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DATA-ENHANCED STOCHASTIC DYNAMICAL MODELING FOR WIND FARMS

Aditya H. Bhatt, MS
The University of Texas at Dallas, 2022

Supervising Professor: Armin Zare, Chair

Low-fidelity analytical models of turbine wakes have traditionally been used to demonstrate
the utility of advanced control algorithms in increasing the annual energy production of
wind farms. In practice, however, it remains challenging to achieve significant performance
improvements using closed-loop strategies that are based on conventional low-fidelity models.
This is due to the over-simplified static nature of wake predictions from models that are
agnostic to the complex aerodynamic interactions among turbines. In this thesis, we offer a
stochastic dynamical modeling framework to improve the predictive capability of low-fidelity
models while remaining amenable to control design. The framework is capable of capturing
the effect of atmospheric turbulence on the thrust force and power generation as determined
by the actuator disk concept. In this approach, we use stochastically forced linear models of
the turbulent velocity field to augment the analytically computed wake velocity and achieve
consistency with higher-fidelity models in capturing power and thrust force measurements.
The power-spectral densities of our stochastic models are identified via convex optimization
to ensure statistical consistency while preserving model parsimony. We demonstrate the
utility of our approach in estimating the thrust force and power signals generated by large-
eddy simulations of the flow over a cascade of turbines. We also evaluate the capability of
our models in predicting turbulence intensities at the hub height of a multi-turbine wind
farm.
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dependence of the velocity field ū(x, z) generated by the analytical model (5.2)
from Bastankhah and Porté-Agel [8] over the 2D computational domain at hub
height. The thick black lines mark the location of the turbine rotors. . . . . . . 20

3.2 (a) The spanwise dependence of the resistance function K−1(z) following Equa-
tion (3.6) with z1 = −0.1, z2 = 0.1, a = 5, and c = 400. (b) The streamwise
and spanwise dependence of the resistance function K−1(x, z) corresponding to
Equation (3.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 The eigen spectrum analysis of the dynamic generator A with tuneable parameter
(a) c = 0, (b) c = 50, (c) c = 100, (d) c = 150, (e) c = 184, (f) c = 185 in the
resistance function Eq. 3.6. (∗) are stable eigen values and (∗) denoting the
unstable eigen values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix

https://www.eia.gov/energyexplained/us-energy-facts/


5.1 (a) Results for matching thrust force F̄ and predicting power generation P̄ over
various turbines in the 4 × 1 cascade; (b) Results for matching power generation
P̄ and predicting thrust force F̄ ; (c) Results for matching the balanced approxi-
mation of both thrust force and power. LES data (∗); predictions of of analytical
model [8] (•); and predictions of our data-enhanced stochastic dynamical model
(⃝). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 (a) Schematic of hub-height computational plane with data points used for train-
ing in Section 5.5.1 highlighted in red; (b) Hub-height streamwise velocity ū(x, z)
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CHAPTER 1

INTRODUCTION

The constantly evolving technological landscape is evident with the presence of smart devices
in our day-to-day lives. While the intended use of such devices is to improve our lifestyle,
a consequence is the increasing energy consumption and subsequently escalating demands
on the global energy production. The UN world population prospects estimate a global
population of approximately 10 billion by 2050 [104]. Moreover, based on the projection by
US Energy Information Administration (EIA), the global energy demand is expected to reach
45 trillion KWh per year in 2050 up from 25 trillion KWh in 2022. Traditionally, the energy
industry has mainly relied on the use of fossil fuels, oil or harvesting the heat generation
through nuclear fission as primary sources for producing electric power. However, not only
are fossil fuels non-renewable resources, their energy extraction process comes with carbon
footprint. Moreover, assuring stability of operation and safe disposal of cooling agents in
a nuclear power plant is an arduous task. A growing realisation of the shortcomings and
environmental hazards associated with these methods has led to a shift in emphasis towards
utilisation of sustainable energy resources such as solar and wind. Advancements in material
science have enabled development of solar panels that are small and light in weight, thus
enabling use beyond the commercial sector. Further, thanks to the contributions of Albert
Betz and others during start of 20th century, the foundations of wind energy science were
laid. This lead to the use of wind turbines, which were often used as mills in farms, as
dynamos for producing electricity.

The installed capacity of solar and wind energy has been growing exponentially with a
forcasted 4800 GW global capacity by 2026. Inspite of such high numbers, renewable energy
contributes to a mere 12% of energy consumption in the US (see Figure 1.1(b)). One of
the reasons for these low numbers is efficiency. While solar energy is roughly 23% efficient,
wind energy conversion is close to 50% efficient [107]. Such low outputs impact the cost of
energy extraction thus making it an unfavourable prospect not only for companies but also
for end users. In order to meet at least a half to two-third of the global energy demands
while maintaining economical viability, there needs to be a strategic plan for advancement
of knowledge and transfer of modern technologies to the industry.

The levelized cost of energy (LCOE) for wind farms is obtained as a ratio of the to-
tal energy production to the total investment in installation and maintenance of the farm
throughout its life cycle (approx. 20 years). Thus, in order to produce energy in a cost
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(a)

(b)

Figure 1.1: (a) Global energy consumption by source based on the substitution method
which takes into account the inefficiencies of the fossil fuel production [40],(b) The total
energy consumption in the US based on the source of generation (source: EIA).
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effective manner, focus needs to be centered around increasing the efficiency and ensuring
durability of mechanical and structural components. In [106], the authors have highlighted
these aspects and captured the key challenges in the science of wind energy, namely: (i)
improved understanding of physics of atmospheric flow in the critical zone of wind power
plant operation, (ii) material and system dynamics of individual turbines, and (iii) opti-
mization and control of fleets of wind plants comprising hundreds of individual generators
working synergistically within the larger electric grid systems. Given the fact that these
challenges are interlinked and multidisciplinary, overcoming them can not be achieved in
isolation rather a coordinated development of all aspects related to wind turbine technology
is required.

The first challenge relates to region of operation of the wind turbines in earth’s atmo-
sphere. Wind turbines operate in the atmospheric boundary layer (ABL), which exists in the
intermediary region between the ground and the geostrophic wind above and is canonically
composed of a mean shear flow and fluctuations that span a wide range of scales [100]. The
diverse range of coherent motions in the ABL affect the development of wakes behind tur-
bines and thereby energy production and structural durability within wind farms [77, 99].
For example, dominant streamwise elongated streaks of high-and low-speed winds at the
wind farm scale and mesoscale have been linked to turbine wake meandering in the lat-
eral directions (Figure 1.2) [77, 99]. However, ABL conditions have a decreasing relevance
as wind penetrates deeper into an array of turbines within a farm. Instead, downstream
turbine wakes are impacted by the wakes of upstream ones and vertical kinetic energy en-
trainment from high speed flows above hub height. Through such nonlinear interactions,
turbine wakes reduce the incoming ABL’s mean streamwise velocity while increasing tur-
bulence intensity [7, 99], which defines the second challenge of ensuring structural rigidity
of the turbines. The effective entrainment of kinetic energy and turbine-induced mixing
results in a reduction in power production and an elevation in dynamic loads. A possible
way to overcome such negative effects can be achieved through the coordination and control
of turbines.

1.1 Wind farm control

Wind streams are caused due to the earth’s rotation, coriolis forces, and uneven heating of
the surface. The key characteristics of wind are its speed and direction of flow. Given the
dependence of wind characteristics on factors such as geography and terrain, wind speed
and direction at a specific location are not constant. The changes in these quantities can
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Figure 1.2: Interactions between the turbulent ABL and wind farms through turbulent eddies
and meandering streamwise streaks of high- and low-speed winds.

occur over a day (i.e diurnal) or longer period of time. Wind turbines would ideally function
the best while facing the wind at all times and operating under a steady velocity. How-
ever in reality, wind turbines need to be yawed to face the wind and a gearbox is required
to assist with variable speeds of operation. To perform these tasks in a scientific man-
ner, researchers have suggested the use of control strategies that can enhance the collective
performance of wind turbines located with close proximity (i.e. wind farms). In recent
years, many simulation-based and experimental studies have demonstrated the efficacy of
induction and wake steering as control strategies that can improve the performance of wind
farms [2, 12, 24, 27, 30, 31, 42, 94]. To date, most studies have focused on open-loop control
policies that are informed by look-up tables that determine the optimal turbine settings
offline and based on the response of static engineering models to different steady-state at-
mospheric conditions, i.e., wind directions, wind speed, turbulence intensity, etc. Model-free
methods, e.g., extremum seeking control, have also been proposed for maximizing power
production [19, 21, 49]. While such open-loop approaches are shown to be successful in con-
trolled numerical or experimental testing environments [12, 19, 31, 42], potentially unforeseen
variations in turbulent inflow conditions, terrain specific effects, or sensing/actuation errors
can hinder their generalizability, and thus, their applicability at the scale of large wind farms.
Robust feedback control provides the systematic means to tackle such challenges by account-
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ing for uncertainties in sensing and actuation, unknown exogenous disturbances, in addition
to modelling errors [97, 118].

