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The success of model-based closed-loop yaw control strategies relies on the accuracy of models

that are used to estimate the spatio-temporal attributes of wakes behind wind turbines. We

utilize a stochastic dynamical modeling framework to develop reduced-order models of wind

farm turbulence that capture the effects of yaw misalignment due to control or atmospheric

variability on turbine wakes and their interactions. In this approach, stochastically forced

linear models of the turbulent velocity field are used to augment analytical descriptions of

the wake velocity provided by low-fidelity engineering wake models. The power-spectral

densities of the stochastic models are identified via convex optimization to ensure statistical

consistency with high-fidelity large-eddy simulations while preserving model parsimony. We

first demonstrate the utility of our approach in capturing turbulence intensity variations at

the hub-height of turbines that are yawed against the inflow velocity field impinging on the

wind farm. We then extend our two-dimensional (2D) models of hub-height velocity to three-

dimensional (3D) wind field models that account for the dynamics of the normal velocity

and can thus capture complex attributes of yawed wind turbine wakes such as their rotation

and curl. Our results in training 2D and 3D stochastic linear models provide insight into

the significance of sparse field measurements in reproducing the statistical signature of wind

farm turbulence and demonstrate the robustness of our modeling approach to atmospheric
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uncertainties and yaw misalignment effects. In the final part of this thesis, we use actuator

disc concepts to demonstrate the utility of infinite-horizon stopping in optimizing the yaw

angles of wind turbines for constrained maximum power production.
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CHAPTER 1

INTRODUCTION

1.1 Background and motivation

Sustainable development goals were adopted by the United Nations in 2015 as a means of

encouraging global environmental protection and community well-being by 2030. Within

these goals, universal access to affordable and clean energy is listed as one of the means of

boosting large-scale healthcare and education facilities, creating jobs, and improving liveli-

hoods [58, 59]. Key to this clean energy movement are renewable energy sources such as solar

photovoltaics and wind which respectively accounted for 36% and 41% of the newly added

U.S. electricity generation capacity in 2021 [57]. These resources are preferred over less

sustainable traditional ones that pollute the environment and are not carbon neutral [16].

Several reports have highlighted the steadily increasing competitiveness of the renewables

in the global energy market [28, 19]. Over the past two decades, the cost of electricity gener-

ated by renewables has decreased considerably [59, 29] with the cost of wind energy dropping

by approximately 20% a year in northern Europe alone. Together with the projected increase

in global power demand [18], this decrease in the levelized cost of energy (LCOE)1 builds a

compelling case for expansions in the wind energy sector. These factors have resulted in a

steady increase in the wind energy capacity of the U.S over the past 7 years (see Figure 1.1).

A wind turbine produces power by converting the kinetic motion of the wind into the

rotational motion of its blades (See Figure 1.2(a)). This leads to a downstream wake re-

gion behind the turbine’s rotor that is characterized by a drop in the wind velocity and an

increased level of turbulence [13], which negatively affect the performance of downstream

turbines operating within this region. Specifically, the energy production of downstream

1The LCOE is a parameter which weighs the lifetime costs of a renewable system against its energy
production

1



Figure 1.1. Annual and Cumulative growth in U.S. Wind Power Capacity. (source: U.S.
Department of Energy [17] )

(a) (b)

Figure 1.2. (a) Typical Wind Turbine Generator Design [3] (b) Wind Turbine Plant [62] )
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turbines, which is dependent on their respective incident velocities, is inhibited while struc-

tural loading on their towers and blades is increased [13]. It is thus important to mitigate

such effects by introducing control capabilities that adjust turbine blade pitch, generator

toque, and nacelle direction (yaw). Currently, wind farm operations, which including mak-

ing adjustments to turbine settings, are aimed at tackling the high variability of atmospheric

turbulence using ad-hoc and empirical approaches that may cause plant operations to fall

behind optimal conditions. This shortcoming presents an opportunity for the systematic

adjustment of turbine setting, e.g., rotor yaw or blade pitch angles, using modern control

strategies. An important factor in the success of such endeavours are mathematical models

that represent our perception of the incident velocity field for each turbine.

Wind forecasting models can be largely categorized into short-term and long-term models.

The while the latter is intended for guiding electricity markets, the former aims to provide

predict the direction and speed of incoming wind that is anticipated to impinge upon wind

farm turbines. There exist a wide range of forecasting technologies that vary based on their

target quantities (e.g., power or wind direction) and the length of their prediction windows.

They span from persistence models to numerical weather models to statistical and artifi-

cial neural networks-based models [38] to those that adopt hybrid strategies in combining

methods [63]. Traditionally, numerical weather models have been used to enable longer-

term forecasting, however statistical models are often cheaper and more easily adaptable

to smaller wind farms [46]. Thus, in support of short-term wind forecasting strategies that

require higher flexibility, there exists a need to combine physics-based concepts, including

structural dynamics and fluid mechanics, with statistical modeling techniques, to not only

capture quantities of interest that are important in estimation and control of wind farm

flows, but to ensure a desirable level of robustness to typically high levels of variability in

atmospheric flows.

The study of the fluid mechanics of wind farm flows has relied heavily on medium- and

high-fidelity models of wake turbulence such as the Reynolds-averaged Navier-Stokes (RANS)
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equations and those used in Large-Eddy Simulations (LES) to low-fidelity models such as the

Jensen-Park and Frandsen models. Each class of models presents its own set of conflicting

pros and cons when comparing their relative computational cost, fidelity in representing air

turbulence, and amenability to control strategies. Simplified engineering wake models of

low fidelity incorporate mass and momentum conservation principles to achieve low order

representations for the expansion of wakes behind wind turbines and their interactions over

wind farms [30, 33, 2]. There have also been efforts to incorporate more complex physical

phenomena, e.g., wake rotation, curl, ground effects, and wake mixing, into low-fidelity

models [42, 43, 72]. Nevertheless, in the absence of a dynamical model for the fluctuating

velocity field, the over-simplified static nature of conventional engineering wake models that

neglects the time-varying features of near-field turbulence2 leads to the under-prediction of

wake recovery [48]. This, in turn, can yield inaccurate predictions of quantities of interest

for wind forecasting and turbine control (e.g., the load and power corresponding to each

turbine).

1.2 Research objectives

Even though the turbine is at its best efficiency when directly facing the wind inflow, the

study of yawed conditions is of critical importance as the rotor is often slow to adapt to

directional changes in the incoming wind. Moreover, yaw control strategies have proven vital

in improving power capture and reducing structural loads on turbine blades and towers by

steering the wake of upwind turbines away from the downwind ones. It is thus important to

account for the effects of yawing turbine rotors in the control-oriented modeling of wind farm

flows. The effects of the yaw include reducing the wake velocity deficit because of a reduction

2The turbulent flow immediately behind turbine rotors wherein the velocity field is strongly inhomo-
geneous, sheared, and dominated by the presence of flow structures that are created due to rotor fluid
mechanics, e.g., tip vorticies [36].
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in the total thrust force [6] along with an increase in the deflection angle. In capturing such

affects, it is important to aim for two desirable features of an effective control-oriented

model: low dimensional and dynamic complexity and robustness. In this thesis, we extend

the application of class of stochastic dynamical models that are based on the linearized

Navier-Stokes (NS) equations [12, 11] to account for the 3D physical attributes of wind

turbine wakes. By linearizing the governing equations, we reduce the dynamic complexity

of our models of the wind farm flow. However, this comes at the cost of misrepresenting

the complex physics of wake turbulence, which are driven by the nonlinear terms in the

NS equations. To overcome this challenge, we introduce an additional degree of freedom

through an additive source of stochasticity into the linearized dynamics that we tune via

convex optimization to capture critical second-order statistics of the turbulent flow, i.e.,

normal and shear stresses [66, 64, 68, 65]. On the other hand, due to the physics-based

nature of our models they demonstrate a desirable level of robustness to atmospheric changes

that may cause a misalignment of the wind direction with the centerline of turbine rotors.

