Course web page

http://www.utdallas.edu/~assmann/aud6306/

- Course information
- Speech demos
- Lecture slides
- Assigned reading material
- Additional resources in speech & hearing
Course materials

- No required text
- Some recommended books:
Coming soon …
Course requirements

- Class presentations (20%)
- Presentation reports and homework (20%)
- Midterm take-home exam (25%)
- Final take-home exam (35%)
Course theme
Hearing and speech are closely linked
Graphic storytelling has POWER! Speech and thought balloons can show you language—and its nuances and shortcomings—in the actual moment! Graphic storytelling also immerses you in an experience you may have never had—and, in this case, hopefully never will...

THESE STUPID HEARING AID BATTERIES NEVER LAST! AND GOOD GRIEF, I DON'T EVEN HAVE ANY EXTRA...

DEECE BELL is the author of the graphic novel “El Deafo,” a Newbery Honor winner.
Class presentations and reports

- **Sign up** for two presentation dates.
- **Pick two broad topics** from the field of speech science (topics must be approved).
- **Select a suitable (peer-reviewed) paper** for each topic and present a brief (10-15 minute) summary of the paper to the class to initiate/lead discussion.
- **Prepare a written report** (2-3 pages) due about 2-3 weeks after the presentation.
Class presentations and reports

• When you find a paper you’d like to present, email the citation or the PDF version of the paper to me for approval. (In some cases I may suggest an alternative, or more recent paper). I will post the paper on the readings web page and email the link to the class.
Class presentations and reports

- **Important note**: papers must be selected and approved *one week before the presentation* to provide others time to read them.

- Everyone is expected to read the assigned articles for each class and be prepared to discuss them.
Suggested Topics

- Speech acoustics
- Vowel production and perception
- Consonant production and perception
- Suprasegmentals and prosody
- Speech perception in noise
- Auditory grouping and segregation
- Speech perception and hearing loss
- Cochlear implants and speech coding
- Development of speech perception
- Second language acquisition
- Audiovisual speech perception
- Neural coding of speech
- Models of speech perception
Finding papers

PubMed search engine:
Finding papers

Journal of the Acoustical Society of America: http://scitation.aip.org/content/asa/journal/jasa
UTD online journals

http://www.utdallas.edu/library/resources/journals.html
https://libguides.utdallas.edu/journal-collections
Speech Science

Speech production
- Respiration
- Phonation
- Articulation

Channel properties
- Noise and reverberation
- Transmission properties
- Hearing loss

Speech perception
- Acoustic cues
 Phonetic units
 Lexical access
- Invariance perceptual constancy segmentation
- Neural coding of speech
Vocal motor control

Figure 3

Primate vocal tract

The evolution of speech: a comparative review
W. Tecumseh Fitch
Source-filter theory of speech production

- **Lungs**
- **Vibrating Vocal folds**
- **Vocal Tract**
- **Output Sound**

Power supply
Oscillator
Resonator
Human vocal tract
Acoustics of speech

- Articulation
- Phonation
Organs of speech

- **Lungs**: apply pressure to generate air stream (power supply)
- **Larynx**: air forced through the glottis, a small opening between the vocal folds (sound source)
- **Vocal tract**: pharynx, oral and nasal cavities serve as complex resonators (filter)
Source-Filter Theory

Audio demo: the source signal

- Source signal for an adult male voice
- Source signal for an adult female voice
- Source signal for a 10-year child
Vocal fold oscillation

• One-mass model
 – Air flow through the glottis during the closing phase travels at the same speed because of inertia, producing lowered air pressure above the glottis.

Source: http://www.ncvs.org/ncvs/tutorials/voiceprod/tutorial/model.html
Vocal fold oscillation

- Three-Mass Model
 - One large mass (representing the thyroarytenoid muscle) and two smaller masses, M1 and M2 (representing the vocal fold surface). All three masses are connected by springs and damping constants.

Source-Filter Theory: Vowels

- Linear systems theory
- Assumptions: (1) linearity (2) time-invariance
- Vowels can be decomposed into two primary components: a **source** (input signal) and a **filter** (modulates the input).
Source-Filter Theory: Vowels

Time domain version:
$$U(t) \otimes T(t) \otimes R(t) = P(t)$$

Frequency domain version:
$$U(f) \cdot T(f) \cdot R(f) = P(f)$$
Source properties

- In *voiced* sounds the glottal source spectrum contains a series of lines called **harmonics**.
- The lowest one is called the **fundamental frequency** \(F_0 \).

