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Abstract— This paper studies the state estimation of nonline-
ar dynamical systems using stochastically forced linearized dy-
namics, where the stochastic input models the effect of process
noise and the uncertainty caused by excluding nonlinear terms
from the linearized model. The statistics of the input stochastic
forcing greatly influence the design of estimation gains and can
lead to the undesirable performance of state estimators. When
the process noise is colored-in-time, conventional methods can
fail to provide reasonable estimates of second-order statistics
that are of interest in many feedback control applications. To
address this problem, we utilize a recently developed framework
for the dynamical modeling of input disturbances that provides
statistical consistency at the level of second-order statistics with
the underlying nonlinear dynamics. We demonstrate the efficacy
of linear innovations models that result from this approach for
the ensemble Kalman filtering of colored noise processes.

Index Terms— Covariance estimation, Kalman filter, optimal
estimation, state estimation, stochastic dynamics, structured
covariances.

I. INTRODUCTION

We are interested in the continuous-time filtering problem
in applications that involve complex nonlinear systems such
as turbulent flows. The behavior of such systems is typi-
cally governed by partial differential equations that can be
prohibitively expensive to simulate in real-time and whose
lower complexity approximations give rise to substantial
modeling uncertainties that hinder the utility of traditional
Kalman filtering techniques [1] and their nonlinear extensi-
ons, e.g., [2]. For high-dimensional systems, the Ensemble
Kalman Filter (EnKF) combines ideas from Monte Carlo
techniques with Kalman-like methods for sequential data as-
similation to provide a modern stochastic alternative for state
estimation [3]–[5]. In this method, estimates of the mean
state and its covariance are approximated by a judiciously
designed random dynamical system of interacting particles
(i.e., stochastic realizations that constitute an ensemble) that
are propagated forward in time. The EnKF for linear Gaussi-
an systems asymptotically converges to the Kalman result as
the number of ensemble members becomes sufficiently large.
Nevertheless, in practice, the propagation of a relatively
small number of ensemble members has been shown to
reasonably capture the dominant directions of uncertainty in
the estimation error.

Kalman filtering relies on an accurate statistical descripti-
on of sources of uncertainty entering the process and output
measurements. In most engineering applications, e.g., feed-
back control of turbulent flows or industrial process control
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setups, the covariances of disturbances that enter the process
are unknown. Nevertheless, the statistics of such disturbances
greatly influence the design of estimation gains and can
lead to the undesirable performance of state estimators [6]–
[8]. To address this challenge, estimation of input statistics
from open-loop data has long been a subject of interest in
the fields of adaptive filtering [9]–[15] and unknown input
filtering [16]–[21]. Such approaches enable the realization
of potentially colored-in-time Gaussian input processes via
covariance factorization schemes [22], [23].

In this paper, we use the stochastic modeling framework
developed in [24]–[26] together with the stochastic EnKF
to address the estimation of high-dimensional systems with
unknown stochastic process noise. The unknown disturban-
ces are assumed to be wide-sense stationary, but are not
restricted to white-in-time processes. To explain the second-
order statistics of a subset of noisy measurement variables
we will use stochastically forced linearized models around
a nominal trajectory of the nonlinear system or its long-
time averaged state. Such models represent effective low-
dimensional approximations that can preserve many essential
qualitative features in many applications. In particular, it has
been shown that the stochastically-forced linearized Navier-
Stokes equations around the mean velocity profile qualita-
tively replicate the structural features of shear flows [27]–
[32] and that suitable perturbations of linearized dynamics
can reconcile their predictions with data from experimental
measurements or numerical simulations [25], [26], [33], [34].
The stochastic modeling framework of [24]–[26] provides a
systematic approach for identifying such dynamical pertur-
bations using the solution of convex optimization problems.
We use this approach to enhance the predictive capability of
the EnKF to not only estimate deviations from the nominal
trajectory of high-dimensional nonlinear systems, but to also
provide reasonable estimates of second-order statistics. Such
models are of great value in the feedback control of turbulent
flows where the aim is not to simply track trajectories of the
state, but to estimate and control second-order quantities that
affect the kinetic energy of the flow and skin-friction drag.