The ultimate goal is to provide a class of models that bridge the gap between low-fidelity

analytical engineering wake models and high-fidelity models that are based on the nonlinear

governing PDEs, e.g., LES; see Figure 1.3. In our work, the results LES are used for both

modeling the source of stochasticity that drives our linear dynamics and post-modeling

validation. Finally, we take a step toward leveraging the benefits of wake steering on optimal

power generation by devising a simple control strategy for yawing wind turbine rotors while

respecting structural load limits.

1.3 Organization of the thesis

The thesis is organized as follows. In Chapter 2, we review well-established analytical wake

models that have been proposed for capturing the evolution of wakes behind yawed turbines.

5



Figure 1.3. We propose a dynamical modeling framework that combines the low cost of
low-fidelity models with the predictive capability of high-fidelity models.

In Chapter 3, we summarize a stochastic dynamic framework for the entrainment of second-

order statistical signatures of turbulent flows into linear dynamical models that approximate

the flow physics. In Chapter 4, we use the modeling framework reviewed in Chapter 3 to

develop 2D and 3D stochastic dynamical models of wind farm turbulence that account for

the effects of yaw misalignment over various turbines. In Chapter 5, we propose a control

strategy for adjusting the yaw angle of individual wind turbines across a given wind farm that

is conducive to maximum power production regulated by structural loading limits. Finally,

in Chapter 6, we provide a concluding thoughts and highlight potential future directions.
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CHAPTER 2

ANALYTICAL MODELS FOR WIND TURBINE WAKES

The structural loading, control aspects and power performance metrics from downstream

turbines in a wind farm are heavily dependant on the wake profile that the upstream tur-

bines subject them to. While numerical and experimental techniques are highly accurate in

modeling the intricate wake dynamics, analytical models are associated with low computa-

tional costs and ease of use. Furthermore, they have matured in formulation over several

decades to account for several wake attributes, e.g., wake growth and decay, turbulent mix-

ing, interaction with the ground, and yaw-induced deflection. This makes them ideal for

early-stage siting and power production forecasts. As we demonstrate in the following chap-

ters, they can also be used to construct dynamical physics-based models by prescibing base

flow profiles for the linearization of the NS equations.

Low-fidelity models of the wake profile are of immense importance in operation of large

wind farms as they help predict the power generation losses that partner the misaligned

turbine at a lower computational cost. Efforts to accurately model the turbine wakes have

seen vast progress in capturing the physics behind wake growth, development and decay

downstream to the turbine. In order to maintain the accuracy and robustness of our physics-

based model, it is desirable to use the most appropriate representation of the base velocity

to adequately linearize the NS equations around.

Incipient research into wake models began with the Jensen model [30] which represented

the wake deficit as a top-hat. Subsequently, Katić et al. [33] used this to provide an estimate

of the energy contained in the wind field while assuming a constant wake velocity. Following

this, was the Frandsen model [21] which used momentum conservation and the wake expan-

sion to account for the downstream velocity deficit. However, the self-similar Gaussian profile

observed in wind-tunnel experiments [14, 41, 44] and wind farm data [22, 71] provoked the

development of a new analytical model by Bastankhah and Porté-Agel [5, 6]. They extended
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this model to yawed turbines that included the spanwise deflection of the wake caused by

the lateral force created by the inflow on the yawed rotor disc [6]. Further study into the

fluid dynamics of a yawed wake led to the development of the curled wake [7, 42], character-

ized by curled or kidney-shaped cross-section, formed due to the action of counter-rotating

vortex pairs [26]. A number of these models are described in further detail in the following

sections. We note that in all cases below, we define each spatial domain to be streamwise in

x, spanwise in z, and wall-normal in y.

2.1 Gaussian deficit model

The analytical wake model proposed by Bastankhah and Porté-Agel [5] modeled the velocity

deficit in a Gaussian axisymmetric shape, included mass and momentum conservation prin-

ciples and was verified against LES data and wind-tunnel measurements [15]. An extension

of this model [6] was built to account for the effects of the yaw angle γ on the potential core

length x0 and wake deflection δ relative to the free stream velocity U∞. The advantages of

this model include its consideration of the wake growth k, wake deflection δ and physical

constants based on turbulence intensity from experimental data [70].

2.1.1 Wake velocity deficit

The streamwise velocity profile defined across the finite difference domain is given by

U(x, y, z) = U∞ − U∞

(
1 −

√
1 − CT cos γ

8 (σy σz/d20)

)
× exp

(
−0.5

[
(
y − yh

σy

)2 + (
z − δ

σz

)2
])

(2.1)

where CT is the thrust coefficient obtained from operating conditions associated with maxi-

mum power generation, d0 is the non-dimensional rotor diameter, yh is the hub height, and

parameters σy, σz, and δ are used to characterize the geometric aspects of the deflected wake;

see Section 2.1.2 for additional details.
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(a)

(b)

z

x

Figure 2.1. (a) A schematic of the wake deflection indicating the potential core and path rel-
ative to the free stream velocity U∞ and (b) Streamwise velocity predicted by Equation (2.1)
at a misalignment of 30◦.

2.1.2 Wake deflection

The work of Bastankhah and Porté-Agel [6] uses the principle of conservation of momentum

to justify the wake deflection away from the center-line of the rotor by arguing that the

yawed turbine creates a lateral force on the inflow giving rise to a spanwise velocity that

deflects the wake to one side. The potential core is a wake region with uniform velocity and

has been conceptualized from the study of coflowing jets. A visual of the wake deflection is

illustrated in Figure 2.1(a), where the deflection angle θc0 is given by

θc0 =
0.3 γ

cos γ

(
1 −

√
1 − CT cos γ

)
Immediately downstream to the turbine, the potential core becomes smaller in size. This

model demarcates the near- and far-wake regions using a potential core length x0 beyond

9



which the velocity distribution is self-similar, the core interacts with the ambient flow, and

the wake center exhibits recovery.

x0

d0
=

cos γ
(
1 +

√
1− CT

)
√
2
(
4α I + β⋆

(
1 −

√
1− CT

)) (2.2)

where α and β⋆ are constants that depend on the turbulence intensity I. The demarcation

x0 is also used to define the deflection δ against the center-line where in the near-wake region

(x ≤ x0) δ := θc0(x/d0) and, in the far-wake region (x > x0),

δ

d0
= θc0

x0
d0

+
θc0
14.7

√
cos γ

k CT
(2.9 + 1.3

√
1− CT − CT )× ln


(1.6 +

√
CT )

(
1.6

√
8σy σz
d20 cos γ

−
√
CT

)

(1.6−
√
CT )

(
1.6

√
8σy σz
d20 cos γ

+
√
CT

)


and the wake widths in the vertical and spanwise directions denoted by σy and σz, respec-

tively, are given by

σy

d0
= k

x − x0

d0
+

1√
8

σz

d0
= k

x − x0

d0
+

cos γ√
8
.

2.1.3 Superposition of waked velocities

While the velocity signature of a single turbine can be defined by its deficit in a relatively

straightforward manner, the cumulative effect of overlapping wakes results in regions that

experience enhanced levels of deficit. Such interactions between wind turbine wakes are typi-

cally accounted for using superposition techniques on the deficits of the interacting wakes [48].

Three common superposition techniques are described as

Ui = U∞ −
∑
k

(U∞ − Uki) , (2.3)

Ui = U∞ −
√∑

k

(U∞ − Uki)
2, (2.4)
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(a)

z

(b)

z

(c)

z

x

Figure 2.2. The velocity profiles at the hub height of a cascade of 4 turbines under superpo-
sition principles Equation (2.3), 2.4 and 2.5 for sub-figures (a), (b) and (c) respectively.

Ui = U∞ −
√∑

k

(Uk − Uki)
2. (2.5)

where Ui is the velocity incident to each turbine in the array, U∞ is the free stream velocity

and Uki is the wake velocity of turbine k at the location of turbine i. Equation (2.3) models

the velocity deficit based on linear superposition of the velocity deficits [39] while Equa-

tions 2.4 [33] and 2.5 [60] assume that the kinetic energy deficit is summed over the relevant

upstream turbines considering the difference of the wake velocity against the free-stream and

inflow to each turbine, respectively. Figure. 2.2 shows the result of applying these superpo-
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sition techniques for capturing the waked velocity deficits due to wake interactions within a

cascade of turbines.

