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Completion of partially known turbulent flow statistics
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Abstract— Second-order statistics of turbulent flows can be
obtained either experimentally or via high fidelity numerical
simulations. The statistics are relevant in understanding funda-
mental flow physics and for the development of low-complexity
models. For example, such models can be used for control
design in order to suppress or promote turbulence. Due to
experimental or numerical limitations it is often the case that
only partial flow statistics are known. In other words, only
certain correlations between a limited number of flow field
components are available. Thus, it is of interest to complete
the statistical signature of the flow field in a way that is
consistent with the known dynamics. Our approach to this
inverse problem relies on a model governed by stochastically
forced linearized Navier-Stokes equations. In this, the statistics
of forcing are unknown and sought to explain the given
correlations. Identifying suitable stochastic forcing allows us
to complete the correlation data of the velocity field. While the
system dynamics impose a linear constraint on the admissible
correlations, such an inverse problem admits many solutions for
the forcing correlations. We use nuclear norm minimization to
obtain correlation structures of low complexity. This complexity
translates into dimensionality of spatio-temporal filters that can
be used to generate the identified forcing statistics.

Index Terms— Convex optimization, flow control, low-rank
approximation, stochastically forced Navier-Stokes equations,
structured matrix completion problems, turbulence modeling.

I. INTRODUCTION

Nonlinear dynamical models for turbulent fluid flow that
are based on the Navier-Stokes (NS) equations typically have
a large number of degrees of freedom which makes them
unsuitable for control synthesis. Thus, for the purpose of
control design, several techniques have been proposed for
obtaining low-dimensional models that preserve the essential
dynamics. In particular, linearization of the NS equations
around mean-velocity, driven by white-in-time stochastic
excitation has been shown to provide satisfactory models
that qualitatively replicate structural features of wall-bounded
shear flows [1]-[4]. However, it has also been recognized that
white-in-time stochastic forcing is too restrictive to reproduce
all statistical features of the fluctuating velocity field [5].
In the present work we study colored-in-time stochastic
excitation of the linearized dynamics. Building on [6], we
derive low-complexity dynamical models that can success-
fully account for all observed second-order statistics that may
be available from experiments or numerical simulations.
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We focus on turbulent channel flow. The data for our
problem originates from high fidelity numerical simulations
and consists of partially known velocity correlations [7]-
[10]. Our goal is to determine the complete correlation
profile of the fluctuating velocity field in a way that is
consistent with the underlying dynamics. This is an inverse
problem which we formulate as an optimization problem
seeking a low-rank representation of the colored-in-time
noise component. We use nuclear norm minimization as a
surrogate for rank minimization [11]-[16] and provide a
customized interior point algorithm which is suitable for
solving large-scale problems of this type.

The paper is organized as follows. In Section II, we first
explain the stochastically forced linearized NS model. We
then relate the linearized system dynamics with the algebraic
structure of second-order statistics of channel flow turbu-
lence. In Section III, we formulate the task of completing
partially available statistics of the fluctuating velocity field as
an optimization problem. To this end, the correlation matrix
of all components needs to satisfy a linear equation together
with a parameter that characterizes the spectral content of
the driving noise. Minimization of the nuclear norm is used
as a way to select the low rank noise parameter and to solve
this matrix covariance completion problem. In Section IV,
we develop a customized algorithm to solve this matrix
completion that scales favorably with the size of the problem.
In Section V, we apply our techniques to complete flow
statistics of a turbulent channel flow. In Section VI, we
present concluding thoughts about the scope and potential
use of the framework.

II. BACKGROUND

In this section, we present background material on evolu-
tion models for stochastically forced linearized NS equations
and second-order statistics of velocity fluctuations.

A. Stochastically forced linearized NS equations

In a turbulent channel flow, with geometry shown in Fig. 1,
the dynamics of infinitesimal fluctuations around the mean
velocity, 1 = [U(y) 0 0]%, are governed by

1/"75(?/’ K, t) = A(K')’lﬁb(i% K, t) + f(y7 K, t),
v(y, K, t) = C(r)P(y, K, 1).

Here, 9» = [vy n]7 is the state of the linearized model,
vg and n = O,v; — O,yvs are the wall-normal velocity
and vorticity, v = [v; vy v3z]T is the fluctuating velocity
vector, and f is a stochastic forcing disturbance. The operator
A(k) is the generator of the linearized dynamics, and the
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Fig. 1. Geometry of a pressure-driven turbulent channel flow.

operator C(k) establishes a kinematic relationship between
the components of ?» and the components of v,

C,, (k) 1| a0y —ik.
C(k) = | Cup(r) | = = K2 0 )
C., (k) Mok 9, ik
where k = [k, k.]|T denotes the vector of horizontal

wavenumbers. A more detailed description of the operators
in (1) and the underlying function spaces can be found in [3].