The paper is organized as follows. In Section II, we for-
mulate the continuous-time filtering problem using a variant
of the EnKF. In Section III, we provide an overview of the
stochastic modeling framework for the treatment of colored-
in-time process noise. In Section IV, we provide details
of the stochastic ensemble Kalman filtering algorithm. In
Section V, we offer an illustrative example that utilizes the
proposed approach. Finally, we provide concluding thoughts
in Section VI.
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II. PROBLEM FORMULATION

Consider the general nonlinear system

˙̃x = f(x̃, w)

ỹ = h(x̃) + v
(1)

where x̃(t) ∈ Cn is the state vector, ỹ(t) ∈ Cp is the
output, w(t) ∈ Cm denotes zero-mean stationary stochastic
process noise, and v(t) ∈ Cp denotes white zero-mean
measurement noise with covariance V � 0. Given partial
correlations between a limited number of output components
and a limited number of measurements (entries of ỹ), we are
interested in constructing an estimator that not only tracks
changes in the state x̃(t), but provides statistical consistency
(up to a second order) with the original nonlinear model (1).

The Kalman filter and its extensions follow recursive
algorithms that correct the estimate of the state via a
gain× innovation error update formula to account for the
new information contained in the most recent measure-
ment [1]. While the Kalman filtering algorithm provides
the posterior model only in linear Gaussian settings, it is
often used as an approximate algorithm even in more general
nonlinear settings or in conjunction with linearized models.
In the control-oriented modeling of many complex systems
that are governed by nonlinear partial differential equations,
a promising approach is to leverage the underlying physics
in the form of a prior linear time-invariant (LTI) model
that arises from first principles, e.g., linearization of the
Navier-Stokes equations around a stable flow state such as
the turbulent mean velocity. Based on this, we consider an
idealized linear approximation of dynamics of fluctuations
around a nominal trajectory of the nonlinear system x̃0(t)
in the presence of the nominal noise profile w̃0(t), i.e.,
˙̃x0 = f(x̃0, w̃0), of the form

ẋ = Ax + B f

y = C x + v
(2)

Here, x := x̃− x̃0, and state-space matrices A ∈ Cn×n and
C ∈ Cp×n are given by

A =
∂f

∂x

∣∣∣∣
x̃0

, C =
∂h

∂x

∣∣∣∣
x̃0

.

In system (2), f(t) ∈ Cm and B ∈ Cn×m represent an un-
known stochastic input and its corresponding input channel.
This additive source of stochastic excitation is used to model
the effect of exogenous disturbances w and v in (1) and the
uncertainty caused by excluding nonlinear terms from the
linearized equations.

If the stochastic input f(t) is white-in-time with covariance
W � 0, an estimate x̂(t) for the state fluctuations around
x̃0(t) is provided by the conventional Kalman filter

˙̂x = A x̂ + B f + K (ỹ − C x̂) (3a)
Ṗ = AP + PA∗ + BWB∗ − P C∗V −1C P (3b)

where

K := P C∗V −1. (3c)

Here, P (t) provides an approximation to the covariance
of the estimation error, i.e., E [(x̃(t)− x̂(t))(x̃(t)− x̂(t))∗],
with E(·) denoting the expected value.

The sequential self-correcting property of the Kalman filter
through feedback gain K provides robustness to certain
levels of uncertainty inherent in the idealized model or
measurement data. The optimality of the filtering algorithm,
however, relies on a precise knowledge of disturbance cova-
riances W and V in Eqs. (3). We next address the challenge
of Kalman filtering in the presence of colored-in-time process
noise with unknown dynamics.