2.2 Curled wake model

The Gaussian deficit model is ill-equipped to represent the fluid dynamics and physics that

affect the wakes. This is because for yawed turbines and yawed porous discs in uniform flow,

counter-rotating vortex pairs (CVP) were observed as the wake traveled downstream [26]

leading to a spanwise asymmetry in the wake shape. To address this issue, Bastankhah et

al. [7] developed the wake edge as an ideally thin vortex sheet that moved in time with the

flow. In this model, the vortex sheet was calculated as power series expansion and marched

downstream in the direction of the free-stream velocity. Their model also considered the

physics resulting from ground effects and wake deflection. In this section, we provide details

on an alternative curled wake profile that is adapted from the model given by Mart́ınez-

Tossas et al. [42].

The curled wake model that we adopt considers a velocity field that is split into a static

component [U V W ]T and perturbations induced by the rotation of the yawed turbine

[u′ 0 0]T . The steamwise component of the static velocity U denotes the atmospheric

boundary layer profile and the wall-normal V and spanwise W components capture the the

cumulative effect of a number of counter-rotating vortices that are shed from the yawed

turbine. We note that the perturbation to the wall-normal and spanwise velocities are of

little consequence to the wake deformation (i.e., v′ = w′ = 0). Assuming the pressure

gradient to be zero, the NS equation can be simplified to the following

U
∂u′

∂x
+ V

∂ (U + u′)

∂y
+ W

∂u′

∂z
= νeff

(
∂2u′

∂x2
+

∂2u′

∂y2
+

∂2u′

∂z2

)
(2.6)

where νeff is the effective viscosity. In what follows, we describe the equations for cross-

plane terms (V and W ) in addition to details on the effective viscosity νeff and the numerical

12



scheme we use to march Equation (2.6). We investigate certain changes to the curled wake

parameters described in the sections below on the base velocity field of this model in Ap-

pendix C.

2.2.1 Cross-plane velocity components

The distinctive kidney-shape of the curled wake profile results from wall-normal V and

spanwise W velocity components that are due to the interaction of a number of counter-

rotating vortices that are shed from a yawed rotor disc and a wake rotation vortex that

captures the rotational movement within the disc area. The cumulative effect of the counter-

rotating vortices are reflected in analytical expressions for the streamwise and spanwise

velocities, i.e.,

V =
N∑
i=1

yi Γi

2π (y2i + z2i )

(
1 − e−(y

2
i + z2i )/σ2

)
(2.7)

W =
N∑
i=1

zi Γi

2π (y2i + z2i )

(
1 − e−(y

2
i + z2i )/σ2

)
(2.8)

where N is the number of individual shed vortices, Γi is the strength of each vortex, and σ

is the size of the vortex core. The total circulation strength Γ is given by

Γ =
π

8
ρDU∞ CT sin(γ) cos2(γ). (2.9)

To preserve the total circulation and to ensure that each vortex has an individual strength

relative to its distance from the rotor center, we use the following relations for the strength

of each vortex.

Γi = −4 Γ0
r2i

ND2

√
1− (2 ri/D)2

(2.10)

where Γ0 = 4/πΓ. Another contributor to the cross-plane velocity components is the wake

rotation which consists of a tangential velocity distribution within the rotor disc area, which
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Figure 2.3. (a) The effect of the cumulative shed vortices on the rotor plane with the rotor
projection as the solid black circle. The dashed box shows the region close to the ground
elaborated in the figures on the right. (b) Vorticity with ground effects. (c) Vorticity without
ground effects.

is computationally modeled as a single vortex of circulation strength

Γwr = 2π
(
a− a2

)
U∞D/λ (2.11)

where a is the induction factor based on the thrust coefficient and λ is the tip speed ratio.

Ground effects can also be incorporated into the model by mirroring the shed vortices with

respect to the ground. Figure 2.3 depicts how the quiver plots for the cross-plane velocities

change close to the ground if ground effects are captured.

2.2.2 Turbulence Modeling

We assume the effective viscosity νeff from Equation 2.6 t the sum of a turbulent viscos-

ity νT = l2m
∣∣du/dz∣∣ with lm = κz

1

(1 + κz/λ)
representing the mixing length [50] and a
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stabilizing viscosity νRe based on the Reynolds number, which can be computed as

νRe =
UD

Re
. (2.12)

2.2.3 Marching scheme for streamwise perturbation velocity

The velocity field is subject to a streamwise perturbation velocity u′ at the rotor plane that

represents the initial deficit as the wind hits the rotor. Within the rotor, this profile is set

to −2aU∞ and is smoothed (e.g., using a Gaussian filter) to zero at the boundaries. From

this initial condition, we march the streamwise perturbation downstream by discretizing

Equation (2.13) using a first-order upwind scheme in the streamwise direction and second-

order finite differencing scheme in the cross-plane directions. This yield the discretized

variant of the equations as

u′
[i+1,j,k] = u′

[i,j,k] −
∆x

(U + u′)[i,j,k]

(
V[i,j,k]

(U + u′)[i,j+1,k] − (U + u′)[i,j−1,k]

∆y
+ (2.13)

W[i,j,k]

u′
[i,j,k+1] − u′

[i,j,k−1]

∆z
− νeff ∇2u′

[i,j,k]

)

2.3 Curled-skewed wake model

The models detailed in Sections 2.1 and 2.2 assume a purely streamwise inflow, however the

actual wind inflow to a turbine is rarely comprised of a single velocity component. This calls

for a modeling framework that incorporates the vertical change in wind direction (or veer)

into the waked velocity profile of a turbine. Seminal attempts into modeling the veer into

the wake profiles [1] were built upon skewing the Gaussian wake model, deflecting the wake

as a function of the height-related inflow velocity. The veer model proposed by Mohammadi

et al. [47], can be obtained by two means, the first applies the deflection technique to the

vortex-sheet curled wake model [7]; and the second, which factors the veer into the wind

direction and yaw misalignment. As such complicated wake models do not contribute the
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outcome of this thesis, we refrain from providing further details on such models and refer

the interested reader to the original references.

2.4 Cumulative curl model

The extension of the aforementioned curled wake models to wind farms is erroneous as they

do not account for the yaw-added wake recovery and the secondary steering effects of the

counter-rotating vortices. Recent efforts in analytical modeling modeling techniques depict

a sophisticated representation of wake interactions and involve the study of the long-range

decay and atmospheric interactions of the curled wakes. The Gauss-curl hybrid model [35]

and the Cumulative-curl wind-farm model [8] are noteworthy in this respect, in terms of

their predictions of the wake velocity and power predictions in larger wind farms [35].

As such complicated wake models do not contribute the outcome of this thesis, we refrain

from providing further details on such models and refer the interested reader to the original

references.
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CHAPTER 3

STOCHASTIC DYNAMICAL MODELING OF WIND FARM FLOWS

In this chapter, we provide details of a stochastic dynamical modeling framework that uses

analytical wake models and is informed by high-fidelity simulations to model wind farm

turbulence. We describe the linearized NS equations and the implementation of a volume

penalization technique for accounting for the presence of turbine structures within the veloc-

ity field. We then identify the power-spectral density of stochastic forcing into the linearized

dynamics by solving a convex optimization problem that ensures that certain velocity corre-

lations are matched in accordance with high-fidelity LES. This proposed modeling framework

follows the flowchart detailed in Figure 3.1.

3.1 Stochastically forced linearized Navier Stokes equations

The engineering wake models in Chapter 2 provide analytical expressions for the velocity

field that capture various structural aspects of spatially expanding wakes that are formed

behind wind turbines. These predictions of static models may constitute a basic velocity

profile around which fluctuations of the velocity field evolve. Based on this, the total wind

velocity field u can be decomposed into the sum of the static base flow ū predicted by an

above engineering wake model and velocity fluctuations v that evolve around ū, i.e.,

u = ū+ v, ū = E[u], E[v] = 0 (3.1)

where E[.] is the time-averaged operator.

The dynamics of small velocity and pressure fluctuations (v, p) around a base flow de-

termined by (ū, P̄ ) are governed by the linearized NS and continuity equations

vt = − (∇ · v) ū− (∇ · ū)v −∇p+
1

Re
∆v −K−1v + d (3.2)
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Figure 3.1. Process flow diagram for the proposed dynamical modeling framework.