The vast range of scales over which coherent structures affect turbine performance cou-
pled with the interplay between scales, in addition to the complexities of wake turbulence
necessitate the development of control-oriented models for the analysis and control of wind
farms [105, 106]. Nevertheless, closed-loop control design has predominantly relied on compu-
tationally expensive high-fidelity models such as those that are used in large-eddy simulations
(LES) to demonstrate meaningful performance improvements [25, 26, 36, 37, 70, 71, 72, 95].
While such models play an important role in improving our understanding of wake turbu-
lence, they are not suitable for the development of online model-based control strategies
that can adapt to time-varying atmospheric conditions informed by supervisory control and
data acquisition (SCADA) measurements. This motivates the development of lower fidelity
models that capture the essential flow features and quantities of interest for analysis or
control.

Seminal efforts in developing low-fidelity models of turbine wakes focused on two- di-
mensional (2D) heuristic based methods that capture the reduction in the mean streamwise
velocity at hub height for given steady atmospheric conditions [3, 48, 57]. Enabled by
structural approximation of turbine rotors, e.g., the actuator disk model (ADM) [14], more
sophisticated variants that observe conservation principles for mass and momentum [32] or
even model the mean streamwise velocity deficit as a Gaussian distribution [8] were com-
bined with linear wake superposition laws to provide more reasonable predictions of the
power captured by wind farms. The predictions of such static engineering models of the
averaged velocity field typically depend on a set of parameters that can be tuned to match
field measurements or LES data, e.g., [16, 109, 117]. Efforts have also been made to incor-
porate 3D effects resulting from turbine yawing or ground effects into numerical integration
schemes and predict the curled shape of turbine wakes [65, 66, 119]. More recent analytical
developments bypass the need for numerical integration while accounting for curled shape
deformations and even lateral and wall-normal deflections of turbine wakes due to, e.g., the
ground [9]. Nevertheless, in the absence of a dynamical model for background turbulence,
the over-simplified static nature of conventional engineering wake models that neglects the
time-varying features of near-field turbulence leads to the under-prediction of wake recovery.
This, in turn, can yield inaccurate predictions of quantities of interest for wind farm control,
i.e., the load and power corresponding to each turbine.

To overcome the shortcomings of static engineering models, contributions have been
made to add a degree of dynamics or parametric stochasticity to analytical models, e.g.,
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the dynamic wake-meandering model [60], models that incorporate time-delays to capture
wakes that travel at free-stream velocity [33], the dynamic extension of the Park model [4],
and the stochastic ADM model [39]. Reliance on extensive parametric tuning, dynamical
complexities, and the absence of constructive methods for uncertainty modeling challenge
the utility of such models for real-time estimation and control. Medium-fidelity models,
e.g., those that are based on the Reynolds-averaged NS (RANS) equations, have sought to
overcome some of these issues by capture the 3D dynamic variation of the velocity field
and introduce turbulence models that enable wake recovery [45, 10, 62]. The limitations of
current turbulence models and the nonlinear nature of RANS-based models, however, hinder
the utility of such models for optimal estimation and control strategies using conventional
algorithms.

Machine learning approaches have also been used to obtain reduced-order models based
on data collected from experiments and numerical simulations [47, 84, 96, 108]. Data-driven
methods are attractive due to their flexibility in analyzing different physical phenomena.
However, their utility in solving real-world problems is often challenged by the uninter-
pretability of dynamic links that are identified through optimization procedures, intricate
multi-layer nature models that are identified via (deep) neural networks, and the reliance
on extensive parametric tuning. Moreover, a detachment from the mathematics that gov-
ern the complex interaction between the ABL and turbine wakes can cause anomalies and
insufficiencies in the training dataset to challenge the viability of purely data-driven meth-
ods in providing a robust, generalizable solution for real-time model-based estimation and
control [74, 101].

In [98], the linearized Navier-Stokes (NS) equations were combined with vortex cylinder
theory to provide a physics-based alternative for dynamical modeling of wind farm flows.
Furthermore, in conjunction with actuator disk theory, the 2D linearized NS equation have
been reformulated as a quasi linear parameter varying descriptor model and used for the
purpose of wind farm control [11]. Linearized models can overcome some of the shortcomings
of conventionally used low-fidelity wake models in qualitatively predicting flow features of
turbulent wakes and the resulting power production [10]. However, quantifying and modeling
the uncertainty due to (i) the choice of base flow around which we linearize the governing
equations, and (ii) the absence of nonlinear terms remains challenging. Modeling such sources
of uncertainty plays an important role in obtaining well-posed estimation gains [17, 41] when
using linear models for predicting flow statistics or quantities of interest for control design,
e.g., thrust force or power generation at turbines.
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1.2 Stochastic dynamical modeling of turbulent flows

In this thesis, we propose to build on the stochastic dynamical modeling framework of [111,
112, 115, 116] to address the aforementioned challenges in the control-oriented modeling of
wind turbine wakes. Our framework utilizes a data driven approach for enhancing the pre-
dictions of an underlying physics based model. The enhancement in predictions is obtained
by subjecting a linear model to additive stochastic forcing that is shaped using statistics
from the non-linear flow. In the presence of additive sources of deterministic or stochastic
excitation, the linearized NS equations have been shown to capture structural and statistical
features of transitional [15, 103, 28, 6, 53, 55, 79] and turbulent [67, 44, 115, 112] wall-bounded
shear flows, in addition to facilitating model-based analysis and design of flow control strate-
gies [54, 68, 69, 80]. Additive stochastic excitation provides a statistical response and allows
for a qualitative and quantitative comparison between the predictions of the linear model
and a turbulent flow field in terms of statistical quantities, e.g., the mean and variance of the
velocity field. Such sources of excitation also capture the effect of the neglected nonlinearity
as well as exogenous disturbances. Based on this, inverse problems can be posed to utilize
statistical signatures of turbulent flows that are generated by numerical simulations of the
NS equations (e.g., from [22, 23, 92, 93]) or experimental measurements (e.g., from [43, 91])
to shape the statistics of stochastic forcing. This approach to turbulence modeling was orig-
inially proposed by Zare and collaborators in [114, 111, 116], where a stochastic modeling
framework was developed to account for partially observed statistical signatures of complex
dynamical systems (e.g., turbulent flows) by introducing parsimonious perturbations to the
linearized dynamics. Such dynamical perturbations are obtained using a systematic proce-
dure for the realization of colored-in-time stochastic forcing of the linearized equations such
that its output is statistically consistent with nonlinear simulations of the governing partial
differential equations. The cascade connection of the linearized dynamics and the proposed
filter dynamics that generate the stochastic forcing introduces a dynamical perturbation that
acts as a data-driven enhancement to the linearized equations; see Figure 1.3.

Application of this framework to turbulent channel flows at different Reynolds numbers
has demonstrated the efficacy of this approach in capturing various structural and statistical
flow features. For example, when trained with one-point correlations of the velocity field
(normal/shear stresses), it has been shown that such models not only perfectly match the one-
dimensional energy spectrum, but they also reasonably predict two-point velocity correlations
that are pertinent to the prediction of turbulent flow structures as well as spatio-temporal
features, such as the power spectral density. The linear dynamics resulting from the cascade
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6

modified dynamics

Figure 1.3: Parsimonious modifications of linearized dynamics are formed via the cascade
connection of the linearized dynamics with a spatio-temporal filter that is designed to account
for available output statistics.

connection shown in Figure 1.3 can be analyzed using tools from systems theory and used
to generate turbulent flow statistics via inexpensive stochastic linear simulations; see [115,
112] for details. In this thesis, we build on the stochastic dynamical modeling framework
of [111, 115, 112, 116] to augment the predictions of low-fidelity analytical models with the
fluctuating velocity field obtained via stochastically forced linear models that are trained to
match SCADA measurements or LES-generated data.

1.3 Organization of the thesis

The remainder of this thesis is organised into five chapters and an appendix. In summary,
the thesis explains the stochastical dynamical modeling framework applied to a wind farm.

• Chapter 2 explains the actuator disk model for wind turbine which is the basis for
different analytical wake models existing in the literature. The models apply basic
laws of conservation of mass and momentum to compute the wind velocity profile. We
also highlight the shortcomings of these models in predicting the key quantities such
as the thrust force and power in a wind farm.

• Chapter 3 provides an augmentation to the analytical relationships for thrust force
and power in order to improve the predictions of thrust force and power. A detailed
explanation of the stochastically forced linearised Navier-Stokes equations around a
2D base flow is provided.

• Chapter 4 elaborates on the data available from high-fidelity simulations and our meth-
ods for the of information in shaping the stochastic forcing that excites a statistically
consistent response frmo the linearized NS model and improves predictions of thrust
force and power over wind farms.