III. STOCHASTIC DYNAMICAL MODELING OF UNKNOWN
DISTURBANCES

We are provided with an N -member ensemble of noisy
output measurements {ỹi(t)}Ni=1 over a time frame that is
long enough to ensure a statistically steady state1. Each mem-
ber of the ensemble corresponds to a trajectory of nonlinear
system (1) resulting from a single realization of independent
stochastic processes w and v. Only a subset of entries in
the output vector ỹj are made available. It is desired to
provide a realization for the colored-in-time stochastic input
f(t) and prescribe an input matrix B ∈ Cn×m with m ≤ n,
so that the idealized model (2) accounts for second-order
statistics that can be computed from the partial measurements
of ỹ(t). In this training window, we follow the stochastic
modeling framework developed in [24]–[26] to formulate a
covariance completion problem that identifies the second-
order statistics of stochastic input in system (2) in order
to reconcile dynamics with the sampled correlations of the
output. As a measure of model parsimony, the optimization
aims for a minimal number of degrees of freedom that are
directly affected by stochastic excitation.

A. Covariance completion

Given matrices A, C, the available output covariance
entries Yij = limt→∞E

[
ỹi(t) ỹ

∗
j (t)

]
2, and the covariance

of measurement noise V , convex optimization problem

minimize
X,Z

− log det(X) + γ ‖Z‖?

subject to AX +XA∗ + Z = 0 (4)
(CXC∗ + V )ij = Yij , (i, j) ∈ I

seeks Hermitian matrices X,Z ∈ Cn×n that minimize
a composite objective function that provides a trade-off
between the solution to the maximum-entropy problem and
the complexity of the forcing model. Here, the logarithmic
barrier function ensures the positive definiteness of the state
covariance matrix X=limt→∞E [x(t)x∗(t)] [35] and results
in a maximum-entropy stochastic realization [36], γ > 0 is
a regularization parameter that reflects the relative weight
of the nuclear norm regularizer ‖Z‖? =

∑
i σi(Z), which

restricts the rank of Z [37], [38] and thereby the complexity

1This is a strong condition that can be relaxed to time frames that surpass
potential transient stages.

2The expectation involves averaging over time and ensemble members.
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of the forcing model; see [24] for additional details and an
efficient optimization algorithm for solving (4). The solution
to problem (4) not only provides statistical consistency with
the nonlinear dynamical system (1) in matching partially
observed second-order statistics, but completes the under-
sampled covariances in a way that is consistent with the
hypothesis that fluctuations around the nominal trajectory x̃0
are generated by linear system (2).

Remark 1: In problem (4), we have assumed the cova-
riance of measurement noise (the matrix V ) to be known.
It is noteworthy, however, that this covariance can also be
added as an unknown to the convex optimization problem
by either including additional matrix inequality 0 ≺ V �
Ṽ as an additional constraint, which requires knowledge
of an upper bound Ṽ , or considering robust formulations
of the problem that augment the objective of (4) with a
penalty on the violation of the moment matching constraint
(CXC∗)ij = Yij . The latter approach would require the
selection of an appropriate regularizer to balance the effect
of various components of an objective function with three
components. Either way, our numerical experiments demons-
trate a noticeable improvement in predicting true covariances,
especially when the measurement noise is large.

B. Stochastic realization of input f

The solution of problem (4) can be used to construct finite-
dimensional systems with white noise inputs that realize the
colored-in-time stochastic input f via covariance factoriza-
tion techniques [22]. A class of generically minimal linear
filters that have the same number of degrees of freedom as
the finite-dimensional approximation of system (2) are given
by [24], [25]:

φ̇ = (A − BKf )φ + B d

f = −Kf φ + d
(5)

where φ(t) ∈ Cn is the state of the filter, d(t) is a zero-mean
white-in-time stochastic process of covariance Ω, and

Kf =
( 1

2
ΩB∗ − H∗

)
X−1.