0 = ∇ · v (3.3)

where the base flow has a single non-zero component in the streamwise direction resulting

from an engineering wake model (e.g., Equation (2.1)), i.e., ū = [ Ū V̄ W̄ ]T , v = [u v w ]T

is the fluctuating velocity vector, with components u, v and w denoting the velocity in

the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively, and d is a

zero-mean stationary stochastic input that is used to trigger a statistical response from the

linearized dynamics. Here, ∇ is the gradient operator, ∆ = ∇ · ∇ is the Laplacian, and the

Reynolds number is defined in terms of the rotor diameter d0, the free-stream velocity U∞,

and the kinematic viscosity ν as Re = U∞d0/ν (from Equation (2.12)). In the NS equations

(Equations 3.2, 3.3), length, velocity, time, and pressure have been non-dimensionalized by

d0, U∞, d0/U∞, and ρU2
∞, respectively.
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To bring Equation (3.2) to a state-space form, we follow a standard conversion for the

elimination of pressure together with finite-dimensional approximation of the differential

operators [32, 65]. This is done by first eliminating pressure by applying the divergence

operator to Equation (3.2), which is then simplified by using the continuity equation (Equa-

tion (3.3)) resulting in a partial differential equation for the evolution of v. The evolution

of the vorticity can be obtained by finding the curl of Equation (3.2). Applying a Fourier

transform allows us to rewrite the equations in state-space form where the turbulence v is

the state of the system and the A, B and C operators are defined in Section 3.3. We obtain

ū from an appropriate analytical wake model and the system equation now provides us with

the evolution of the turbulence as follows

v̇(t) = Av(t) + B d(t). (3.4)

The form of system matrices A and B, along with details of the employed finite-dimensional

approximation and boundary conditions on v can be found in [11, Appendix A]. The stochas-

tic input d provides a degree of freedom for shaping the statistics of the velocity field v. In

what follows, we provide details on structural constraints that govern the statistics of the

state v and input d in system (3.4).

3.2 Volume penalization

Equations (3.2) use a volume penalization technique to model the effect of solid obstructions

to the flow caused by turbine structures. Instead of resolving the grid and and implement-

ing no-slip/no-penetration boundary conditions over the surface of turbine structures, this

method allows us to capture the effect of turbine rotors and nacelles (and even turbine towers

in 3D models) by penalizing the velocity field using the negative feedback term K−1v. In

this approach K plays the role of a permeability function that only affects the velocity field
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z
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Figure 3.2. Contour plots of K−1(x, z) used in the volume penalization technique for yaw
angles (a) γ = 0; and (b) γ = 45◦.

at or around the coordinates of solid structures and has no influence on the flow at other

spatial locations; see [34] for details.

Within the fluid K → ∞ so that the penalization resulting from K−1v does not influence

the flow. This would yield back the original linearized NS dynamics. On the other hand,

within solid structures K → 0 so that the negative feedback forces the velocity field to zero.

To capture the spatial region that is influenced by the presence of the turbines, we use a

smooth 2D filter function of the form K−1(x, z) = f(x)h(x) with

f(x) =
c

π
[arctan(a(x− x1)) − arctan(a(x− x2))]

h(z) =
c

π
[arctan(a(z − z1)) − arctan(a(z − z2))]

Here, x1,2 and z1,2 determine the spatial extent of the rotors in the horizontal plane and

parameters a and c determine the slope and magnitude of the function, respectively [52].

To apply this function correctly to a yawed turbine, the grid points are rotated by the yaw

angle and new yawed spatial limits (x1, x2, z1, z2) are defined. A contour plot is shown in

Figure 3.2 indicating how this function changes when a turbine reorients itself from zero

misalignment to one of 45◦.
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3.3 System equations

The system matrices in Equation (3.4) are dependant upon the dimensionality of the domain

as well as the number of velocity components that are being considered while linearizing the

NS equations. As an example, the system matrices are listed below for a 2-D domain in x

and z while considering only a streamwise base velocity component ū, turbulence v = [u w]

and assuming that cross-flow base velocity terms are negligible.

A = ∆−1

 A11 A12

A21 A22

 ,

A11 = −ū∆ ∂x − ūx ∆ − 2 ūxz ∂z − ūzz∂x − ūxzz +
1

Re
∆2,

A12 = −ūzzz + ūz ∆ + ūxz ∂x − 2 ūzz ∂z,

A21 = 2 ūx ∂xz + ūxz ∂x + ūxxz + ūxx ∂z,

A22 = −ūxx ∂x − ūx∆ ∂x − 2ūx ∂xx + ūzz ∂x − ūxzz +
1

Re
∆2,

B = ∆−1

 B11 B12

B21 B22

 ,

B11 = fxx + 2fx ∂x + f ∂xx,

B12 = −(fxz + fx ∂z + fz ∂x + f ∂xz),

B21 = −(fxz + fx ∂z + fz ∂x + f ∂xz),

B22 = fxx + 2fx ∂x + f ∂xx

where, f(x, z) in matrix B is a 2D shape function that determines the spatial extent of the

forcing. The suffixes x and z denote the partial derivatives in space. For discretization of

the domain and finite-dimensional approximation of the differential operators in the system

matrices above, we use a second-order central differencing scheme with Nx and Nz uniformly

distributed collocation points in the streamwise and spanwise directions, respectively.
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3.4 Boundary conditions

Besides at the inlet and outlet, we implement homogeneous Dirichlet and Neumann boundary

conditions at all other edges of our computational domain. At the inlet and outlet of the

domain along the streamwise dimension, we apply linear extrapolation conditions (see [51]

for details). For a 2D model of the hub-height velocity field, these boundary conditions take

the following form:

v(x, z(1)) = v(x, z(Nz)) = 0

vx(x, z(1)) = vx(x, z(Nz)) = vz(x, z(1)) = vz(x, z(Nz)) = 0

v(x(1), z) = αv(x(2), z) + β v(x(3), z),

v(x(Nx), z) = αv(x(Nx − 1), z) + β v(x(Nx − 2), z),

vx(x(1), z) = αvx(x(2), z) + β vx(x(3), z),

vx(x(Nx), z) = αvx(x(Nx − 1), z) + β vx(x(Nx − 2), z),

vz(x(1), z) = αvz(x(2), z) + β vz(x(3), z),

vz(x(Nx), z) = αvz(x(Nx − 1), z) + β vz(x(Nx − 2), z)

where

α =
x(Nx)− x(Nx − 2)

x(Nx − 1)− x(Nx − 2)
, β =

x(Nx − 1)− x(Nx)

x(Nx − 1)− x(Nx − 2)
.

Note that in the case of an equally spaced grid, α = 2 and β = −1. We also introduce

sponge layers at the inflow and outflow to mitigate the influence of boundary conditions on

the fluctuation dynamics within the computational domain [49, 40, 53].

3.5 Second-order statistics of model

Under steady atmospheric conditions, the global operator A in Equation (3.4) is stable.

Thus, if (A,B) is a controllable pair, the steady-state covariance of the fluctuating velocity
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field

X = lim
t→∞

E [v(t)v∗(t)] (3.5)

resulting from persistent stochastic excitation of the linear dynamics solves the Lyapunov-like

equation

AX + XA∗ = −BH∗ − H B∗. (3.6)

This equation relates the statistics of the state to the spectral content of the stochastic

input. The entries of X represent two-point correlations of the velocity field at various

spatial locations across the wind farm, with diagonal entries denoting one-point correlations

or the intensity of the turbulent flow. In Equations (3.5) and (3.6), ∗ denotes the complex

conjugate transpose and matrix H quantifies the cross-correlation between the input and

the state [68, Appendix B], i.e.,

H := lim
t→∞

E [v(t)d∗(t)] +
1

2
B Ω.

For zero-mean white-in-time forcing d with covariance Ω, i.e., E[d(t)] = 0 and E[d(t)d∗(τ)] =

Ω δ(t − τ), H = (1/2)B Ω and Equation (3.6) reduces to the standard algebraic Lyapunov

equation

AX + XA∗ = −B ΩB∗.