Finite-dimensional approximations A(x) and C(k) of
the operators A(k) and C(k) can be obtained using a
pseudospectral scheme with N Chebyshev collocation points
in the wall-normal direction [17], thereby resulting into

Pk, t) = Alr)p(k, t) + f(k, 1),
v(k, t) = C(k)p(k, 1),
with (K, t) € C?N and v(k, t) € C3V.

2

B. Second-order statistics of linearized NS equations

At any kK, the covariance matrix of the velocity vector
in (2) is given by,

(k) = tlinéo E(v(k, t)vi(k, 1)),

where £ is the expectation operator. This matrix can be
obtained from

o(k) = C(k) X (k) C*(K),

and it contains all information about the second-order statis-
tics of the fluctuating velocity field in statistical steady-state.
Here, X denotes the steady-state covariance matrix of the
state in (2)

X(k) = lim E((r, 1) (k. ).

When system (2) is driven by white-in-time stochastic forc-
ing with second-order statistics,

E(f(r, t1) " (K, t2)) = M(K)0(t1 — t2),
the Lyapunov equation
AR)X(R) + X(r) A" (k) = —M(K), 3)

with M = M* > 0 can be used to find X (k).

For a turbulent channel flow, it can be shown that there
is no positive semi-definite completion of partially available
flow statistics which is consistent with the hypothesis of

stochastic
U forcing
turbulent

mean velocity

linearized
flow dynamics

second-order
statistics

Fig. 2. The statistics of velocity fluctuations are completed by appropriately
forcing the linearized dynamics around turbulent mean velocity. Completed
second-order statistics can then be brought into the mean flow equations to
give turbulent mean velocity and provide equilibrium configuration.

forcing (2) with white-noise [5], and hence a positive semi-
definite M in (3). Thus, the second-order turbulent flow
statistics cannot be reproduced by the linearized NS equa-
tions with white-in-time stochastic forcing. This limitation
can be overcome by departing from white-in-time restriction.
In fact, in a more general framework for explaining statistics
using linear models, colored-in-time forcing f(k,t) leads
to an indefinite M (k) [18]-[20]. Using this framework, a
sample covariance X (k) > 0, resulting from experiments or
high-fidelity numerical simulations, can be made consistent
with being covariance of the state in (2). Furthermore, the
rank of the matrix M (k) provides bounds on the complexity
of the spatio-temporal filter that is used to produce colored
forcing [6].

III. COMPLETION OF PARTIALLY KNOWN STATISTICS

Motivated by the necessity to account for turbulent flow
correlations by models of low complexity, we formulate
the problem of completing partially available second-order
statistics. Data for our problem comes from experiments
or high-fidelity numerical simulations. On the other hand,
we assume that velocity fluctuations obey the linearized
NS equations (1). The statistics of forcing are unknown
and sought to explain the given correlations. While the
system dynamics impose a linear constraint on the admis-
sible velocity correlations, such an inverse problem admits
many solutions for the forcing correlations. We use nuclear
norm minimization to obtain correlation structures of low
complexity. This complexity translates into dimensionality
of spatio-temporal filters that can be used to generate the
identified forcing statistics.

The block diagram in Fig. 2 illustrates our modeling
procedure. For the linearized dynamics of fluctuations around
turbulent mean velocity, the appropriate forcing is sought
to reproduce partially available velocity correlations and
complete the statistical signature of the turbulent flow field.
Completed second-order statistics can then be brought into
the mean flow equations in order to give turbulent mean
velocity and provide equilibrium configuration.
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Fig. 3. Publicly available correlations of velocity fluctuations [21] represent
diagonal entries of the blocks in the output covariance matrix; cf. (4).

The matrix completion problem can be formulated as,
minimize || M|«
M, X
subject to AX + XA* + M =0
trace (T, X ) = gk, k=1,...,6N
X = 0.
MC)

Here, matrices A and T}, and scalars g5 denote problem data,
Hermitian matrices X and M are optimization variables,
and the wavenumber dependence is omitted for notational
convenience. In (MC), the nuclear norm, i.e., the sum of
singular values of a matrix,

2N
IM]|. = ai(M),
i=1

is used as a proxy for rank minimization [11], [14]. The
constraint set of (MC) is convex because it is the intersection
of three convex sets: the positive semidefinite cone, the linear
subspace determined by the Lyapunov constraint, and the
linear trace constraints.