Here, matrices B and H correspond to the factorization Z =
BH∗+HB∗. In [25], it has been further shown that the state-
space representation corresponding to the cascade connection
of systems (5) and (2), which has twice as many states as the
spatial discretization of system (2), is not controllable and
thus not minimal. Removal of uncontrollable states yields a
minimal realization of the form

ẋ = (A − BKf )x + B d

y = C x + v.
(6)

As the input matrix B results from the factorization of the
low-rank solution Z to problem (4), the minimal realiza-
tion (6) provides an alternative interpretation of colored-in-
time input f as a white-in-time excitation together with a low-
rank dynamical modification to the dynamic matrix A [25].

IV. STOCHASTIC ENSEMBLE KALMAN FILTER

In this section, we provide details of a stochastic ensemble
Kalman filtering algorithm [39], [40] that we customize
based on the particular class of (linear) innovations model
presented in Section III. This choice is motivated by our
desire to match statistical signatures of the underlying dy-
namics using linear models and the large-scale nature of
systems that model fluid flows. Ensemble Kalman filtering
algorithms replace the propagation of the covariance matrix
P (t) in Eq. (3b) with the empirical N -member (particle)
approximation

P (N)(t) =
1

N − 1

N∑
i=1

(
x̃i(t)− x̂(N)(t)

)(
x̃i(t)− x̂(N)(t)

)∗
which is computed using the simultaneous propagation of
N independent trajectories of the underlying dynamics and
observer dynamics. Here, x̃i(t) is the ith trajectory of the
nonlinear dynamical system (1) resulting from the ith reali-
zation of stochastic inputs w(t) and v(t), and x̂(N)(t) is the
ensemble average of N state estimate trajectories resulting
from the observer dynamics. In the stochastic variant of the
EnKF, the particles x̂i(t) evolve according to

˙̂xi = Af x̂
i + B di + K

(
ỹi − C x̂i − vi

)
(7)

where i = 1, . . . N , Af = A − BKf (cf. (6)), K =
P (N)C∗V −1, and x̂i(t) is the ith trajectory of the estimator
due to the ith realization of the white stochastic input
d(t). In the stochastic EnKF the zero-mean white stochastic
perturbation vi(t) is introduced in the innovations error to
achieve consistency for the variance update. In the limit of
N →∞, the stochastic EnKF can be shown to converge to
the analytic filtering solution (3) [39], [41].

In the stochastic differential equation (SDE) (7), sources of
uncertainty d(t) and v(t) are considered to be white proces-
ses that are defined as derivatives of Wiener processes [42],
i.e.,

d(t) :=
dd̃(t)

dt
, v(t) :=

dṽ(t)

dt
.

Here, d̃(t) and ṽ(t) are vector-valued zero-mean processes
of variance Ω � 0 and V � 0. Based on this, the SDE (7)
can be rewritten as

dx̂i = Af x̂
idt + B dd̃i (8)

+ P (N)C∗V −1
(
(ỹi − C x̂i)dt − dṽi

)
Since the covariance matrix P (N) depends on the ensem-

ble members x̂i(t), the noise term dṽi in (7) is of multiplica-
tive nature. Multiplicative noise is not generally well-defined
and its treatment calls for the adoption of a suitable stochastic
calculus (e.g., Itō [43] or Stratonovich [44]). Algorithms
for the continuous-time treatment of this SDE are provided
in [45]. Herein, we instead use the Itō interpretation together
with the forward Euler method as a compatible discretization
scheme for propagating the solution forward in time.
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time (s)

Fig. 1. Time evolution of the variance of the MSD system’s state vector for
10 realizations of white-in-time forcing d to Eqs. (9). The variance averaged
over the ensemble of all simulations if marked by the thick black line.