8



• In chapter 5, we apply our model over a 2D plane at hub-height on a 4 × 1 cascade of
wind turbine. The results highlight the capabilities of the model predicting quantities
of interest, i.e., thrust force, power, and turbulence intensities, in comparison with the
predictions of LES.
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CHAPTER 2

ENGINEERING WAKE MODELS

Various approaches such as analytical models, computational fluid dynamics (CFD), wind-
tunnel and field experiments have been used in order to provide insightful information about
the flow in a wind farm. Large-eddy simulations that can accurately predict the turbulent
boundary layer flow have aided the development of tools for validation of wind farm tech-
nologies. Although the results of high-fidelity models are useful in analyzing the physics of
turbulent wakes, they are only possible with help of large computational power and their
accurate simulation require time on the order of days. Analytical wake models provide the
basis for reduced order models that provide more flexibility and agility in analyzing flow field
data.

Several models derived on simple laws of conservation, referred as engineering wake mod-
els, have been proposed in the literature. The key feature of these models is their low
complexity which makes them an ideal candidate for layout optimization and control of
wind farms. To start with the understanding of analytical models, we first describe the
actuator disk model (ADM) for representing the wind turbine [14, Chapter 3]. The ADM
represents the rotor as a porous disk that extracts kinetic energy from the wind reducing its
velocity. Upon analysing the flow around the disk along a stream-tube(see Fig. 2.1), we can
see that energy extraction process results in the expansion of the streamtube in the wake
of the turbine. The energy extraction process within a control volume around the actuator
disk yields the following expressions for the exerted thrust force and extracted power:

F =
1
2 ρ A CT u2, P =

1
2 ρ A CP u3.

Here, F is the thrust force, P is the power, ρ is the air density, A is the area of the rotor disk,
u is the effective surface-averaged velocity on the rotor disk, and CT and CP are, respectively,
thrust and power coefficients that can be defined as functions of the axial induction factor:

CT = 4a (1 − a) , CP = 4a (1 − a)2 .

The maximum value of CP , which characterizes the Betz limit for turbine efficiency, is
obtained with a = 1/3 as 0.593 [14]. The energy generation in a wind farm can be estimated
using these equations. However, in order to accurately predict these quantities, we need to
compute the wind velocity within the farm. As explained earlier, the energy extraction
by the wind turbine results in the development of a region of extremely low wind speeds
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Figure 2.1: The actuator disk model (ADM). The rotor is considered as a porous disk that
extracts the kinetic energy from the wind while reducing the wind velocity [14].

downstream of the turbine known as the wake. This region can be further classified into
near wake and far wake regions. Near wake region is the highly turbulent region behind the
turbine lasting roughly up to 5 diameter distance downstream. The flow in this region is
dominated by the geometry of the turbine i.e. the tip-speed ratio (TSR) and the blade pitch
angle. The far wake region is comparatively less turbulent as the pressure gradient becomes
less significant and recovery in the speed due to the inter-mixing of the surrounding wind is
observed. The far wake usually begins after 5 diameter downstream of a turbine. Based on
this understanding of the wakes, various analytical approaches that model the shape of the
wake thus, providing a providing a relationship for the wind velocity. We now discuss some
of the wake models.

2.1 Wake modeling based on co-flowing jets

One of the first interpretations of a wind turbine wake was proposed by Lissaman [63]. The
idea was based on the theory of coflowing jets [1] wherein two distinct regions of the wake
can be defined, the initial region of constant velocity potential core exist and the other far
downstream. The potential core in the initial region is considered to have uniform velocity
and radius rc, while the velocity outside the core is defined by a characteristic shear layer.
The core velocity U in the near wake region is given by the relation

U

U∞
=


1
m

; 0 < r < rc

1
m

+
m − 1

m(1 − η1.5)2 ; rc < r < R
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where,m is the ratio of outer flow velocity and spatially free-stream velocity (U∞), r is the
distance for the core centerline, R is the effective outer radius of the wake, (R − rc) is the
width of the turbulent mixed zone, and η = (r − rc)/(R − rc). In the far wake region the
velocity is obtained based on a static deficit as a factor of ξ = r/R

U

U∞
= 1 − U∞(1 − ξ1.5)2

Based on these relationships, it is possible to obtain the velocity profile within a farm. It
is important to note that a strong assumption of self similarity in both the wake regions is
made.

2.2 Park Model

The Park model [57], developed as an extension of the Jensen model [48], incorporates wake
superposition for velocity in the farm. It is one of the earliest proposed wake model. The
simple nature of this model has made it a popular choice in many wind farm control strategies
in the literature. The model assumes a uniform deficit (i.e. top-hat) for the velocity within all
location in a uniformly expanding wake (see Figure 2.2). The reason for this represenatation
of deficit was to depict the energy content accurately rather than describing the velocity field.
The velocity behind a turbine at a downstream distance x is calculated using the relation

U = U∞

1 − 2
3

 r0
r0 + αx

2 
where, r0 is the rotor diameter, α is a tuneable nondimensional constant for wake parameter-
ization. The relation is obtained by applying the conservation of momentum and neglecting
the near wake turbulence. The velocity just behind the turbine is assumed to be 1

3U∞. This
is a very crude assumption as the velocity behind the turbine is dependent on the turbine
calibrations, however, there is a reasonable correlation in the far wake regions with SCADA
data or the high-fidelity simulations. Although the model provides a good representation of
the wake, the top-hat deficit is a slight oversimplification of the reality.

2.3 Eddy viscosity model

A more detailed approach to understanding the wake is described in [3]. The wake is consid-
ered to be axisymmetric, turbulent and with zero circumferential velocities. In the far wake
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Figure 2.2: Schematic representing the top-hat approach for modeling the wake. The turbine
is represented with thick black line and the uniformly growing wake profile is shown about
the center line (dashed)

region, where the pressure gradient is negligible, the NS equation can be replaced with its
equivalent thin layer approximation and the viscous term dropped yielding

U
∂U

∂x
+ V

∂U

∂r
= −1

r

∂(r uv)

∂r

where U and V are the streamwise and spanwise velocity respectiely, and uv are the shear
stresses. The eddy viscosity is defined by

−uv = ϵ
∂U

∂r
; ϵ = lw(x)Uw(x) + ϵa

where lw and Uw are the suitable length and velocity scales describing the wake shear layer
and ϵa is the ambient turbulence contribution to the eddy viscosity. Using the eddy viscosity
model for wake deficit, a new model model named as dynamic wake meandering (DWM)
model has been proposed [60]. The model provides a unfying solution for analysing the
power production and loading conditions on the turbine. The wake deficit and turbulence
models are solved apriori and combined with the aeroelastic model FAST to analyse the
turbine response. The DWM model is slower as compared other analytical model and is not
suitable for implementation of feedback control as it calculates the flow field for each turbine
for the entire simulation time.
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2.4 Gaussian deficit model

Through the studies of bluff bodies in free stream flows, it was observed that the wake
exhibited a self-similar Gaussian profile of the velocity deficit in the far-wake regions. Based
on this information, authors in [8] proposed Gaussian deficit model for the wake behind a
wind turbine. The velocity is given as

U = U∞

1 − C(x)e− r2
2σ2


where C(x) represents the maximum normalized velocity deficit at each downwind location
along the center of the wake, r is the radial distance from the center of the wake, and σ is
the standard deviation of the Gaussian-like velocity profile at each x location.
Assuming a linear expansion of the wake, σ can be expressed as

σ

d0
= k∗ x

d0
+ ϵ

here k∗ is the constant parameter representing the wake growth rate (∂σ/∂x). The normal-
ized velocity deficit is thus calculated using the relation

∆U

U∞
=

1 −
√√√√√√1 − CT

8
(

k⋆
x

d0
+ 0.2

√
β
)2

 e

−
1

2
(

k⋆
x

d0
+ 0.2

√
β
)2

( y

d0

)2
+

( z

d0

)2


(2.1)

where ∆U = U∞ − U is the velocity deficit, and x, y, z are the distances in the streamwise,
wall normal and spanwise directions from the wake center line . In order to obtain an
accurate velocity field it is important to tune the parameters precisely. It has been shown
with the help of field data, relationships based on the incoming turbulence intensity (TI)
can be obtained to decide the constants [117].

2.5 Wake superposition

Another phenomenon that is witnessed in a wind farm is the overlap between wakes of
two individual turbines. Analytical wake models account for this through superposition of
deficits. The approach involves calculating the velocity at each location in the farm and then
apply superposition to account for the interactions between overlapping wakes. Although the
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Figure 2.3: The normalized wake velocity using the Gaussian profile for the deficit calculated
using Eq. 2.1. The turbine is indicated with the thick black line.

overlapping of wakes may increase the turbulence and affect the performance of the downwind
turbines, this phenomenon can be utilized to identify the cluster of turbines that need to be
coordinated to maximize the power extraction. Since the very first study involving analysis
of wake through jet theory Sec. 2.1, different superposition methods have been proposed.
The difference in the methods originates from their use of either linear superposition of
velocity deficit (Eq. 2.2) or linear superposition of energy deficit (Eq. 2.3).

U(x, y, z) = U∞ −
n∑

i=1
∆Ui(x, y, z) (2.2)

U(x, y, z) = U∞ −

√√√√ n∑
i=1

∆U2
i (x, y, z) (2.3)

where the subscript (i = 1 to n) denotes the velocity deficit induced by all the upwind
turbines with wake overlap at the given location X(x, y, z).