![Amplitude Spectrum](image-url)
Demo: harmonic synthesis

- Additive harmonic synthesis: vowel /i/ 🎧
- Cumulative sum of harmonics: vowel /i/ 🎧
- Additive synthesis: “wheel” 🎧
- Cumulative sum of partials: 🎧
Filter properties

- The vocal tract resonances (called **formants**) produce peaks in the spectrum envelope.
- Formants are labelled **F1**, **F2**, **F3**, ... in order of increasing frequency.

![Amplitude Spectrum](image)

Amplitude Spectrum (with superimposed LPC spectral envelope)
source \(\otimes \) filter \(\otimes \) radiation = output sound
Source-filter theory

Laryngeal Source

Source: J. Hillenbrand

Filter

Gain→

Intensity ->

Frequency ->

/i/ /a/ /u/

Robert Mannell, Macquarie University
http://clas.mq.edu.au/phonetics/phonetics/vowelartic/vowel_artic.gif
Source-filter theory

Lip Buzz Serving as Source

Gain →

Frequency →

Gain →

Gain →

Frequency →
Source-filter theory

Source-Filter Model for /s/

Source (Time domain)
- VT FR Curve for /s/ (HP Filter)

Output Spectrum for /s/ (Multiply source spec by FRC)

Source (Frequency domain)
- Gain->

Frequency->

Amplitude->

Frequency->

(Pretty close to white noise)
Source-filter theory

Source-Filter Model for /f/

Source (Time domain)

VT FR Curve for /sh/ (HP Filter, but lower cutoff re: /s/)

Output Spectrum for /sh/ (Multiply source spec by FRC)

Source (Frequency domain)

Gain->

Frequency->

Amplitude->

Frequency->

Amplitude->

Frequency->

(Pretty close to white noise)
Source-filter theory

/s/ and /sh/ Source-Filter Models Overlaid
Speech terminology...

- **Fundamental frequency** (F_0): lowest frequency component in voiced speech sounds, linked to vocal fold vibration.

- **Formants**: resonances of the vocal tract.

![Diagram showing amplitude and frequency with F_0 and formants marked.](image-url)
Source properties: Pitch

- **Fundamental frequency** (F_0) is determined by the rate of vocal fold vibration, and is responsible for the perceived voice **pitch**.
Source properties: Pitch

- F_0 can be removed by filtering (as in telephone circuits) and the pitch remains the same.
- This is the problem of the missing fundamental, one of the oldest problems in hearing science.
- Pitch is determined by the frequency pattern of the harmonics (or their equivalent in the time domain, the periodicities in the waveform).
Harmonicity and Periodicity

- **Period**: regularly repeating pattern in the waveform

 Period duration, $T_0 = 6$ ms

 waveform
Harmonicity and Periodicity

- **Harmonic**: regularly repeating peak in the amplitude spectrum

![Graph showing amplitude spectrum with frequency and amplitude values.](image)

\[F_0 = 1000 / 6 = 166 \text{ Hz} \]

\[F_0 = 1 / T_0 \]

amplitude spectrum
Harmonicity and Periodicity

- **Period**: regularly repeating pattern in the waveform

Harmonics are integer multiples of F_0 and are evenly spaced in frequency

$F_0 = 1000 / 6 = 166 \text{ Hz}$

$F_0 = 1 / T_0$

Waveform

Period duration $T_0 = 6 \text{ ms}$

Amplitude Spectrum

$F_0 = 1000 / 6 = 166 \text{ Hz}$
Harmonic singing

- **Harmonic singing** (also called overtone singing) involves changing the shape of the vocal tract to align the resonance frequencies (formants) with harmonics of the fundamental. A low, sustained fundamental is produced, similar to the drone of a bagpipe, along with flute-like harmonics that drift in and out.
Harmonic singing

- **Harmonic singing** (also called overtone singing) involves changing the shape of the vocal tract to align the resonance frequencies (formants) with harmonics of the fundamental. A low, sustained fundamental is produced, similar to the drone of a bagpipe, along with flute-like harmonics that drift in and out.
Harmonic singing

Tuvan throat singing
http://www.youtube.com/watch?v=DY1pcEtHI_w&feature=youtu.be

Amazing Grace
http://www.youtube.com/watch?v=mO4Uh-Mini4&feature=youtu.be

Overtone singing
https://www.youtube.com/watch?v=UHTF1-IhuC0#t=21
Effects of F0 changes