V. AN EXAMPLE

We present an illustrative example to demonstrate the
efficacy of our approach. Consider a mass-spring-damper
system of 5 masses subject to stochastic disturbances that
are generated by a low-pass filter,

low-pass filter: ζ̇ = −0.1 ζ + d (9a)

MSD system: ẋ = Ax + Bζ

y = x+ v
(9b)

The state vector x = [ pT vT ]T , contains the position and
velocity of masses, d represents a zero-mean unit variance
white process, and v represents zero-mean white measure-
ment noise with covariance V = 0.01I . State and input
matrices are

A =

[
O I
−T −I

]
, B =

[
0
I

]
,

where O and I are zero and identity matrices and T is a
symmetric tridiagonal Toeplitz matrix with 2 on the main
diagonal and −1 on the first upper and lower sub-diagonals.

We collect an ensemble of state trajectories resulting from
10 linear stochastic simulations of the cascade connection of
the low-pass filter (9a) and MSD system (9b); see Fig. 1.
In these simulations, the low-pass filter is fed with white
noise and it generates a colored-in-time input ζ to the
MSD system. The empirical covariances of the position and
velocity of masses that are computed from these noisy state
measurements is shown in Figs. 2(a) and 2(c). The entries on
the main diagonal of these covariances are used as data in the
training stage to construct the idealized model (6) for state
estimation. The solution of the covariance completion pro-
blem (4) guarantees that the modified dynamics (6) provide
a completion of the sampled state covariance with a relative
error of 21.6% when compared to the true state covariance.
This is in spite of the fact that only entries on the main
diagonal of the state covariance matrix where provided as
data in problem (4).

We use the identified modified dynamics for the stochastic

(a) (b)

(c) (d)

Fig. 2. Covariance of the position of 5 masses computed from a 10
particle ensemble of (a) noisy state measurements; and (b) state estimations.
Covariance of the velocity of 5 masses computed from a 10 particle
ensemble of (c) noisy state measurements; and (d) state estimations.

(a) (b)

er
ro

r
in
x
1

er
ro

r
in
x
8

time (s) time (s)

Fig. 3. State estimation errors for (a) x1(t) and (b) x8(t). The red lines
denote the 3σ error bound.

ensemble Kalman filtering algorithm presented in Section IV.
The covariances that result from state estimate x̂(t) due to a
10-particle ensemble of simulation trajectories are presented
in Figs. 2(b) and 2(d). The state covariance shows good
recovery of the full state covariance matrix with a relative
error of 20.7% with less than 0.1% error in matching the
diagonal entries, i.e., one-point correlations of positions and
velocities of the masses marked by the black lines in Fig. 2.
We note that in the absence of the stochastic modeling
procedure the conventional stochastic EnKF would result
in more than 90% error in matching the state covariance
matrix. Finally, the state estimation error is shown in Fig. 3
for two randomly chosen states. comparison with the 3σ
bound shows reasonable performance of the data-enhanced
stochastic EnKF in tracking the state.

VI. CONCLUDING REMARKS

We have demonstrated the efficacy of the stochastic mo-
deling framework of [24]–[26] in providing effective inno-
vations models of colored-in-time stochastic processes for
the purpose of Kalman filtering. Given partially available
correlations of noisy output measurements, we formulate
convex optimization problems that identify the statistics of
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the unknown input forcing in order to reconcile dynamics
with sampled correlations. The resulting innovations models
are generically minimal in the sense that they have the
same number of degrees of freedom as the finite-dimensional
approximation of the linearized dynamics around a trajectory
of the underlying nonlinear system. The augmented state
Kalman filter is also guaranteed a minimal realization with
the same number of states. We use these models to construct
a stochastic ensemble Kalman filtering algorithm that not
only estimates the state but also reasonably captures second-
order statistics that contain physically relevant information.
We use a small-size problem to demonstrate the ability of the
data-enhanced EnKF in matching second-order statistics of
the original system. Our efforts are directed at the efficient
implementation of this estimation strategy for large-scale
applications such as the feedback control of fluid flows.
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