As we demonstrate in Figure 3.4(b), white-in-time stochastic input d with covariance Ω = I

result in streamwise and spanwise velocity correlations that are quite different from that of

an LES-generated velocity field (Figure 3.4(a)). As an exercise, we also consider the effect of

the superposition techniques (defined in Section 2.1.3) on the base velocity field of our wind

farm model to the sensitivity of the modeling framework subject to white-in-time forcing in

Appendix A.

When we assume that the input is zero-mean (i.e. E[d(t)] = 0) and white-in-time with

covariance Ω, (i.e. E[d(t)d∗(t)] = Ω), H reduces to (1/2)BΩ. This brings Equation (3.6) to

the standard algebraic Lyapunov equation form.
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Figure 3.3. One point velocity correlations uu and vv on the diagonal and two-point velocity
correlations uv on the off-diagonal of the covariance matrix X.

(a)

z

(b)

z

x

Figure 3.4. A comparison of the streamwise velocity variances uu of a row of 4 turbines
yawed at γ = 30◦ from (a) LES and (b) the linearized dynamics (3.4) subject to white-in-
time stochastic forcing.
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3.6 Formulation of covariance completion problem

Better estimates of the velocity covariance levels can be obtained via a stochastic realization

informed by velocity statistics at prespecified wind farm locations. To this end, we adopt

the stochastic dynamical modeling framework of Zare et al. [64, 68, 65], which has shown

success in estimating the statistical signature of wind farm turbulence when turbine rotors

are perpendicular to the wind direction [12, 11].

The velocity statistics that we use to train our stochastic models may be gathered via field

experiments using, e.g., LiDAR measurement devices, or may result from high-fidelity LES

simulations. As mentioned in the previous subsection, the one-point velocity correlations

represent diagonal entries and the two-point velocity correlations represent off-diagonal en-

tries of covariance matrix X. We seek input matrix B and statistics of forcing d that induce

a statistical response from the linearized dynamics (3.4) that reproduces the partially known

statistics. This information can be obtained from the solution to the covariance completion

problem

min
X,Z

− log det (X) + α ∥Z∥∗

subject toAX + X A∗ + Z = 0

Xi,j = Gi,j, ∀ {i, j} ∈ I (3.7)

which penalizes a composite objective subject to two linear constraints that (i) ensure statis-

tical consistency with model (3.4) via the Lyapunov-like equation, and (ii) match partially

known second-order statistics of the velocity field. In this convex optimization problem,

Hermitian matrices X and Z are optimization variables, and entries of G corresponding

to the set of indices I represent partially available second-order statistics of the output v.

The objective function establishes a trade-off (weighted by the parameter α > 0) between

the solution to a maximum-entropy problem, which uses the logarithmic barrier function to
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ensure positive definiteness of matrix X, and a nuclear norm regularizer, which is used as

a convex proxy for the rank function (see, e.g., [20, 54]). The rank of matrix Z bounds the

number of independent input channels or columns in matrix B thereby providing a means

to regulate the complexity of the forcing model as colored-in-time forcing d that excites all

degrees of freedom can completely overwrite the linearized dynamics [64].

The solution to problem (3.7) can be used to realize the appropriate colored-in-time

forcing d of system (3.4) such that the partially available velocity correlations are reproduced.

Specifically, the matrix Z resulting from problem (3.7) can be decomposed into matrices B

and H (see Equation (3.6)) via spectral decomposition techniques [64, Section III.B]. While

matrix H can be used to construct a low-pass filter that generates the suitable colored-

in-time forcing d, matrix B determines how such forcing enters the linear dynamics (3.4).

The spatio-temporal realization of colored-in-time forcing d can be equivalently interpreted

as a white-in-time excitation together with a data-enhanced dynamical modification to the

linearized dynamics in the form of a state-feedback interaction; see [67, 64] for additional

details.

The parameterization of stochastic forcing relies on the solution to problem (3.7) and is

thereby affected by the available training data (correlations of streamwise u and spanwise

w velocity) indicated by set I. As a result atmospheric changes that may result in rapid

variations in the intensity and direction of wind can jeopardize the validity of estimations

provided by a stochastic model that is developed using a set of velocity correlations at

prespecified wind farm locations. In the next section, we use a sequence of streamwise and

spanwise velocity correlations from immediately behind turbine rotors to develop a stochastic

model of wind farm turbulence. We then evaluate the robustness of our 2D and 3D models

to yaw misalignments that influence correlation patterns throughout the farm.
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Figure 3.5. Spatial data training points represented as blue dots in the velocity field.
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CHAPTER 4

APPLICATION OF MODELING TECHNIQUE TO TURBULENT FLOWS

AROUND YAWED WIND TURBINES

The stochastic dynamic modeling framework established in Chapter 3 is now used to predict

the second-order velocity statistics in a wind farm using some of the wake models described

in Chapter 2. We first present a 2D model of the hub-height velocity field for a cascade of 4

turbines in Section 4.1. We then extend the model to account for the velocity field around

a stand-alone turbine in Section 4.2.

4.1 2D deflection model

We first consider a setup of a cascade of 4 turbines that are uniformly yawed against the

wind direction behaving according to the Gaussian deficit model [6] described in Section 2.1.1

pictured in Figure 4.1(a). This model can be reduced to two dimensions and still display the

deficit and the spanwise deflection from the wake center, therefore, our computational domain

is a hub-height section of the velocity field. Our computational field spans x ∈ [ 0, 15 ] and

z ∈ [−2, 2 ] and the turbines are place at z = 0 with a spacing of 4d0. The first turbine

at x = 2. The grid spacing for the finite difference model is set to 0.5d0 in spanwise and

streamwise directions.

When considering a hub-height cross-sectional domain, Equation (2.1) can be reduced to

U(x, z) = U∞ − U∞

(
1 −

√
1 − CT cos γ

8 (σy σz/d20)

)
e
−0.5

z − δ

σz

2

. (4.1)

Here, d0 = 1 denotes the non-dimensionalized rotor diameter and the wake growth rate is

taken as k = 0.022. Consistent with the high-fidelity LES that generates the statistical

dataset used for modeling, we consider a 5MW NREL [31] turbine at maximum power

production with a thrust coefficient of CT = 0.7871 (see Figure 4.1(b)), a Reynolds number of
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Figure 4.1. (a) Layout of wind farm with 4 turbines in a cascade spaced 4 d0 apart (b)
Coefficients of thrust and power versus the tip speed ratio; CP in blue, CT in red and the
TSR corresponding to the maximum CP in black

108, and an incoming turbulence intensity of I = 0.08. Following [6], the constant β⋆ = 0.154

in Equation (2.1.2) is determined under ideal conditions with no incoming turbulence (I = 0)

to match the potential core length x0 of jet flows. The turbulence intensity, α = 2 is computed

to best approximate the potential core length in accordance with the results of LES of flow

behind a single turbine for various yaw angles.

4.1.1 Numerical experiments

Following previous work in modeling velocity variances for a similar setup of a wind farm,

we provide access to flow statistics up to 3 diameters downstream to each turbine with 3

training points across its span [11] (see Figure 3.5). The results of the covariance completion

is seen in Figure 4.2 for streamwise and spanwise velocity covariances for yawed cases of

γ = 15◦ and 30◦. The plots indicate that the dominant features, from high to low energies,

are being captured by our stochastic model, even though a few spurious regions of high

energy are also displayed. The results display the pair of intensity streams from the rotor

tips for the 15◦ case and the single stream for the 30◦ case. In particular, we observe traits

such as the slight asymmetry and surge of the streamwise intensity streams resulting from
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Figure 4.2. The Streamwise uu (left) and spanwise ww (right) velocity variances at the hub
height of a cascade of 4 turbines with uniform yaw angles of 15◦ (a,b,c,d) and 30◦ (e,f,g,h)
resulting from LES (a,b,e,f) and our stochastic dynamical model (c,d,g,h).

the turbines rotation and its eventual dissipation just ahead of the immediate downstream

turbine. For the spanwise intensities ww we observe that spurious regions exist beyond the

blade tips but the predictions of the model hold within the vicinity of the training points.