Source-filter independence
Effects of formant frequency changes

Source-filter independence
Voicing irregularities

- **Shimmer**: variation in amplitude from one cycle to the next.
- **Jitter**: variation in frequency (period duration) from one cycle to the next.
Voicing irregularities

- **Breathy voice** is associated with a glottal waveform with a steeper roll-off than modal voice. As a result there is less energy in the higher harmonics (steeper slope in the spectrum).
Vocal tract properties

- Resonating tube model
 - approximation for neutral vowel (schwa), [Ə]
 - closed at one end (glottis); open at the other (lips)
 - uniform cross-sectional area
 - curvature is relatively unimportant

![Diagram of a resonating tube model with glottis at one end and lips at the other, with length, L, indicated.]
Uniform tube model (schwa)
Vocal tract model

- **Quarter-wave resonator:**

 \[F_n = \left(2n - 1 \right) \frac{c}{4L} \]

 - \(F_n \) is the frequency of formant \(n \) in Hz
 - \(c \) is the velocity of sound (about 35000 cm/sec)
 - \(L \) is the length of the vocal tract (17.5 for adult male)
Vocal tract model

- Quarter-wave resonator:

 \[F_n = \left(2n - 1 \right) \frac{c}{4L} \]

 - \(F_1 = (2(1) - 1) \times 35000/(4 \times 17.5) = 500 \text{ Hz} \)
 - \(F_2 = (2(2) - 1) \times 35000/(4 \times 17.5) = 1500 \text{ Hz} \)
 - \(F_3 = (2(3) - 1) \times 35000/(4 \times 17.5) = 2500 \text{ Hz} \)
Acoustic vowel space

First formant, F_1 frequency (Hz)

Second formant, F_2 frequency (Hz)

- i “heed”
- u “who’d”
- a “hod”
Vocal tract model

- **Quarter-wave resonator:**
 \[F_n = \left(2n - 1 \right) \frac{c}{4L} \]
 - \(F_n \) is the frequency of formant \(n \) in Hz
 - \(c \) is the velocity of sound in air (about 35000 cm/sec)
 - \(L \) is the length of the vocal tract (17.5 for adult male)
Vocal tract model

- Quarter-wave resonator:

\[F_n = \left(2n - 1 \right) \frac{c}{4L} \]

- \(F_1 = (2(1) - 1) \times 35000 / (4 \times 17.5) = \)
- \(F_2 = (2(2) - 1) \times 35000 / (4 \times 17.5) = \)
- \(F_3 = (2(3) - 1) \times 35000 / (4 \times 17.5) = \)
Vocal tract model

- Quarter-wave resonator:
 \[F_n = \left(2n - 1 \right) \frac{c}{4L} \]
 - \(F_1 = (2(1) - 1) \times 35000/(4 \times 17.5) = 500 \text{ Hz} \)
 - \(F_2 = (2(2) - 1) \times 35000/(4 \times 17.5) = 1500 \text{ Hz} \)
 - \(F_3 = (2(3) - 1) \times 35000/(4 \times 17.5) = 2500 \text{ Hz} \)
Helium speech

- The speed of sound in a helium/oxygen mixture at 20°C is about 93000 cm/s, compared to 35000 cm/s in air. This increases the resonance frequencies but has relatively little effect on F_0. In helium speech, the formants are shifted up but the pitch stays the same.
Helium speech

Exercise: Compute the frequencies of F1, F2 and F3 for a 17.5 cm vocal tract producing the vowel /ə/ (schwa) in a helium/air mixture (velocity $c \approx 93000$ cm/s)

$$F_n = \frac{(2n - 1) \cdot c}{4 \cdot L}$$

- $F_1 = \frac{(2(1) - 1) \cdot 93000}{4 \cdot 17.5} = \ldots$
- $F_2 = \frac{(2(2) - 1) \cdot 93000}{4 \cdot 17.5} = \ldots$
- $F_3 = \frac{(2(3) - 1) \cdot 93000}{4 \cdot 17.5} = \ldots$
Helium speech

Exercise: Compute the frequencies of F1, F2 and F3 for a 17.5 cm vocal tract producing the vowel /ə/ (schwa) in a helium/air mixture (velocity \(c \approx 93000 \) cm/s)

\[
F_n = \frac{(2n - 1)\ c}{4\ L}
\]

