Low-complexity stochastic modeling of turbulent flows

ARMIN ZARE, MIHAILO R. JOVANOVIĆ, AND TRYPHON T. GEORGIOU

MOTIVATION

Control of turbulent flows prevent/suppress turbulence reduce turbulent drag efluids photo

• Challenges

- large number of degrees of freedom
- complex flow dynamics

• Objectives

- control-oriented modeling of turbulent flows

• Ongoing research

- model-based flow control design

superhydrophobic surface

active

hot-film sensors and wall-deformation actuators (Yoshino et al. 2008)

APPROACH

Stochastically forced Navier-Stokes equations

stochastic linearized forcing dynamics

velocity fluctuations

• embed observed statistical features of turbulence in controloriented models

- view second-order statistics as data for an inverse problem
- identify forcing statistics to account for partially known turbulent statistics

Turbulent channel flow

• Linearized evolution model

$oldsymbol{\psi}_t$	=	$A\psi+{f f}$	<u> </u>	$A_{\rm os}$	0]
\mathbf{V}	=	$C oldsymbol{\psi}$	A -	$A_{\rm cp}$	A_{sq}

Covariance matrix completion problem

white noise

Economic impact

$$\boldsymbol{\psi} = \left[egin{array}{c} v \ \eta \end{array}
ight] \quad \mathbf{v} = \left[egin{array}{c} u \ v \ w \end{array}
ight]$$

Control, 2013, pp. 1702-1707.

completion problem", in Proceedings of the 52nd IEEE Conference on Decision and