We investigate the velocity variances for a large yaw misalignment of 45◦ under the same

parameters in Appendix B.

The quality of completion of the results is noteworthy in the fact that the training data

is spaced away from the trajectory of the wakes thereby establishing this method as a strong

contender in turbulence modeling and forecasting. We attribute the robustness of the model,

in this respect, to its inherent physics-based nature which complements the optimization
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problem. The quality of completion results is also a testament to suitability of the number

of training points and their location with respect to the turbine placement.

4.2 3D curl model

The Gaussian wake profile can be adapted to a 2D computational domain, but cannot capture

physical aspects of the flow including wake rotation, ground effects and the shear profile of

the velocity inflow. We therefore expand our framework to a 3D domain to implement the

curled wake profile [42] described in Section 2.2 as our baseline velocity. For the sake of

compactness, we limit the numerical experiments to a yaw misalignment of 15◦.

The setup of the velocity field for the 3D curl model involves a single turbine at a yaw

of 15◦. While the base velocity ū calculated by Equation (2.13).requires a broad domain

of 3d0 in the cross-plane directions to maintain the numerical stability of the model, the

stochastic dynamical model used a smaller window centered around the turbine rotor to

enhance computation ease and time.

In generating the vorticity profile, we approximate 100 tip vortices are generated within

the rotor diameter with a vortex contributing to the wake rotation. The spanwise and wall-

normal velocity components are assumed to be non-decaying in the streamwise direction

in this experiment. Each vortex has a core of d0/5. Following with our case of maximum

power output, we take the fluid density to be 1.225 kg/m3 [13] and the induction factor a

for optimized operation is 1/3. The Reynolds number considered for the effective viscosity

is 108. In modeling the turbulent viscosity we take the von Kármán constant to be 0.4 and

the recommended mixing length of 15m [42]. We also extend the Dirichlet and Neumann

boundary conditions described in Section 3.4 along the edges of wall normal dimension.
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Figure 4.3. One point velocity correlations uu, vv and ww on the diagonal and two-point
velocity correlations uv, vw and uw on the off-diagonal of the covariance matrix X

4.2.1 Numerical experiments

For the 3D results, we expand our considerations of velocity correlations to the one point

and two point velocity correlations of the covariance matrix X as depicted in Figure 4.3.

The results of the covariance completion is seen in Figures 4.4 to 4.7 for the top and side

profile views of the domain, each sectioned at the hub.

We note the good quality of completion in the velocity variances uu, vv and ww through-

out the domain. The dominant features of the flow are captured such as the asymmetric

streams of turbulence from the rotor tips in the top view profiles (see Figure 4.4). We also

see the peaks in the velocity variances close to the hub in the side views (see Figure 4.6).

For the velocity covariances uv, vw and uw, we again note a good match in the features

of the flow. In particular, we are able to capture the velocity profiles within the vicinity of

the training points (see Figures 4.5 and 4.7). The regions outside the training points do

show slightly spurious turbulence values in the case of uv, but the overall distinctiveness of

the LES simulations are retained.
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Figure 4.4. Top View: The velocity variances at the hub height of a turbine with uniform
yaw angles of 15◦ resulting from LES (a,c,e) and our stochastic dynamical model (b,d,f); uu
(a,b), vv (c,d), ww (e,f).
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Figure 4.5. Top View: The velocity covariances at the hub height of a turbine with uniform
yaw angles of 15◦ resulting from LES (a,c,e) and our stochastic dynamical model (b,d,f); uv
(a,b), vw (c,d), uw (e,f)..
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Figure 4.6. Side View: The velocity variances at the hub height of a turbine with uniform
yaw angles of 15◦ resulting from LES (a,c,e) and our stochastic dynamical model (b,d,f); uu
(a,b), vv (c,d), ww (e,f).
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Figure 4.7. Side View: The off-diagonal velocity covariances at the hub height of a turbine
with uniform yaw angles of 15◦ resulting from LES (a,c,e) and our stochastic dynamical
model (b,d,f); uv (a,b), vw (c,d), uw (e,f).
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CHAPTER 5

INFINITE-HORIZON STOPPING FOR OPTIMAL POWER PRODUCTION

IN WIND FARMS

In this chapter, we demonstrate how the yaw of turbine rotors can be adjusted to overcome

the negative effects of velocity deficits caused by the operation of upstream wind turbines

on the power production and structural loads across wind farms. Based on Equation (2.1),

this deficit can be reduced (to a certain extent) by misaligning the rotors against the direc-

tion of the wind. However, quantities of interest in the control of wind farms, e.g., thrust

force and power, may be negatively impacted by yawing the turbines. The optimal op-

eration of a wind farm entails maximum power production while regulating the strain of

component loads across the farm. To address this problem, we formulate an infinite horizon

stopping problem [10] to find optimal yaw angles for turbines that are aligned in a cascade.

We complement with Monte Carlo simulations that allow us to analyze the robustness of

the identified control policy and long-term power estimations to wind speed variations and

yawing errors.

5.1 Problem Formulation

We use the Actuator disc model principle to formulate our calculations of quantities of

interest. We then define our system and how we apply our optimization problem to it.

5.1.1 Actuator disc model

From the Actuator disc model (ADM) concept, the rotor is represented as a porous disc

through which the wind flows [13]. We assume that the entire rotor witnesses a uniform ve-

locity inflow and ignore wind shear. Conservation principles of mass, momentum and energy

are applied to the fluid passing through the rotor leading to the calculation of quantities
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such as the force exerted on the actuator disc and the power extracted from the wind as

shown below:

F =
1

2
ρACT u2, (5.1)

P =
1

2
ρACP u3. (5.2)

Here, F is the thrust force, P is the produced power, ρ is the fluid density, A is the projected

area of the disc. CT and CP are the coefficients of thrust and power, respectively.

5.1.2 Optimization problem

Following previous state-space representations relevant to optimal control problems [45],

we define the system states x to be the incident velocities, ū to each turbine. The control

parameters are taken to be the yaw angle γ for each turbine. Our endeavor to safely maximize

the collective power output over a series of turbines leads us to formulate a finite-state infinite

horizon problem to decide the yaw angle for each turbine. We seek a combination of yaw

control settings that maximizes our value function (given by Equation (5.4)) over an infinite

number of stages [10].

Our stage cost g is the total wind farm power output, which is dependant on the state x

and control γ and is determined by summing the power across all turbines.

g(x, γ) =
∑
i

Pi. (5.3)

Here, P is the power calculated from Equations (5.1) and (5.2) at each turbine i. We define

two cases of interest; Case I to exhibit the effect of yaw control on the total power production

using Equation (2.1), and Case II to maximize the power production under a limiting thrust

force. Therefore, in Case I, we define the value function

J(x) := max
γ

g(x, γ) (5.4)
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and in Case II, we consider the same value function subject to a constraint on the thrust

forces, i.e.,

J(x) := max
γ

g(x, γ), s.t. max
i

(Fi) ≤ Flim (5.5)

where Fi is the thrust force at turbine i which is constrained by an upper limit of Flim.

We consider only yaw angles up to 40◦ that are conducive to power production in real-

world conditions [27], and to avoid Bellman’s curse of dimensionality [9], we discretize our

control inputs by limiting them to multiples of 5◦. The input and control spaces are therefore,

the Euclidean spaces ℜN and ℜ9, respectively, where N is the number of turbines. The

infinite horizon stopping model here is designed to achieve convergence when improvements

to the value function cease to rise beyond a set threshold.

5.1.3 Limitations and Assumptions

• We ignore the vertical shear profile of the wind and any possible horizontal wind veer

and consider a single incident velocity into the rotor which is obtained by averaging

Equation 2.1 over the hub and rotor tips in a 2D plane;

• We consider only positive yaw angles, in multiples of 5◦ to aid computations such that

U = {0◦, 5◦, ..., 40◦};

• We penalize the thrust force and power computations from Equations (5.1) and (5.1)

on account of the yaw using the projected area of the yawed disc.