2.6 Shortcomings of the analytical wake models

Although the analytical wake models are useful for wind-farm layout optimization, they ne-
glect the time-varying near-field turbulence behind the wind turbine and when combined
with linear wake superposition laws they provide an over-simplified prediction of wake ve-
locities under steady atmospheric conditions. In the absence of a turbulence model that can
capture the effect of the ABL and rotor-induced mixing, velocity deficits predicted by such
models are typically over-predicted, and thus, lead to inaccurate predictions of the load and
power (Figure 3.1).

Following a similar approach as the ADM with rotation from Porté-Agel et al. [78] and
Wu and Porté-Agel [110], the thrust force and power can be computed as the aggregate of
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Figure 2.4: Geometric sketch of a 2D grid of collocation points around a turbine rotor. The
sample grid demonstrates the division of the turbine rotor into 3 equally sized segments. The
staggered points where the effective velocities ueff and the intensities used in Equations (3.2)
are computed are marked by the red dots.

(a) (b)

F̄

turbine number

P̄

turbine number

Figure 2.5: (a) Predictions of thrust force F̄ and (b) power generation P̄ from LES (∗) and
the result of using Equation (2.4) with 15 segments across the spanwise extent of turbine
rotors (see Fig. 2.4) and the velocity field predicted by the analytical model (5.2) (•).

contributions from constituting segments of a turbine rotor resulting from the discretization
of the spatial domain, i.e., F =

∑
i Fi and P =

∑
i Pi, where

Fi =
1
2 ρ Ai CT u2

eff,i, Pi =
1
2 ρ Ai CP u3

eff,i. (2.4)

Here, Ai represents the area of the rotor disk segment and ueff,i represents the effective
velocity over the ith segment, which may be computed as the resultant velocity field evaluated
on a staggered grid; see Figure 2.4 for an illustration.
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A solution to this could be to analyse medium fidelity models such as those that are
based on the Reynolds-averaged NS equations (RANS) or eddy viscosity. These models are
not prone to similar issues as they capture the 3D dynamic variation of the velocity field
and introduce turbulence models that enable wake recovery [45, 10]. A downside however,
is the computational demands. We take a step in compensating the shortcomings of low-
fidelity models via reduced-order modeling of second-order statistics of the velocity field
that are pertinent in the prediction of thrust force and power for various turbines using
turbulence intensities in accordance with field measurements or LES results. To this end,
we adopt the stochastic dynamical modeling framework of Zare et al. [111, 115, 112] to
model the effect of background turbulence using linear dynamical models and improve the
predictive capability of low-fidelity engineering models without adding to their dimensional
complexity (Figure 6.1). The resulting data-enhanced models are of low-complexity and are
thus convenient for conducting linear stochastic simulations. They are also well-suited for
analysis and synthesis using tools from modern robust control as they provide an explicit
linear state-space representation for the dynamics of velocity fluctuations in wind farms.

In this chapter, we discussed the various low-fidelity analytical models that can be utilised
to obtain the velocity field in a wind farm. While these models are simple and provide
accurate representation of the velocity in the far wake, they over predict the deficit and do
not capture the trend of prediction for thrust force and power. In the next chapter we present
our approach for introducing a degree of freedom to augment the predictions of quantities.
We also introduce the linearized Navier-Stokes equations that govern the dynamics of flow
fluctuations around a base flow profile informed by analytical wake models.
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CHAPTER 3

STOCHASTICALLY FORCED LINEARIZED NAVIER-STOKES

The wind velocity field u in the farm can be decomposed into the sum of a time-averaged
mean ū and zero-mean fluctuations v as

u = ū + v, ū = E [u] , E [v] = 0 (3.1)

where overline and E [·] both denote the time-average operator, e.g.,

ū(x) = E [u(x, t)] = lim
T →∞

1
T

∫ T

0
u(x, t + τ ) dτ .

Here, x denotes the spatial coordinates and t is time. The velocity fluctuation field v, which
we will use to capture the effect of atmospheric turbulence on the wake model, is assumed to
be a stochastic Gaussian process. When the velocity incident on the turbines is perpendicular
to the rotor and there is no cross-wind, substitution of Equation (3.1) into Equation (2.4)
yields the following equations for the time-averaged thrust force and power associated with
ith segment of the rotor:

F̄i =
1
2 ρ Ai CT

(
ū2

eff,i + v2
eff,i

)
(3.2a)

P̄i =
1
2 ρ Ai CP

(
ū2

eff,i + v2
eff,i

)3/2
, (3.2b)

where the effective velocities can represent the resultant of their components, e.g., veff =√
u2 + w2 when v = [ u w ]T , and the stochastic properties of the fluctuation field v, namely

its zero mean (cf. Equation (3.1)) and skewness (due to its Gaussian distribution), have been
used to eliminate certain terms. Based on Equations (3.2), the scalar quantities that we ob-
tain for the thrust force and power of each turbine are functions of not only the effective
mean velocity ū, but also the second-order statistics of the fluctuation field v at the stag-
gered points of the discretization grid. While analytical models provide a static prediction
of the effective velocity in the wind farm (similar to ū), the fluctuation field v provides
an additional dynamic degree-of-freedom whose second-order statistics can be modeled to
improve predictions of flow quantities across the farm; given a set of available time-averaged
thrust force {F̄i} and power {P̄i} measurements for various turbines, the dynamics of v can
be sought to augment the predictions of static analytical models by providing the neces-
sary second-order statistics v2

eff for matching the available data (cf. Equations (3.2)). On

18



the other hand, the statistics of v may be directly modeled to match turbulence intensities
across the wind farm.

A number of options exist for modeling velocity fluctuations v including data-driven
approaches. Herein, we follow the stochastic dynamical modeling approach of Zare et
al. [111, 115, 112] and pursue stochastically forced linear time-invariant (LTI) approxima-
tions of complex wind farm flow dynamics. Specifically, we assume the following state-space
representation

ψt(x, t) = Aψ(x, t) + B d(x, t)

v(x, t) = Cψ(x, t)
(3.3)

for the dynamics of velocity fluctuations v, where ψ is the state vector, d is a station-
ary zero-mean stochastic process, A is the dynamic generator that represents the prior
dynamical representation for the turbulent flow dynamics, B is the input operator that is
used to introduce the input d into the dynamics, C is an output operator that relates the
state ψ to the output velocity field v, and (·)t is the partial derivative with respect to
time. In this thesis, we focus on physics-based dynamical approximations resulting from
linearization of the NS around static base flow profiles that are generated by conventional
engineering models. Nonetheless, alternative linear models, which may result from appli-
cation specific assumptions/simplifications, or data-driven methods such as dynamic mode
decomposition [5, 56, 90, 89] may also provide viable starting points for our modeling frame-
work. Together with the prior low-fidelity engineering model that predicts ū, the dynamical
model considered for velocity fluctuations v gives rise to a class of low-complexity models
that are more accurate in predicting quantities that depend on turbulent flow statistics, but
maintain a lower dynamic complexity relative to medium-fidelity models (Figure 6.1).

3.1 Linearized Navier-Stokes

In this section, we establish the governing physics of the wind farm which can be modeled
into the form of a linear system. The Navier-Stokes equations are the reference for any
form of fluid flow but they demand computational power over a long duration to provide
satisfactory results. In order to develop a reduced order model for the wind farm, we utilise
our augmented velocity to linearize the NS equations around a static velocity profile ū that
is generated by a low-fidelity engineering wake model. Our focus will be on 2D models of
wind farm turbulence that are constrained to planes at the hub height of wind turbines. We
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(a)

(b)

z

x

Figure 3.1: (a) A cascade of 4 equally spaced turbines. (b) The streamwise and spanwise
dependence of the velocity field ū(x, z) generated by the analytical model (5.2) from Bas-
tankhah and Porté-Agel [8] over the 2D computational domain at hub height. The thick
black lines mark the location of the turbine rotors.

note, however, that the proposed modeling framework is readily generalizable to 3D wind
farm models that account for the remaining wall-normal dimension.

The dynamics of small velocity and pressure fluctuations (v, p) around the base flow
profile (ū, P̄ ) are governed by the linearized NS and continuity equations

vt = − (∇ · v) ū − (∇ · ū)v − ∇p +
1

Re
∆v − K−1 v + d

0 = ∇ · v
(3.4)

where the vector v = [ u w ]T , with u and w denoting components of fluctuating velocity field
in the streamwise (x) and spanwise (z) directions, respectively, ∇ is the gradient operator,
∆ = ∇ · ∇ is the Laplacian operator, and the Reynolds number Re = U∞d0/ν is defined
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in terms of the rotor diameter d0, the free-stream velocity U∞, and the kinematic viscosity
ν. All variables in Equation (3.4) have been non-dimensionalized: length by d0, velocity by
U∞, time by d0/U∞, and pressure by ρ U2

∞. In Equation (3.4), d represents an additive
zero-mean stationary stochastic input that triggers a statistical response of the linearized
dynamics.