The trace constraints in (MC) represent a linear relation-
ship between the steady-state covariance matrix of system (2)
and partially available entries of the velocity covariance
matrix ®. Figure 3 illustrates readily available one-point
correlations (in the wall-normal direction) resulting from
experiments or simulations. The kth diagonal entry of the
(4,7)th block of the output covariance matrix, ®;;, can be
computed as,

ep Cu, X O e

1
=3 trace ((CZJ_ er ey Cu, + Oy erer, Cy,) X)

= trace (T X ),
“)
where ey is the kth unit vector in the standard Euclidean
vector space. Here £k = 1,..., N, where NN is the number

of collocation points in the wall-normal direction and ma-
trices T}, relate X to the observed statistics from numeri-
cal/experimental data. As we show in the next section, such
trace constraints are well suited for the purpose of developing
customized optimization algorithms.

Since A, Tj, and gy are parameterized by the hori-
zontal wavenumbers, the solution to (MC) will also be
wavenumber-dependent. When dealing with a small num-
ber of unknown variables, the convex optimization prob-
lem (MC) can be solved using general-purpose solvers [22].
In Section IV, we present an approach that combines a cus-
tomized interior point algorithm with the alternating direction
method of multipliers (ADMM) to solve large problems.
ADMM is a method that is well-suited for solving large-
scale and distributed optimization problems [23].

IV. CUSTOMIZED ALGORITHM FOR THE MATRIX
COMPLETION PROBLEM

Interior point methods provide a powerful framework
for solving convex optimization problems with inequality
constraints [24]. To solve (MC), we develop a customized
interior point algorithm that utilizes parameterization of the
operator specifying the trace constraints in (MC). As recently
shown in [25], this parameterization eliminates the trace
constraints and Lyapunov equation from (MC). In each
inner iteration of the interior point algorithm, ADMM is
used to exploit the respective structures of the log barrier
function and the nuclear norm. The computational steps
involve application of the BFGS algorithm and a convenient
singular value thresholding.

A. Null space parameterization

Trace constraints in (MC) define a linear mapping
T(X) =8, &)

from the hermitian matrix X to the vector g := col {gx}.
Thus, all solutions to (5) can be parameterized using the
null space of the linear operator 7,

q
X =Xo+ Y z;X;. (6)
j=1
Here, ¢ denotes the size of the null space of the operator T,
Xy is a particular solution to (5), x;’s are real parameters,
and the matrices X; are linearly independent solutions of

trace (Tp X;) =0, k=1,...,6N, j=1,...,q. (1)

For the purpose of solving the matrix completion problem
we will constrain our choice of a particular solution to (5)
to the positive-semidefinite cone. To obtain X > 0, we solve
the following optimization problem

minimize — logdet ( X )
Xo ®)
subject to trace (T Xo) = g, k=1,...,6N
where the positive-definiteness of X is implicitly enforced
via the logdet objective function. The convexity of this
optimization problem follows from convexity of the objective
function and linearity of the trace constraints [24]. While
general purpose SDP solvers can efficiently handle problems
of small and medium size, we have developed an efficient
quasi-Newton algorithm for large problems. Due to page
limitation details of our algorithm will be reported elsewhere.
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To complete the parameterization we must find basis
matrices, X, that span the null space of 7. Since matrices
T}, in (7) can be separated into real and imaginary parts,

T. = Re (Tk) + ilm (Tk),

the null space of the linear operator 7 can also be decom-
posed into two linearly independent parts. Thus, we can com-
pute the null space of the real and imaginary parts separately
and concatenate the resulting basis elements. This allows us
to work with real valued matrices which is advantageous
when dealing with large null spaces. The null space of 7 is
computed via the singular value decomposition of a matrix
T, whose columns are obtained by vectorizing matrices T,

T = [ vec(Tt)

vece(Tz) -+ vee(Ton) ]4N2><6N'

The singular value decomposition of the fat matrix 77
7T =UxvT,
is used to obtain

N’Ull (TT) = {'l)r_._l, Vp42, ... ,U4N2},

where 7 is the number of nonzero singular values of 77" and
v; is the ith column of V. By de-vectorizing the null space
of T we obtain the matrices that form the null space of the
operator 7. This completes the parameterization of X in (6).