- \(F_1 = \frac{(2(1) - 1)\times93000}{(4\times17.5)} = 1328.6 \)
- \(F_2 = \frac{(2(2) - 1)\times93000}{(4\times17.5)} = 3985.7 \)
- \(F_3 = \frac{(2(3) - 1)\times93000}{(4\times17.5)} = 6642.9 \)
Helium speech

- Audio demos
 - Speech in air 🎧
 - Speech in helium 🎧
 - Pitch in air 🎧
 - Pitch in helium 🎧

http://phys.unsw.edu.au/phys_about/PHYSICS!/SPEECH_HELIUM/speech.html
Speech in air
Speech in helium

http://phys.unsw.edu.au/phys_about/PHYSICS!/SPEECH_HELIUM/speech.html
Sulfur Hexafluoride

- **Helium**
 - density of 0.1786 g/L at sea level

- **Air**
 - density of 1.225 g/L at sea level

- **Sulfur Hexafluoride** (SF$_6$)
 - density of 6.12 g/L at sea level

Speech production with vocal tract filled with SF$_6$

http://www.youtube.com/watch?v=d-XbjFn3aqE
Perturbation Theory

- The **first formant** (F1) frequency is lowered by a constriction in the front half of the vocal tract (/u/ and /i/), and raised when the constriction is in the back of the vocal tract, as in /u/.
Perturbation Theory

- The **second formant (F2)** is lowered by a constriction near the lips or just above the pharynx; in /u/ both of these regions are constricted. F2 is raised when the constriction is behind the lips and teeth, as in the vowel /i/.
Perturbation Theory

- The **third formant (F3)** is lowered by a constriction at the lips **or** at the back of the mouth **or** in the upper pharynx. This occurs in /r/ and /r/-colored vowels like American English /ɚ/ (as in “heard”).
Perturbation Theory

- F3 is raised when the constriction is behind the lips and teeth or near the upper pharynx.
Perturbation Theory

- **All formants** tend to drop in frequency when the vocal tract length is increased or when a constriction is formed at the lips.

![Diagram showing changes in formants](image)
Perturbation Theory

- F1 frequency is correlated with jaw opening (and inversely related to tongue height).
Perturbation Theory

- F2 frequency is correlated with tongue advancement (front-back dimension)
Figure 9-3. Vowels represented by stylized vocal tract configuration and area functions.
Digital representations of signals

![Diagram showing the process of digital signal representation with time on the x-axis and amplitude on the y-axis. The diagram illustrates sampling and quantization processes.]
Spectral analysis

- **Amplitude** spectrum: sound pressure levels associated with different frequency components of a signal
 - Power or intensity
 - Amplitude or magnitude
 - Log units and decibels (dB)

- **Phase** spectrum: relative phases associated with different frequency components
 - Degrees or radians
Spectral analysis of speech

Why perform a frequency analyses of speech?

- Ear+brain carry out a form of frequency analysis
- Relevant features of speech are more readily visible in the amplitude spectrum than in the raw waveform
Spectral analysis of speech

- **But:** the ear is not a spectrum analyzer.
 - Auditory frequency selectivity is best at low frequencies and gets progressively worse at higher frequencies.
Measuring formants

Formant frequency peak estimation requires an interpolation process.
Formant Estimation

Formants

F1 F2 F3

Vowel spectra have peaks corresponding to the center frequencies of formants

Spectrum of natural vowel /\}/
Formant Estimation

But: harmonics also generate spectral peaks; formant frequencies do not necessarily coincide with harmonic frequencies.
Children’s speech

- Children’s voices have high F_0s.
- When F_0 is 400 Hz (not unusual for 3-year olds), only 4 harmonics appear in the frequency range between 0-1600 Hz.
Sparce sampling problem

- Vowel identity is dependent on the frequencies of formant peaks.
- Formants are difficult to estimate when fundamental frequency is high.
LPC spectrum

Frequency (kHz)

Amplitude (dB)

LPC spectrum

FFT spectrum
Formants sometimes appear to merge
Representations of speech signals

Waveform /hid/

Amplitude Spectrum

Phase Spectrum
Short-term amplitude spectrum

F1 = 281 Hz
F2 = 2196 Hz
F3 = 2755 Hz
Speech spectrogram

- *running amplitude spectra* (codes amplitude changes in different frequency bands over time).
Speech spectrograms