• We are neglecting the dynamics of the turbulent flow within the wind farm and assum-

ing the incident velocities upon each turbine to be the output of a static wake deficit

model.
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5.2 Wind farm model

The incident velocity into each turbine is a key term in the quantities of power and thrust

force (Equations (5.1) and (5.1)). It is therefore important to select a model that reasonably

depicts the true wake velocity including its physical aspects such as downstream recovery to

the free-stream velocity, growth in the spanwise directions, and the aerodynamic coupling

from their interactions with other wakes in the velocity field. With considerations to the

2D nature of this model, we note that the low fidelity analytical wake model provided by

Bastankhah and Porté-Agel [6], which is applicable to yawed turbine rotors, best suits our

purpose. Reference equations for the waked velocity from Section 2.1 serve to provide us

with the incident velocities for the downstream turbines for any combination of yaw angles

γi. We maintain the same non-dimensionality principles as earlier, i.e., the length, velocity

and pressure are non-dimensionalized against the rotor diameter d0, the free stream velocity

U∞, and the pressure ρU2
∞ where ρ is the air density. The thrust coefficient CT is chosen to

correspond to the maximum power coefficient CP as obtained from large eddy simulations

of a 5MW NREL wind turbine; see Section 5.3.1 and Figure 4.1(b) for details.

5.3 Numerical Experiments

5.3.1 Wind Farm

Our quantities of interest, namely power and thrust force, are dependant on incident ve-

locities and projected areas, therefore, we calculate the incident velocities as the velocities

experienced at each turbine location assuming a 2D computational domain at the hub-height

of turbines. As such, additional discretization points that would provide the velocities be-

tween the turbines would only burden the computational time of this problem with no added

benefit to accuracy. The wind farm comprises four turbines positioned in a row with a uni-

form spacing of 4d0.
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We model the turbine based on operating parameters applicable to the maximum power

case for a 5MW NREL turbine [31] modeled using a high fidelity LES code [55, 56] which are

applicable to the constant terms in the equations listed in Section 5.2. Since, we consider

power production as one of our main concerns, the coefficient of thrust, CT corresponds

to the tip speed ratio that results in the highest possible coefficient of power (also called

optimal tip-speed ratio [6]) CP and is taken to be 0.7871 and 0.5 respectively. The rate of

downstream wake growth k is considered to be 0.022 in both, span-wise and wall normal

directions, i.e. vertical and horizontal directions when facing the turbine. In calculating the

potential core length x0, we select α as 2 to match against the turbulence intensity I which

is 8% of the free-stream velocity. β⋆ is taken to be 0.154 based on studies to match the

potential core length of jet flows under ideal conditions of no incoming turbulence [6]. We

use the Lissaman [39] superposition principle penalizing the velocity deficits as described in

Equation 2.3.

5.3.2 Infinite horizon stopping cases

Within this study, we consider two cases of operation and thus develop two infinite horizon

stopping models. In Case I, we optimize the power output alone as we seek to demonstrate

that maximizing the total power often leads one turbine to sacrifice its performance for the

sake of the team. In Case II, we consider a more practical objective of safely maximizing

the power under a limiting thrust force (here, considered to be 90% of the maximum thrust

force). This constraint is crucial to the safe and efficient operation of turbines as high

thrust forces inevitably lead to high component loads [23] that may shorten the required 20

year lifespan of onshore turbines [25]. Following the optimal control problems laid out in

Section 5.1.2, we consider different initial conditions (i.e., initial turbine orientations) and

record the number of iterations that are required to achieve the optimal policy for Cases I

and II.

39



5.3.3 Monte Carlo simulations

We acknowledge that, most depictions of fluid fields decompose the velocity to the sum of

a mean velocity ū and a velocity fluctuation term v. We obtain ū from the methodology

described in Section 5.2. Accurate turbulence models are generally informed through high-

fidelity simulations or though analytical methods [37] while the turbulence velocity is taken

to be zero-mean stochastic term with a range informed from our turbulence intensity I.

Additionally, in practice, the operation of a wind turbine also includes aspects such as yaw

error ∆ γ, which results in production losses [4, 61]. The uncertainty in these two parameters

leads us to the representations of the total velocity and yaw as

u = ū+∆u (5.6)

and

γ = γ̄ +∆γ (5.7)

respectively. After obtaining our ideal yaw angles, we seek to find the sensitivity of our

long term power production outlook to the uncertainty provided by wind turbulence and

yaw errors. To this end, we consider separate Monte Carlo simulations that account for the

uncertainty due to the wind speed alone (∆u) or both wind speed and yaw (∆γ) variations.

5.4 Results

The development of the two cases in this study was intended to firstly, exhibit the effects

of the wake interactions on the overall power output of the wind farm, and secondly, to

respect component safety in our attempt to optimize wind farm power output. Given that

we operate under the assumption of a steady-state velocity field, we seek a convergence

of an optimal policy under all initial conditions. While this may be achieved through a

computationally less complex permutation problem (i.e., exhaustive search), the solution
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Figure 5.1. Case I: Total power over iterations of the stopping problem algorithm.

to our wind plant setup would entail 94 scenarios that cover 9 different yaw angles across

4 turbines even in the absence of parametric variations. For various initial misalignment

angles (even those that are very far from the optimal parameters), our approach results in

a significant computational benefit whereby solutions are obtained in under 100 iterations.

Our results show that in both cases, the last turbine orients itself perpendicular to the free-

stream wind direction to capture the maximum possible energy from the wind as it has no

turbine behind it to negatively influence and also, that the cumulative wake interactions

have significantly lowered the incident wind velocity. We next discuss the outcomes of each

case study.

Case I: The optimal policy for the case in which our sole objective is to maximize the

power is found to be a misalignment of 40◦ for the first 2 turbines, 30◦ for the third and

no misalignment for the last turbine. Given uniformly zero initial yaw angles, the power

rises by over 20%. Figure 5.1 show the progressive increase in total power as a result

of algorithmic updates to the turbine orientations. Figure 5.2 shows how the increase in

yaw for the first turbine, which reduces its power production, can increases production

over the subsequent turbines. The converged total power calculations from the Monte Carlo
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Figure 5.2. Case I: Initial (red) versus maximum (blue) power outputs for each turbine.
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Figure 5.3. Case II: Total power (represented by the blue line and measured along the y axis
on the left hand side) and maximum thrust forces (represented by the red line and measured
along the y axis on the right hand side) over infinite horizon iterations. The limiting thrust
force is represented as the red dashed line.

simulations is displayed in Figure 5.4. We attain a power of 0.606 units and 0.604 units when

separately factoring in the uncertainty from the wind turbulence and both, wind turbulence

and yaw error, respectively.
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Figure 5.4. Monte Carlo simulations for Case I considering (a) wind variations alone; and
(b) wind variations and yaw variations.

Case II: The convergence of the optimal policy can be observed in Figure 5.3 and is

achieved when the first 3 turbines are misaligned at 40◦ and no misalignment exists for the

last turbine. As expected, this case study required more iterations to converge upon an

optimal policy relative to Case I. Stricter, by which we mean lower, limits on the permissible

thrust force also leads to a rise in computations. We note that reasonable limits still have

to be imposed as we have little control over the inflow velocity to the first turbine. Also,

additional Monte Carlo simulations were required to converge upon power estimations given

stochasticity in the states or stochasticity in both states and inputs. For this case study,

wee converge upon a total power of approximately 0.57 units in both sets of Monte Carlo

simulations (Figure 5.5).

43



(a) (b)

T
ot
al

p
ow

er

Simulations

T
ot
al

p
ow

er

Simulations

Figure 5.5. Monte Carlo simulations for Case II considering (a) wind variations alone; and
(b) wind variations and yaw variations.
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CHAPTER 6

CONCLUDING REMARKS

6.1 Conclusions

The inadequacies in predictions of currently available static engineering wake models have

necessitated the development of the stochastic dynamical models presented in this thesis.

Our models are able to augment the predictions of analytical wake models to describe sta-

tistical signatures of wake turbulence in accordance with high-fidelity models. Specifically,

we use convex optimization to determine the stochastic excitation that drives the stochas-

tic output of linear dynamic approximations to the governing equations in order to match

velocity variances that are prescribed by simulations or experiments at prespecified spatial

locations across a wind farm. Our proposition is applicable to operating conditions in wind

farms that experience the added complexities due to yaw misalignment.