A standard conversion for the elimination of pressure together with finite-dimensional
approximation of the differential operators brings the linearized equations (3.4) into the
form of the evolution model

v̇(t) = A v(t) + B d(t) (3.5)

3.2 Volume penalization technique

In Equation (3.4), the volume penalization term K−1v is used to capture the effect of
turbine rotors and nacelles (and even turbine towers in 3D models) on the velocity field.
This method avoids the implementation of boundary conditions in complex geometries by
modeling the effect of solid obstructions of the flow as a spatially varying permeability
function K that influences the governing equations as an additive body force. Within the
fluid, the penalization resulting from the permeability function K should have no influence
on the flow, i.e., K → ∞, yielding back the original linearized NS dynamics for v. On the
other hand, within solid structures, the function K should force the velocity field to zero,
i.e., K → 0; see [58] for details. We note that this method was recently used to account for
the presence of spanwise periodic surface corrugation (riblets) in turbulent channel flow [80].
To capture the spatial region that is influenced by the presence of the turbines, we use a
smooth 2D filter function of the form:

K−1(x, z) =
c

π2 [atan(a(x − x1)) − atan(a(x − x2))] (3.6)

× [atan(a(z − z1)) − atan(a(z − z2))] ,

where x1,2 and z1,2 determine the spatial extent of the rotors in the horizontal directions
and parameters a and c determine the slope and magnitude of the function, respectively;
see Figure 3.2 for samples of 1D and 2D resistance functions K−1. Typically, the slope a is
set to a reasonably large value that clearly captures the spatial extent of the turbines but
does not violate differentiability or cause large derivatives of K−1 in the linearized operator.
Depending on the arrangement of the farm and the orientation of the turbine to the incoming
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Figure 3.2: (a) The spanwise dependence of the resistance function K−1(z) following Equa-
tion (3.6) with z1 = −0.1, z2 = 0.1, a = 5, and c = 400. (b) The streamwise and spanwise
dependence of the resistance function K−1(x, z) corresponding to Equation (3.6).

wind, the parameters in the resistance function need to be tuned. Ideally, the magnitude
c would be set to extremely large values to ensure a significant drop in the velocity field
within the turbine structures. However, in practice, large values of c can violate stability
of the linearized NS operator. In Fig. 3.3 we show the effects of increasing intensity on the
eigen spectrum of the dynamic matrix A. Starting with absence of turbines with the domain
(i.e. c = 0), Fig. 3.3(a) indicates that the flow is marginally stable (eigenvalues of A in
Equation (3.3) fall on the imaginary axis). As we keep increasing the parameter, we observe
the dominant branches that represent the dominant frequencies in the flow (Fig. 3.3(b - e)).
A threshold is observed beyond which increasing the intensity results in instability indicating
the boundary value for the tuning parameter(Fig. 3.3(f)). Setting the parameter value at
the threshold enables the system to identify the key features(i.e. statistical signatures) in
the wake of the turbine. The system response in terms of identifying the features can also
be studied based on response the to white noise forcing, however, the peaks of the features
are amplified and hence, we need to identify a colored-in-time forcing. For the case of our
numerical experiments in Chapter. 5, a value of c = 184 was found to be the threshold.

3.3 Second-order statistics of LTI systems

For system (3.5) with Hurwitz A and controllable pair (A, B), a matrix X qualifies as the
steady-state covariance matrix of the state vector, i.e.,

X := lim
t → ∞

E (ψ(t)ψ∗(t)) ,
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(a) (b)

(c) (d)
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Figure 3.3: The eigen spectrum analysis of the dynamic generator A with tuneable parameter
(a) c = 0, (b) c = 50, (c) c = 100, (d) c = 150, (e) c = 184, (f) c = 185 in the resistance
function Eq. 3.6. (∗) are stable eigen values and (∗) denoting the unstable eigen values.
if and only if the Lyapunov-like equation

A X + XA∗ = −B H∗ − H B∗ (3.7)

is solvable for the matrix H [35, 34]. Here, ∗ denotes the complex conjugate transpose. The
matrix H quantifies the cross-correlation between the input and the state in model (3.5) [115,
Appendix B]:

H := lim
t→∞

E [ψ(t)d∗(t)] +
1
2B Ω.

When the stochastic input d is zero-mean and white-in-time (state-independent) with covari-
ance Ω, H = (1/2)B Ω reduces Equation (3.7) to the standard algebraic Lyapunov equa-
tion (3.8). In contrast to the Lyapunov Equation (3.8), the right-hand side of Equation (3.7)
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is in general sign indefinite, i.e., will have both positive and negative eigenvalues unless the
stochastic forcing d is white-in-time. The one-point velocity correlations along the diagonal
of the state covariance matrix X constitute turbulence intensities that are either matched in
accordance with field measurements across the farm or model the deficits in matching thrust
force or power generation in accordance with the segmented ADM model (3.2).

For the wind farm flow under steady atmospheric conditions, the global operator in
Equation (3.5) has no exponentially growing eigenmodes (i.e., the dynamic matrix A is
stable). Thus, the steady-state covariance of the fluctuating velocity field

X := lim
t → ∞

E (v(t)v∗(t)) ,

subject to zero-mean white-in-time forcing d with spatial covariance matrix Ω ⪰ 0, i.e.,
E (d(t)) = 0 and E (d(t)d∗(τ )) = Ω δ(t − τ ) can be obtained from the solution to the
Lyapunov equation,

A X + X A∗ = −B Ω B∗. (3.8)

The Lyapunov equation (3.8) relates the statistics of white-in-time forcing, represented
by Ω, to the infinite-horizon state covariance X via system matrices A and B. The energy
spectrum of the streamwise and spanwise velocity components can be extracted from the
diagonal entries of the matrix X and the total kinetic energy of the flow can be computed as
E = trace(X). While white-in-time forcing is useful in studying the receptivity of the turbu-
lent flow to exogenous disturbances [55, 79], it is often found to be insufficient in reproducing
its statistical signatures [115, 112]. To address this issue, we next consider the more general
case of colored-in-time stochastic forcing, and pose inverse problems that identify both the
statistics of colored-in-time forcing and an input matrix B to match available second-order
statistics of wind farm turbulence using the LTI model (3.5).

In this chapter, we introduced our approach for ehancing the predictions in a wind farm
with the help stochastically forced linear dynamics which are the linearized NS equations
linearized around a base flow velocity informed by the analytical wake models. The state-
space representation of these dynamics solve for the small fluctuations around the mean
velocity in a farm. Next we discuss the statistics quantities in a wind farm flow and how we
can obtain the stochastic forcing to excite the linear dynamics to reproduce these statistics.
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CHAPTER 4

STOCHASTICAL DYNAMICAL MODELING OF PARTIALLY AVAILABLE

STATISTICS

Modern-day wind farms use a host of sensing devices that are distributed across the farm
to provide critical SCADA data for assessing the performance of the power plant and make
changes to the operational settings of wind turbines in real time. The incoming stream
of flow measurements from nacelle mounted anemometers, weather towers, pressure sen-
sors, or even Doppler LiDAR systems can be processed to determine the power extracted
by turbines, loads exerted on rotor structures, and the direction and speed of the incom-
ing wind. Time averaged quantities can also be used to develop wake models that may in
turn enable model-based flow estimation and wind farm control synthesis. Restricted by
the modeling premise afforded by the segmented ADM model, herein, we utilize such data
to realize stochastic forcing models for the linearized NS equations (3.5) that yield output
velocity statistics that best reproduce the quantities of interest. We consider the availability
of two types of data: (i) power and thrust force measurements at turbines; and (ii) velocity
intensities at prespecified locations across the wind farm. While the second type of data
(second-order statistics of the fluctuating velocity field v2) directly specifies entries in the
covariance matrix X of the linearized model (3.5), the first type only provides such statistics
through the ADM model; given time-averaged thrust force or power generation measure-
ments across the farm, we use Equations (3.2) together with a static approximation of an
analytical wake model to obtain the resultant turbulence intensity at staggered points across
the rotor structure and predict the competing quantity. Note that due to a lack of sufficient
degrees of freedom in Equations (3.2), both thrust force and power measurements cannot be
simultaneously matched. Details of how we obtain the turbulence intensity to match power
or thrust force measurements or a balanced approximation of the two that addresses the
issue of insufficient degrees of freedom are provided in Sec. 5.4. Either of the three scenarios
covered in the section yield an effective velocity intensity for each staggered point across the
turbine rotors, but do not provide information regarding the contributions from different
velocity components (e.g., u2 or w2), which may be provided via additional problem specific
information such as the rotor yaw angle. Moreover, assuming knowledge of power and thrust
force over individual segments of turbine rotors may not be a realistic expectation unless
sensors are mounted on the surface of turbine blades. Consideration of scenarios where
power or thrust force measurements are provided for entire turbines or turbine rotors are
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misaligned with the incoming wind direction is a topic of ongoing research. In Section 5.4,
we demonstrate how access to thrust force (power) measurements can results in predictions
of power generation (thrust force) for wind turbines, and in Section 5.5, we demonstrate how
partially observed second-order statistics of the velocity field can be used the complete the
second-order statistical signature of the wind farm turbulence.