- What is a speech spectrogram?
 - Display of amplitude spectrum at successive instants in time ("running spectra")
 - How can 3 dimensions be represented on a two-dimensional display?
 - Gray-scale spectrogram
 - Waterfall plots
 - Animation
Why are speech spectrograms useful?
- Shows dynamic properties of speech
- Incorporates frequency analysis
- Related to speech production
- Helps to visually identify speech cues
American English vowel space

<table>
<thead>
<tr>
<th>Front</th>
<th>Center</th>
<th>Back</th>
</tr>
</thead>
<tbody>
<tr>
<td>i “heed”</td>
<td></td>
<td>u “who’d”</td>
</tr>
<tr>
<td>high</td>
<td></td>
<td>v “hood”</td>
</tr>
<tr>
<td>i “hid”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mid</td>
<td></td>
<td>o “hoed”</td>
</tr>
<tr>
<td>e “hayed”</td>
<td></td>
<td>θ “schwa”</td>
</tr>
<tr>
<td>mid</td>
<td></td>
<td>o “hawed”</td>
</tr>
<tr>
<td>ε “head”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>low</td>
<td></td>
<td>a “hod”</td>
</tr>
<tr>
<td>æ “had”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advancement

F1

Height

F2
“The watchdog”

waveform

spectrogram
TrackDraw: a graphical speech synthesizer
TrackDraw: a graphical speech synthesizer
Peterson and Barney (1952)

- Acoustic measurements (made from spectrograms) of formant frequencies (F_1, F_2, F_3) in vowels spoken by 76 men, women and children.

- **vowel space**: projection of a given talker’s vowels in a $F_1 \times F_2$ plane

- **Simple target model**: vowels are differentiated (perceptually) by F_1 and F_2 frequencies measured in the middle of the vowel (**vowel target**).
Peterson and Barney (1952)

![Graph showing F1 frequency vs. F2 frequency for Men, Women, and Children.](image-url)
American English vowel space

- **Front**
 - i “heed”
 - í “hid”

- **Mid**
 - e “hayed”
 - ε “head”

- **Back**
 - u “who’d”
 - o “hoed”
 - ə “schwa”
 - a “hod”

Advancement

Height

- F1
- F2

- Front: low, mid, high
- Center: low, mid, high
- Back: low, mid, high
Peterson and Barney (1952)
Invariance problem

Peterson and Barney (1952)

Frequency of F1 (kHz)

Frequency of F2 (kHz)
Invariance problem

- Dynamic cues in vowel perception
- Talker normalization theories
 - Potter and Steinberg (1950): invariant pattern of stimulation shifted up or down along the basilar membrane
 - Miller (1989): Formant ratio theory
 - Joos (1948): Frame of reference theory
 - Nearey (1989): Extrinsic and intrinsic factors
Formant Dynamics

- Formant frequency changes over time:
Vowel-inherent spectral change
Dual-target model
F1
F2
Males

"howd" formant tracks

F1
F2
Females
FFs as a function of age and sex

Geo. Mean formant frequency (Hz)

Boys
Girls

FFs as a function of age and sex
Vowel formant space: F1 x F2

Males

Females
Vowel formant space: F1 x F2

Current study: Children (all age groups)

Boys
Girls

F1 Frequency (Hz)
F2 Frequency (Hz)
Graphical interpretation of CLIH (sliding template) model

Movement along diagonal for different speakers

Fixed pattern of ‘holes’ in the template correspond to stored vowel reference pattern

Nearey & Assmann, 2006
Geo. Mean Formant frequency (Hz)

Geo. Mean F0 (Hz)

$r=0.66$

- Men
- Women
- Children

FF = 0.35F0 + 5.48
F₀ as a function of age and sex

![Graph showing F₀ as a function of age and sex for boys and girls. The graph displays data points for boys and girls across different age groups, with error bars indicating variability. The y-axis represents fundamental frequency in Hz, while the x-axis represents age in years. The graph shows a decrease in fundamental frequency with age, with boys generally having a higher F₀ than girls.](image-url)
F_0 distribution – child talkers
F₀ distribution – males (blue)
F_0 distribution – females (red)
BIZARRO

By Dan Piraro

It's a boot.

About what?

CANADIAN C.S.I.
lagers...
I said I love lagers
Wavesurfer

- Download Wavesurfer:
 www.speech.kth.se/wavesurfer

- Wavesurfer User Manual
 www.speech.kth.se/wavesurfer/man.html