We support our methodology by providing accurate predictions of directional turbulence

in hub-height sectional and 3D models of turbulence. The robustness is emphasized in the

quality of results that prevail even when the areas of interest are spread outside of prospec-

tive sensor placement. The combination of physical modeling techniques with numerical

simulations presents an efficient class of models that use prior training information to save

computational effort. It is well-suited to real-time forecasting as the computationally inten-

sive steps in our modeling procedure are conducted offline. Our approach is amenable to the

considerations of recently proposed complex variants of analytical wake models that account

for the blade geometry and pitch effects that influence the evolution of wakes.

The thrust force exerted on the rotor disc is one of the factors that influences the com-

ponent loads of a turbine. Higher loads result in an acceleration of structural failures and

thereby a reduction in the life span of a wind turbine. In the final chapter of this thesis,

we propose a simple control algorithm for optimizing power production across a wind farm
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while regulating thrust force levels below prespecified limits that respects the projected life

of the turbine. Assuming constant power and thrust force coefficients, we consider both the

captured power and exerted thrust force to be linearly dependant on the projected rotor area

and functions of an order of the incident velocity. This raises a conflict in optimizing each

of them. We demonstrate that a infinite-horizon stopping algorithm is capable of identify-

ing optimal turbine rotor orientations that achieve maximum cumulative power production

while respecting prescribed bounds on the thrust force of individual turbines.

6.2 Ongoing efforts

The work conducted in this thesis in inline with our envisioned real-time short-term wind

forecasting strategy, which utilizes Kalman filtering algorithms to assimilate real-time ground-

level air pressure measurements from across the farm into predictive dynamical models of

wind farm turbulence. Ongoing efforts may involve the utility of the 3D models proposed in

this thesis for real-time wind forecasting, and the use of alternative covariance completion

formulations [24, 67, 69]. The latter is aimed at providing useful information about critical

directions and feedback interactions that have maximal effect in bringing model (in our case

the stochastically forced linearized NS) and statistics in agreement. Given the physics-based

nature of our models, this research direction can prove decisive in identifying salient dynam-

ical couplings and interactions in turbine wakes thereby opening the door to new classes of

low-fidelity wake models.
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APPENDIX A

SUPERPOSITION TECHNIQUES ON IDENTITY FORCED RESULTS

The multi-turbine system that we model in Section 4.1 needs to account for the cumulative

wake flows resulting from the interaction of multiple wakes. This is achieved by calculating

stand-alone velocities and then superposing them to model their overlapping effects. The

three superposition principles presented in this work (Equations (2.3), (2.4), and (2.5))

may also result in differences in the outcome of variance amplification due to stochastic

excitation of the linearized fluctuation dynamics. Here, we study the sensitivity of the

modeling framework of Chapter 3 to base flow variation dictated by these superposition

techniques.

An exercise with the set of base flows from Figure 2.2 was conducted while exciting our

stochastic model with white noise. As shown in Figure 2.2, different superposition principles

result in similar waked velocities behind the first two turbines but differences in the wake

of downwind turbines. In spite of such differences in the base flow profiles, the variance

amplification obtained from solving the Lyapunov equation exhibits almost identical spatial

patterns throughout the wind farm (Figure. A.1).
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Figure A.1. The streamwise uu (left) and spanwise ww (right) velocity variances as a result
of white-in-time forcing of the linearized dynamics of the hub-height velocity fluctuations for
a cascade of 4 turbines. The base velocity profiles are obtained using superposition principles
from: first row: Equation (2.3); second row: Equation (2.4); and third row: Equation (2.5).
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APPENDIX B

RESULTS FROM HIGHER MISALIGNMENTS

While we focus our efforts in Section 4.1.1 to settings typical to maximum power generation,

the yaw angles under study have been limited to below 40◦ of misalignment since angles

higher than this are ill-suited to power production cases [27]. We consider here a misalign-

ment of γ = 45◦ and display the quality of covariance completion in Figure B.1 under the

same settings as in Section 4.1. We note that the self-similar Gaussian distribution (Sec-

tion 2.1) is more appropriate to lower angles of yaw [6] and therefore, may not be the best

representation of the base velocity ū for a rotor yawed at γ = 45◦. We observe regions of ir-

regular predictions in both uu and ww predictions and while further investigation is required

into this behaviour, we work on bettering our results for the more likely cases involving lower

yaw angles. We do, however, note the better matches between our model and the LES within

the regions of the training data.
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Figure B.1. The streamwise uu (left) and spanwise ww (right) velocity variances at the
hub height of a cascade of 4 turbines with uniform yaw angles of 45◦ (e,f,g,h) resulting from
LES (a,b) and our stochastic dynamical model (c,d).
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APPENDIX C

COMPARISON STUDY OF CURLED WAKE PARAMETERS

The plane-marching problem formulated to obtain the curled wake profile of the yawed tur-

bine in Section 2.2 was highly sensitive to small parametric variations pertinent to the phys-

ical properties of the fluid flow (e.g., Reynolds number) and spatial discretization scheme.

In this appendix, we compare the curled velocity profiles that result from changes to such

parameters.

C.1 Shear profile at the inflow

Using the power law with a shear exponent of α = 0.20 [13] to specify the base velocity

component of the curl profile is more accurate, however, it tends to lead to changes in the

perturbation velocity in regions outside the wake at greater distances downstream, which

is inaccurate and does not contribute to the stability of the numerical solution. However,

considering a uniform inflow leads to a more stable solutions. Figure C.1 displays the stream-

line base velocity 6 diameters downstream to the turbine with different inflow conditions.

We note the visible change in profile at the bottom-right of Figure C.1(b) due to the lower

velocity close the the ground.

C.2 Reynolds number

The recommended [42] Reynolds number to formulate the stabilizing viscosity (Equation (2.12))

was 104, however, the value used in these numerical experiments is 108. The numerical stabil-

ity criterion is easier to achieve with the lower Reynolds number and therefore, our numerical

experiments exhibited a few scattered cells of numerical instability, while the recommended

value exhibited none. Nevertheless, we continue to use the higher Reynolds number based

on the rotor diameter and the free-stream velocity, in accordance with the LES simulations.
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Figure C.1. The streamwise velocity profile at 6 d0 downstream of the turbine when con-
sidering (a) uniform inflow to the turbine, and (b) atmospheric boundary layer inflow.

C.3 Wake rotation in cross-plane velocity components

The asymmetrical profile of the curled wake that we use in out model (Figure C.2(b)) is

due to influence of the wake rotation in the base velocity components. This disproportion

between the top and bottom regions of the wake are not present when only the shed tip

vortices are considered in Equation (2.8) (See Figures C.2(a) and C.2(c)). We also notice

that in the absence of the wake rotation, the bottom of the wake profile interacts more with

the velocity gradient closer to the ground; this is prevalent when applying the shear profile

to the inflow (Figure C.2(a)) as opposed to a uniform velocity profile in Figure C.2(d).

C.4 Effect of grid size

When the resolution of the finite difference grid required for a suitable calculation of the base

velocity is very high, the equations and matrix size required to solve the stochastic dynamic

modeling framework described in Chapter 3 become larger and more cumbersome to solve.

We therefore, seek to reduce the size of the domain without impacting the integrity of the

resulting profile. We found that increasing the grid size in the streamwise dimension caused
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Figure C.2. The streamwise velocity profile at 5 d0 downstream of the turbine when consid-
ering the atmospheric boundary layer (a, b) and uniform inflow to the turbine (c, d) while
using only the shed vortices in the vorticity formulation (a, c) and both shed vortices and
the wake rotation vortex in vorticity formulation (b, d).
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(a) (b)

y

z z
Figure C.3. The streamwise velocity profile at 5 d0 downstream of the turbine when consid-
ering (a) coarser grid in the streamwise direction, and (b) coarser grid in the spanwise and
wall-normal direction.

the most numerical noise in the far-wake region (see Figure C.3(a)), while increases in the

spanwise and wall-normal dimensions led to a coarser velocity profile (see Figure C.3(b)),

albeit with fewer numerical instabilities. It is important to note, however, that the aspect

ratio between the grid sizes in all three dimensions is an important factor in the numerical

stability criteria of the model.
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