Partially available second-order statistics of the velocity field v2 denote a subset of entries
of the state covariance matrix X, which we wish to model. In the remainder of this section,
we provide background material regarding the structural constraints on the state covariance
matrix X, draw from the stochastic dynamical modeling framework of Zare et al. [111, 115,
112] to formulate covariance completion problems that identify the statistics of stochastic
forcing d into linear Gaussian model (3.5) to reproduce the available second-order statistics
v2, and provide details of a filter parameterization that enable the stochastic realization of
the identified forcing.

4.1 Covariance completion

Given partially known diagonal entries of X corresponding to deficits in matching thrust
force, power generation, or turbulence intensities across the farm, we seek an input matrix B

and statistics of forcing d that are consistent with the hypothesis that the required statistics
in v are generated by model (3.5) with known generator A. It is also important to restrict
the complexity of the identified forcing model, which is quantified as the number of degrees
of freedom that are directly influenced by the stochastic forcing, i.e., the number of input
channels in matrix B or rank(B). To these ends, we follow Zare et al. [111, 115, 112] in
solving the structured covariance completion problem:

minimize
X, Z

− log det (X) + γ ∥Z∥∗

subject A X + XA∗ + Z = 0
X ◦ E − G = 0

(4.1)

which penalizes a composite objective subject to two linear constraints with the first cor-
responding to the Lyapunov-like equation (3.7) and the second denoting the set of known
second-order statistics of the velocity field. Here, the matrices A, C, E, and G are problem
data, and the Hermitian matrices X, Z are optimization variables. Entries of G repre-
sent partially available second-order statistics of the velocity field v, the symbol ◦ denotes
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elementwise matrix multiplication, and E is the structural identity matrix,

Eij =

 1, if Gij is available
0, if Gij is unavailable.

The objective function provides a trade-off between the solution to a maximum-entropy
problem and the complexity of the forcing model; the logarithmic barrier ensures the positive
definiteness of the matrix X and the nuclear norm regularizer, which is weighted by the
parameter γ > 0, is used as a proxy for the rank function (see, e.g., References [29, 82]). The
rank of the matrix Z bounds the number of independent input channels or columns in matrix
B; for details see [111]. We note that unless the forcing d in Equation (3.5) is white-in-time,
the matrix Z may have both positive and negative eigenvalues. Convex optimization (4.1) can
be cast as a semidefinite program and solved efficiently using standard solvers [102, 38, 13] for
small- and medium-size problems. In [113, 111], customized algorithms have been developed
to deal with larger problems such as those arising in the modeling of multi-turbine wind
farms.

4.2 Stochastic realization

Problem (4.1) combines the nuclear norm with an entropy function in order to target low-
complexity structures for stochastic forcing and facilitate the construction of a particular
class of low-pass filters that generate suitable forcing into Equation (3.5). The solution Z to
optimization problem (4.1) can be decomposed into matrices B and H (cf. Equation (3.7))
via spectral factorization. These factors, together with matrix X that also results from
solving problem (4.1) and the state matrix A enable the construction of generically minimal
linear filters that have the same number of degrees of freedom as system (3.5) and are given
by:

ξ̇(t) = (A − BK) ξ(t) + B w(t) (4.2a)

d(t) = −K ξ(t) + w(t) (4.2b)

where,
K =

1
2 Ω B∗X−1 − H∗X−1. (4.2c)

Here, ξ is the state of the filter and w is a zero-mean white-in-time stochastic process with
covariance Ω ≻ 0; see Figure 1.3. The minimal realization of the linear filter and linearized
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dynamics results in a parsimonious (low rank) modification to the original linearized dynam-
ics (Figure 1.3),

ψ̇(t) = (A − B K)ψ(t) + B w(t). (4.3)

The resulting stochastic wake model is linear and maintains a close relation with the physics
retained by the linearized NS equations due to the low-rank nature of the modification term
BK. Thus, it is not only convenient for the purpose of conducting linear stochastic simula-
tions and real-time model-based feedback control with provable performance guarantees, but
it holds the promise to ensure satisfactory performance even when the real physical system
deviates from the model used for design.

In this chapter we showed that covariance completion problem can be formulated as a
covariance control problem that can identify the input matrix and the stochastic forcing for
the LTI system to reproduce the second order statistics of the velocity field. Next we apply
our modeling framework to a multi-turbine wind farm.
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CHAPTER 5

STOCHASTIC DYNAMICAL MODEL FOR WIND FARMS

In this chapter, we utilize the stochastic dynamical modeling framework presented in Chap-
ter 3 to account for partially available second-order statistics of the turbulent velocity field
v2 at the hub height of a wind farm. We begin with a brief discussion into the details of
LES which were used to generate data for the training and verification/validation of our
stochastic dynamical models. We demonstrate the capability of our models in improving the
predictions of analytical wake models in capturing the thrust force and power generation
over the turbines in the 4 × 1 cascade shown in Figure 3.1. We then focus on a single turbine
configuration to assess the value of velocity statistics at various distances downstream of the
turbine in training our data-enhanced stochastic wake model. We build on the results ob-
tained from this case study to model the turbulent flow impinging on a cascade of 4 turbines.
Finally, we provide a dynamical realization for the identified stochastic forcing and conduct
linear stochastic simulations to verify the ability of our models in accounting for statistical
signatures of wind farm turbulence.

5.1 Large-eddy simulations

A cascade of 4 NREL-5MW reference turbines [52] (Figure 3.1(a)) is simulated using the LES
code UTD-WF [18, 20, 85, 87], which employs the rotating ADM to account for the effect of
rotating turbine blades and the immersed boundary method of Orlandi and Leonardi [75] to
account for the towers and nacelles. The computational box extends 32 d0, 10.24 d0 and 10 d0
in the streamwise, spanwise, and vertical directions, respectively. The distance between the
inlet and the most upstream turbine is equal to 9 d0. No-slip conditions are applied at the
bottom boundary of the computational domain in addition to the surfaces of nacelles and
towers, free-slip conditions are applied at the top boundary, periodic boundary conditions are
imposed at the two spanwise sides, and radiative boundary conditions [76] are implemented
at the outlet. The grid is stretched in the vertical direction in order to have a finer resolution
in the regions where the turbine rotors are present; grid resolution in the refined sections
with the turbines is uniform in all three directions, ∆x = ∆z = ∆y = 0.025 d0. Although the
resolution is not sufficient to resolve the boundary layer flow around the tower accurately (as
in most LES), the impermeability provided by the immersed boundary method reproduces
blockage effects and overall momentum loss across the turbine structures.

In order to mimic the atmospheric boundary layer at the inlet, turbulence obtained from
a precursor simulation is superimposed to a mean velocity profile expressed by the following

29



law:

U

Uhub
=

(
y

yhub

)α

, (5.1)

where U is the streamwise velocity component at height y, Uhub = U∞ is the mean streamwise
component of the wind velocity at hub height yhub, and α is the shear exponent, which we
set to α = 0.05. The upstream velocity U∞ is chosen to be about 0.8 Urated. This allows
using a standard region II control law[50, 59] for the rotor dynamics where each turbine is
assumed to extract the maximal energy from the incoming flow. The precursor simulation
is run in a computational box with periodic boundary conditions in both streamwise and
spanwise direction, no-slip conditions at the bottom, and free-slip conditions at the top.
Roughness cubes are placed on the ground (bottom of the computational domain) to enhance
the generation of turbulence [61]. The superposition of the mean flow in Equation (5.1) and
the turbulence from the precursor simulation results in a hub-height turbulence intensity of
8% impinging the first turbine in the cascade. The time-averaged and root mean square
profiles of velocity fluctuations are computed using 750 instantaneous snapshots of the 3D
velocity field generated by LES. The numerical experiments herein will consider a Reynolds
number based on d0 and U∞ equal to Re = 8 × 107 in accordance with the LES.

5.2 Base flow

Our stochastic models are based on the stochastically forced linearized NS equations around
a static base flow profile ū with an analytical expression provided by a low-fidelity engineering
wake model. For simplicity, we assume all turbines to be facing the wind, i.e., 0◦ yaw angle
relative to the free-stream velocity, restrict the computational domain to the 2D space at
hub height (Figure 3.1(a)), and assume zero cross-wind, which means that the base flow will
only contain one non-zero component in the streamwise direction. For the base flow, we use
the Gaussian deficit wake model discussed in Chapter. 2, where the velocity is given using
the relation

ū(x, z) = U∞ − U∞

1 −
√√√√√√1 − CT

8
(

k⋆
x

d0
+ 0.2

√
β
)2

 e

−
1

2
(

k⋆
x

d0
+ 0.2

√
β
)2

( z

d0

)2



(5.2)

30



where d0 = 1 is the non-dimensional diameter of turbines and k⋆ = 0.03 is the wake growth
rate, which we have chosen in accordance with earlier studies (e.g., [8], [117]). The choice
of CP = 0.485 and CT = 0.787 correspond to the maximum power generated by a 5MW
NREL turbine [51] using an LES code that leverages blade momentum element theory [86,
88]. When considering multi-turbine farms, we follow a linear superposition law to capture
velocity deficits in the overlapping regions where wakes interact. Figure 3.1(b) shows the
static 2D velocity field corresponding to Equation (5.2) for a cascade of 4 turbines, where
we have used ∆x = ∆z = 0.125 to discretize the horizontal dimensions.