A similar parameterization can be considered for M by
substituting (6) into the Lyapunov equation,

q
M=—(AX + XA") = My + »_a; M,
j=1

where
My =—(AXo + X0 A4"), M; = —(AX; + X; A").
This procedure eliminates the equality constraints

from (MC) but adds real parameters, x;, to the set of
optimization variables.

B. Interior point algorithm

The discussion in the previous section allows us to pa-
rameterize solutions for X and M by introducing a new
optimization variable z = [z1 3 xq]T. Based on
this, problem (MC) can be reformulated as

- 1 -
minirmize ||| — - log det (Xo + Z z; X;)
g 7= )
subject to Z x; M; — M + My = 0.
j=1
Convexity of the objective function in conjunction with
linearity of the constraint implies convexity. The logarithmic
barrier function in (9) guarantees positive definiteness of the
state covariance matrix X. On the other hand, parameter 7
determines the relative importance of the objective and bar-
rier functions. The outer steps of the interior point algorithm
results in the convergence to the optimal solution as 7 — co
and it is summarized next:

given: strictly feasible M, x, tolerance € > 0
repeat:

. compute M* and z* (solutions to (9))
M <= M* and x < z*

Lif 1/7 <'e, return(M, x)

(n =~ 10 ~ 100).

Step 1 involves the inner iterations in which first or second-
order optimization methods can be used to find the optimal
solution to (9) for a specific 7. Outer iterations generate a
sequence of points on the central path to optimality [24].

The log-det barrier in (9) was introduced to guarantee
positive definiteness of the state covariance matrix. Our
attempts to enforce positive definite constraints in (MC) via
projections to the positive semi-definite cone [26], [27] have
not been successful. While we suspect that this is because of
ill-conditioning of the dynamical generator in the Lyapunov-
like constraint, this issue requires additional scrutiny and it
will be examined in our future research.

4. increase 7; 7T = pr

C. Alternating direction method of multipliers

For a fixed value of 7, we use ADMM to solve (9). The
augmented Lagrangian associated with (9) is given by

1 a
Ly(x,M,\) = | M|, — - log det (X0+Z z; X;)

j=1
q
+ trace (A*(ij M; — M + My))
=1
P v :
t3 ||ij Mj — M + Mo||3,

j=1
where A is the Lagrange multiplier, p is a positive scalar,
and || - || 7 is the Frobenius norm.

The ADMM algorithm uses a sequence of iterations to find
the minimizer of the constrained optimization problem (9),

2" = argmin £, (z, M*, AF) (10a)

MEHL = arghrjnin L, ("1 M, AF)

q
A= AR 4 p (D2 PIMG — MR+ M) (100)
j=1

(10b)

and is terminated when the convergence tolerances are met,

q
1D @it My — MM M|
j=1

IN

€1,

”Mk-‘rl _ Mk”F

IN

€2,
||$k+1 _ J)k”g S €3.

The Appendix provides solutions to (10a) and (10b).

Upon convergence of the ADMM algorithm, one outer
iteration of the interior point algorithm has been completed.
Successive iterations, where 7 is increased to force the
objective towards the low rank solution, follow a similar
computational routine.
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Fig. 4. Correlation profiles at & = (ksz,k-.) = (2.5,7) for a turbu-
lent channel flow with R = 186. Perfect agreement between velocity
correlations resulting from numerical simulations [7], [8] (=) and the
solution to (MC) is observed for both (a) normal (blue: diag (P11), green:
diag (P22), red: diag (P33)) and (b) shear stress (—diag (P12)) profiles.

V. APPLICATION TO A TURBULENT CHANNEL FLOW

In this section we apply our techniques to complete
partially available statistics of a turbulent channel flow with
R, = 186. These publicly available statistics [21] come from
numerical simulations of the nonlinear NS equations [7],
[8]. As illustrated in Fig. 3, they contain one-point velocity
correlations (in the wall-normal direction) at various hori-
zontal wavenumbers. Using the completion problem (MC),
we identify noise models of low-complexity that reproduce
the statistical signatures of turbulent velocity fluctuations.

The differential operators are discretized using N = 51
collocation points in y. In the horizontal directions, 50 x
51 wavenumbers are used, k, € [0.01, 42.5] and k, €
[0.01, 84.5], with the largest values of k, and k, being equal
to those used in numerical simulations that generated our
data [7], [8].

