable strength
of sponge layers in the global analysis of stochastically forced linearized NS equations [19].

Appendix

We show the operators in Eq. (4):

A11 = ∆−1
[

1

Re
∆2 − U∆

∂

∂x
− V∆

∂

∂y
− ∂V

∂y
∆ − 2

∂U

∂x

∂2

∂x2
− ∂2V

∂y2
∂

∂y
+

∂2U

∂y2
∂

∂x

− ∂3V

∂y3
− 2

(
∂2U

∂x∂y

∂

∂x
+

∂U

∂x

∂2

∂x∂y

)(
∂2

∂x2
− β2

)−1
∂2

∂x∂y

]
− σ(x),

A12 = 2iβ∆−1

[(
∂2U

∂x∂y

∂

∂x
+

∂U

∂x

∂2

∂x∂y

)(
∂2

∂x2
− β2

)−1]
,

A21 = − iβ ∂U
∂y

, A22 =
1

Re
∆ − U

∂

∂x
− V

∂

∂y
− ∂U

∂x
− σ(x),

B11 = ∆−1
(
f∆ +

∂f

∂y

∂

∂y

)
, B22 = f, ∆ =

∂2

∂x2
+

∂2

∂y2
− β2,

C11 =

(
∂2

∂x2
− β2

)−1
∂2

∂x∂y
, C12 = − iβ

(
∂2

∂x2
− β2

)−1
,

C31 = iβ

(
∂2

∂x2
− β2

)−1
∂

∂y
, C32 =

(
∂2

∂x2
− β2

)−1
∂

∂x
.

Here, f is the shape function of input forcing, which limits the forcing region [17].
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