5.3 System matrices in linearized NS equations in evolution form and boundary
conditions

The system matrices in Equation (3.5) are given as

A = ∆−1

 A11 A12

A21 A22

 ,

B = ∆−1

 fzz + 2fz ∂z + f ∂zz −(fxz + fx ∂z + fz ∂x + f ∂xz)

−(fxz + fx ∂z + fz ∂x + f ∂xz) fxx + 2fx ∂x + f ∂xx

 ,

A11 = −ū ∆ ∂x − ūx ∆ − 2 ūxz ∂z − ūzz∂x − ūxzz +
1

Re
∆2,

A12 = −ūzzz + ūz ∆ + ūxz ∂x − 2 ūzz ∂z,

A21 = 2 ūx ∂xz + ūxz ∂x + ūxxz + ūxx ∂z,

A22 = −ūxx ∂x − ūx ∆ ∂x − 2ūx ∂xx + ūzz ∂x − ūxzz +
1

Re
∆2.

where, f(x, z) in matrix B is a 2D shape function that determines the spatial extent of the
forcing. For discretization of the domain and finite-dimensional approximation of the dif-
ferential operators in the system matrices above, we use a second-order central differencing
scheme with Nx and Nz uniformly distributed collocation points in the streamwise and span-
wise directions, respectively. At the lateral edges of the computational domain, we enforce
homogeneous Dirichlet and Neumann boundary conditions, i.e., v(x, z(1)) = v(x, z(Nz)) =

vx(x, z(1)) = vx(x, z(Nz)) = vz(x, z(1)) = vz(x, z(Nz)) = 0. At the inlet and outlet
of the domain along the streamwise dimension, we apply linear extrapolation conditions

31



(see [79] for details), i.e.,

v(x(1), z) = α v(x(2), z) + β v(x(3), z),

v(x(Nx), z) = α v(x(Nx − 1), z) + β v(x(Nx − 2), z),

vx(x(1), z) = α vx(x(2), z) + β vx(x(3), z),

vx(x(Nx), z) = α vx(x(Nx − 1), z) + β vx(x(Nx − 2), z),

vz(x(1), z) = α vz(x(2), z) + β vz(x(3), z),

vz(x(Nx), z) = α vz(x(Nx − 1), z) + β vz(x(Nx − 2), z)

where,

α =
x(Nx) − x(Nx − 2)

x(Nx − 1) − x(Nx − 2) , β =
x(Nx − 1) − x(Nx)

x(Nx − 1) − x(Nx − 2) .

Note that in the case of an equally spaced grid, α = 2 and β = −1. We also introduce
sponge layers at the inflow and outflow to mitigate the influence of boundary conditions on
the fluctuation dynamics within the computational domain [64, 73, 81].

5.4 Thrust force and power predictions

The key quantities of interest in a wind farm are the thrust force and power. Thrust force
informs about the kinetic energy that the turbine extracts from the wind and the power pro-
vides information about the energy output. Thus, accurate predictions of these quantities
helps with optimizing the wind plant operation. As shown in Figures 3.1(c,d), the mono-
tonically decreasing velocity field predicted by the analytical model ū (5.2) fails to capture
the increase in the thrust force and power after the second turbine in the cascade shown in
Figure 3.1(a). The monotonic decrease in the flow energy can be attributed to the absence
of a turbulence model that can promote turbulence in the near wake of turbines thereby
energizing the velocity field and subsequently leading to higher thrust force and power gen-
eration in downstream turbines. This issue is particularly evident in the predictions of power
generation for turbines located toward the end of the cascade (Figure 2.5(b)), indicating a
deficiency that can only get worse in larger wind farms with more turbines. To improve
predictions of wake recovery, we model the statistics of velocity fluctuations v around ū us-
ing the linearized NS equations subject to an optimally shaped source of additive stochastic
excitation based on the the developments of Chapter 3.
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Given a time-averaged thrust force measurement F̄i for the ith turbine segment, the
effective flow intensity at the staggered point corresponding to that segment follows from
equation (3.2a) as

v2
F ,i = F̄i/

(1
2 ρ Ai CT

)
− ū2

eff,i. (5.3)

On the other hand, if instead we are provided with a time averaged power measurement P̄i,
the effective flow intensity at the staggered point corresponding to that segment is given by

v2
P ,i =

(
P̄i/

(1
2 ρ Ai CP

))2/3
− ū2

eff,i. (5.4)

Therefore, if thrust forces are provided, we may model the stochastic velocity field v to match
the effective intensity v2

F ,i and predict P̄i. Similarly, if power measurements are provided,
we may model v to match the effective intensity v2

P ,i in (5.4) and predict F̄i. However, due
to a lack of sufficient degrees of freedom in Equations (3.2), both thrust force and power
measurements cannot be simultaneously matched. To provide a balanced approximation
of both, the velocity field v can be modeled to match a balanced intensity v2bal per rotor
segment as the solution to the problem:

minimize
v2bal,i ≥ 0

wF |v2bal,i − v2
F ,i| + wP |v2bal,i − v2

P ,i| (5.5)

where weights wF and wP may be empirically determined to signify the importance of
measurements over different turbine segments.

The velocity fluctuation field generated by the linearized NS equations augments the
analytical wake model to improve predictions of thrust force and power generation based
on the ADM model. Figure 5.1 demonstrates that whether we match thrust force or power
generation predictions of the competing quantity also improve. This improvement, which
also captures the non-monotonicity of such quantities over the turbines in the cascade, is also
observed when we match a balanced approximation of the two quantities of interest based on
the solution to problem (5.5) (Figure 5.1(c)). Importantly, the augmentation introduced to
the predictions of the analytical model capture the non-monotonic trend of thrust force and
power generation over the cascade of turbines. We anticipate this feature to be even more
significant in larger arrays of wind turbines. Either way, we observe significantly improved
predictions of the thrust force and power over the second, third, and forth turbines while
predictions at the first turbine depreciate. This is perhaps due to the fact that we model
turbulence intensities at the turbine locations per thrust force and power measurements, but
do not explicitly account for the statistical signature of the incoming turbulence impinging
on the array.
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(a) (b) (c)

F̄

P̄

turbine number turbine number turbine number
Figure 5.1: (a) Results for matching thrust force F̄ and predicting power generation P̄
over various turbines in the 4 × 1 cascade; (b) Results for matching power generation P̄ and
predicting thrust force F̄ ; (c) Results for matching the balanced approximation of both thrust
force and power. LES data (∗); predictions of of analytical model [8] (•); and predictions of
our data-enhanced stochastic dynamical model (⃝).

5.5 Turbulence intensity predictions

In this section, we evaluate the predictive capability of our stochastic modeling framework
in completing the statistical signature of the hub-height turbulent velocity field for a single
turbine as well as a 4-turbine cascade of turbines. Specifically, we will assume knowledge
of the streamwise and spanwise turbulence intensities at various diameters behind wind
turbines and predict the remainder of the second-order statistical signature of the flow using
the stochastically forced linearized NS model (3.5). The available turbulence intensities may
be provided by field measurement devices such as LiDAR systems that are deployed in wind
farms to scan and monitor hub-height wind [46] or may represent effective velocity intensities
over rotor structures obtained from power and thrust force measurements. The optimization
framework of Section 4.1 identifies the appropriate colored-in-time forcing to the linearized
NS equations to account for the available statistics and predict unavailable ones by virtue of
the physics-based nature of model (3.5).

34



(a) (b)

z

x

Figure 5.2: (a) Schematic of hub-height computational plane with data points used for train-
ing in Section 5.5.1 highlighted in red; (b) Hub-height streamwise velocity ū(x, z) generated
using the analytical wake-expansion model of Bastankhah and Porté-Agel [8] around which
we linearize the NS equations.

5.5.1 Predicting the wake of a single turbine using partially available flow in-
tensities

We first focus on the problem of predicting the streamwise uu and spanwise ww turbulence
intensities at the hub height of single wind turbine. We consider a 2D computational domain
of size Lx × Lz = 5 × 4 where x ∈ [ 0, 5 ] and z ∈ [−2, 2 ]. The turbine of unit diameter is
located at x = 2 and z = 0. We use Nx = 13 and Nz = 9 equally spaced collocation points
to discretize the computational domain rendering to the state in model (3.5) v ∈ R270×1. We
use LES generated turbulent intensities at various locations within the computational domain
to train our stochastic dynamical models. For consistency, we also use all data points before
the turbine to match the inflow turbulence conditions with that of LES. We consider three
cases in which the available training dataset contains 3 streams of streamwise and spanwise
turbulent intensity measurements from behind the blade tips (edges of 2D rotor structure)
and the turbine nacelle (middle of rotor structure) and at various distances away from the
turbine: (i) at the turbine location x = 2 and points within one diameter away (Figure 5.3(c)
and 5.4(c)), (ii) at x = 2 and points within 2 diameters away (Figures 5.3(e) and 5.4(e)), and
(iii) at x = 2 and points within 3 diameters away (Figures 5.3(g) and 5.4(g)). As evident
from Figures 5.3(g) and 5.4(g), for the considered turbine and atmospheric conditions, access
to flow statistics 3 diameters away from the turbine can significantly improve the completion
of the statistical signature of the flow at hub height. Our results demonstrate the ability of
the data-enhanced linearized NS equations in capturing the dominant trends of uu and ww

in the wake of a turbine.