The energy spectrum of velocity fluctuations is given by

E(k) = (1/2) trace (®(k)) .

The peak of the premultiplied energy spectrum occurs at
(kz, k») =~ (2.5,7). Figure 4 illustrates that all one-point
velocity correlations at this wavenumber pair are reproduced
by the identified colored-in-time forcing. It should be noted
that the problem (MC) is not feasible for M > 0. This
implies that perfect matching of turbulent flow statistics
could not have been accomplished under whiteness-in-time
restriction.

We next examine the singular values of the matrix M
that results from the matrix completion problem (MC). As
shown in Fig. 5, at (k,, k.) ~ (2.5,7), M has 11 dominant
singular values. On the other hand, there is no clear-cut in
the singular values of M which comes from the feasibility
problem (8). The approximately low-rank matrix M has
7 significant positive eigenvalues (0.0323, 0.0115, 0.0068,
0.0031, 0.0027, 0.0008, 0.0002) and 4 significant negative
eigenvalues (-0.0610, -0.0129, -0.0028, -0.0004). Based on
the developments of [6], 7 colored-in-time inputs are needed
to account for the given partial state statistics in (MC).

To demonstrate the performance of our approach at other
wavenumbers we compute the one-dimensional energy spec-

20 40 60 80 100

Fig. 5. Singular values of the low-rank solution M resulting from (MC)
(o) and from the feasibility problem (O) for k = (kz, k>) = (2.5, 7).

II.S

Fig. 6. Pre-multiplied, one-dimensional energy spectra of streamwise ve-
locity fluctuations; (a) kydiag (®11) (ks, y1), (b) kodiag (®11) (kz, yT).
Color plots: spectra resulting from numerical simulations [7], [8]. Contour
lines: spectra resulting from the solution to (MC).

tra of velocity correlations and compare them with data re-
sulting from direct numerical simulations. Figure 6 shows the
pre-multiplied one-dimensional energy spectra of streamwise
velocity fluctuations as a function of streamwise or spanwise
wavelengths, A} := R, (27 /k,) and \} := R, (27 /k.), and
the wall-normal coordinate, y* := R,(1 + y), all in inner
(viscous) units. Color plots and contour lines respectively
represent the pre-multiplied energy spectra resulting from
numerical simulations [7], [8] and our optimization frame-
work. These are in perfect agreement. Similar results are
obtained in reproducing one-dimensional energy spectra of
the wall-normal and spanwise velocity fluctuations, as well
as shear stress (diag (®12)).

VI. CONCLUDING REMARKS

We have examined the problem of completing partially
available statistics of turbulent flows using stochastically
forced linearized NS equations. In contrast to previous stud-
ies, a colored-in-time forcing model was assumed to drive the
linearized dynamics. To complete the statistical signature of
the turbulent velocity field with low-complexity colored-in-
time forcing, we formulate a new class of structured matrix
completion problems. For this purpose, minimization of the
nuclear norm was used as a way to select the low rank noise
parameter and to complete data which is not available. To
solve this problem, we utilize null space parameterization
techniques along with a customized interior point algorithm.
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APPENDIX
A. Solution to the x-minimization problem (10a)

For fixed {z%, M* AF}, the augmented Lagrangian £,
is minimized with respect to the vector z,

1 q
minimize - ogdet (X + jEZl zjX;)

q
p
+5 > x;M; — UM%
j=1

where U* := M* —Mg—(1/p)A*. The gradient and Hessian
of this objective are given by

oL 1
87335 = —;trace(YXi)
q
+ ptrace (3 X)) M; — U My ),
=1
9L 1
W&; = ;trace(YXiYXj) + ptrace (M; M;),
where Y = (Xo 4+ > [_,#:X;)”". Newton or quasi-

Newton (e.g. BFGS) methods can be used to solve this sub
problem efficiently.

B. Solution to the M -minimization problem (10b)

For fixed {z*+1, M* AF}, the augmented Lagrangian is
minimized with respect to M,
minimize [ M|l + Z|M - VEE (2
M 2
where V¥ := (1/p)A* + My + 3"/, 2F M;. The solution
to (12) is given by the singular value thresholding opera-

tor [28]. For this purpose we must first compute the singular
value decomposition of the symmetric matrix

vk = UxU*,

and apply the soft-thresholding operator to it’s singular
values

S1/p(%) = diag(a; — 1/p) .,

where a = max{a, 0}. The solution to the M-minimization
problem will thus be determined by

MM =US,,,(8)U*.
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