5.5.2 Predicting wind farm turbulence impinging on a cascade of turbines

We further extend our study to the case of a 4 × 1 cascade of turbines that are aligned with the
(streamwise) direction of the wind. We consider a similar 2D computational domain of size
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Figure 5.3: (a) Streamwise turbulence intensity (uu) obtained from LES and (c,e,g) the
results of our stochastic dynamical model with data provided at 1d0 (c), 2d0 (e), and 3d0
(g) locations downstream of the turbine as shown by the blue dots in the figures on the left.

Lx × Lz = 16 × 9 where x ∈ [ 0, 16 ] and z ∈ [−2, 2 ]. Turbines of unit diameter are located
at x = {2, 6, 10, 14} and z = 0. We use Nx = 38 and Nz = 9 equally spaced collocation
points to discretize the computational domain rendering to the state in model (3.5) v ∈
R684×1. Given the findings of the single-turbine experiment, we use streamwise and spanwise
intensities within 3 diameters behind the tips and nacelle of each of the turbines as data
to train or stochastic models of the hub-height velocity field. Figure 5.5 demonstrates the
performance of our data-enhanced stochastic model in predicting turbulence intensities at
hub height. While the overall energy of the flow has been over-predicted by our model (as
evident from the energetic patches throughout the farm), dominant features of the streamwise
velocity correlations, including regions of high and low energy, are particularly well captured.
The stochastic model is also shown to capture the spanwise asymmetry of flow intensities
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Figure 5.4: (a) Spanwise turbulence intensity (ww) obtained from LES and (c,e,g) the results
of our stochastic dynamical model with data provided at 1d0 (c), 2d0 (e), and 3d0 (g) locations
downstream of the turbine as shown by the blue dots in the figures on the left.

with respect to the centerline running through the turbine nacelles, which is attributed to the

turbine’s rotation as captured by the high-fidelity LES (Figure 5.5(c)). Figure 5.5(d) shows

that the high spanwise intensity regions behind the turbine nacelles are also captured very

well by our models albeit spurious regions of high intensity appear in regions slightly beyond

the the blade tips. Uncovering potential reasons behind such irregular predictions in the

spanwise intensity calls for additional in-depth examination. Nevertheless, the good quality

of completion shown in Figure 5.5 demonstrates the ability of our linear stochastic dynamical

models in predicting the dominant statistical features of the flow and is attributed to the
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Lyapunov-like constraint in covariance completion problem (4.1) [115, 112], which keeps
physics in the mix and enforces consistency between data and the linearized NS dynamics.

In optimization problem 4.1, the regularization parameter γ determines the importance
of the nuclear norm of matrix Z relative to the logarithmic barrier function of the covariance
matrix X. Larger values of γ yield lower-rank matrices Z, but may compromise the quality
of completion; see [115, Appendix C]. In this study, γ = 100 was observed to provide the
best quality of reproduction of the turbulence intensities of velocity fluctuations for both
the single- and multi-turbine case studies. In training the stochastic model for the 4 × 1
cascade of turbines (Figure 5.5), where Nx = 38 and Nz = 9 (Z is a square matrix of
size 684), γ = 100 results in the Z matrix that solves problem (4.1) having a rank of 266
with 265 positive and 1 negative eigenvalues. As discussed in Section (3.3), the presence of
both positive and negative eigenvalues in matrix Z indicates that the second-order statistics
of wind farm turbulence cannot be reproduced by the linearized NS equations with white-
in-time stochastic excitation. The distribution of eigenvalues of matrix Z also indicates
that 265 colored-in-time inputs are required to reproduce the partially available entries in
covariance matrix X corresponding to the known velocity intensities; see Zare et al. [111, 115]
for additional details.

5.6 Verification in stochastic linear simulations

As discussed in Section 4.2, Z can be decomposed into BH∗ + HB∗ with the input matrix
B having 265 independent columns. In other words, the identified X can be explained by
driving the LTI model (3.5) with 265 stochastic inputs d. The solution to the covariance com-
pletion problem (4.1) also determines the dynamics of the linear filter (4.2) that generates the
coloured-in-time forcing d with appropriate power spectral density. We conduct stochastic
linear simulations to verify our stochastic model of wind farm turbulence (Equation (3.5)).
Since a proper comparison with LES requires ensemble averaging, rather than comparison
at the level of individual stochastic simulations, we have conducted 20 simulations of sys-
tem (3.5)). The total simulation time was set to 300 time units. Figure 5.6 shows the time
evolution of the energy (variance) of velocity fluctuations for 20 realizations of white-in-time
forcing of the filter dynamics generating the colored-in-time input d and exciting the linear
dynamical model (3.5). The variance averaged over all simulations is marked by the thick
black line, which asymptotically approaches the value of the total turbulent kinetic energy
(averaged over space) in statistical steady state, trace(X). For the above simulations the
final average value has a 4.1% error in matching the training data provided by LES. This
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Figure 5.5: Streamwise uu (left) and spanwise ww (right) turbulence intensities resulting
from LES (a,b) and our stochastic dynamical models (c,d) trained using all intermediate
locations downstream of the turbine nacelle and blade tips shown by the blue dots in the
plots on the last row.
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Figure 5.6: Time evolution of fluctuation kinetic energy for 20 realizations of the forcing to
the modified linearized dynamics; the energy averaged over all simulations is marked by the
thick black line.

close agreement can be further improved by running additional linear simulations and by
increasing the total simulation times.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

We provide a framework for the stochastic dynamical modeling of wind farm turbulence
with enhanced predictive capability relative to conventional low-fidelity models that pro-
vide a static (albeit analytical) description of turbine wakes. We focus on the estimation
of quantities that are pertinent to control, i.e., thrust forces, power generation, and turbu-
lence intensities throughout wind farms. To capture the complex dynamical nature of wake
turbulence, our proposed approach uses experimentally or numerically generated wind farm
quantities to train data-enhanced physics-based models of flow fluctuations that match the
available data and complete the statistical signature of the flow. We leverage the predictive
capability of the linearized NS equations subject to judiciously shaped additive stochastic
excitation as a physics-based model that can overcome potential robustness issues of solely
data-driven models in the presence of highly variable atmospheric turbulence. The low-
complexity and dynamic nature of this class of models is particularly desirable in handling
varying atmospheric conditions that may necessitate online parametric updates based on
SCADA measurements. The characteristic features of our models that render them desir-
able for estimation and control are their: (i) physics-based dynamic nature; (ii) linearity; (iii)
low computational complexity; and (iv) statistical consistency in matching flow quantities
that are of interest in flow analysis and control.

We utilize time-averaged LES-generated measurements of thrust forces and/or power
generation in addition to turbulence intensities to identify stochastic realizations of forcing
into linear approximations of the turbulent flow dynamics to achieve consistency in match-
ing statistical quantities of interest. To demonstrate the utility of our approach, we use
the stochastically forced linearized NS equations around a 2D static velocity profile of a
wind farm consisting of a cascade of 4 turbine and show that stochastic modeling of input
forcing allows us to significantly improve the predictions of low-fidelity analytical models.
We provide details on how matching thrust force (power generation) measurements across
various turbines can lead to improved predictions of power generation (thrust force). We
also demonstrate the value of turbulent intensity measurements at various distances behind
wind turbines in completing the statistical signature of hub-height turbulence, which in-
clude dominant features of the velocity correlations and regions of high and low turbulence.
We verify our stochastic dynamical models using inexpensive stochastic linear simulations
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Figure 6.1: Our proposed modeling approach which uses data to augment the low-fidelity
model using a stochastic dynamical representation thus, providing improvements to their
predictive capabilities.

that also highlight the ease of using our low-complexity models for generating statistically
consistent turbulent inflow conditions for numerical simulations.

6.2 Future Directions

The proposed framework allows for linearization around more complicated (potentially 3D)
base flow profiles that can better represent the effects of turbine yawing (e.g., wake curl and
deflection) [83] or alternative turbine arrangements within a wind farm. Development of 3D
extensions of the model that resolve the velocity field down to surface and can enable ground
sensing capabilities in wind farms, the use such models for sequential data-assimilation, e.g.,
Kalman filtering, with applications to real-time wind forecasting, and the use of alternative
covariance completion formulations [116] that may provide useful information about critical
directions that have maximal effect in bringing model (in our case the stochastically forced
linearized NS) and statistics in agreement. Given the physics-based nature of our models,
the latter research direction can prove critical in identifying salient dynamical couplings and
interactions in turbine wakes thereby opening the door to new classes of low-fidelity wake
models.
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