Computing Homotopic Shortest Paths
in the Plane

Sergei Bespamyatnikh

Department of Computer Science, University of Texas at Dallas,

Bozx 830688, Richardson, TX 75083, USA.

Abstract

We address the problem of computing homotopic shortest paths in the presence
of obstacles in the plane. Problems on homotopy of paths received attention very
recently [5,11]. We present two output-sensitive algorithms, for simple paths and
non-simple paths. The algorithm for simple paths improves the previous algorithm
[11]. The algorithm for non-simple paths achieves O(log?n) time per output vertex
which is an improvement by a factor of O(n/log® n) of the previous algorithm [14],
where n is the number of obstacles. The running time has an overhead O(n?*¢) for
any positive constant . In the case k < n?T%, where k is the total size of the input
and output, we improve the running to O((n 4 k + (nk)?/3)1og®(n).

Key words: Shortest path, homotopy, output-sensitive algorithm.

PACS:

1 Introduction.

Finding shortest paths in a geometric domain is a fundamental problem [20]. Chazelle [6]
and Lee and Preparata [15] gave a funnel algorithm that computes the shortest path between
two points in a simple polygon. Hershberger and Snoeyink [14] simplify the funnel algorithm
and studied various optimizations of a given path among obstacles under the Euclidean
and link metrics and under polygonal convex distance functions. The funnel algorithm has
been extended in addressing a classic VLSI problem, the continuous homotopic routing
problem [9,16,12]. For this problem it is required to route wires with fixed terminals among

FEmail address: besp@utd.edu (Sergei Bespamyatnikh).
URL: http://www.utd.edu/ besp (Sergei Bespamyatnikh).

Preprint submitted to Elsevier Science 31 May 2003

fixed obstacles when a sketch of the wires is given, i.e., each wire is given a specified homotopy
class. If the wiring sketch is not given or the terminals are not fixed, the problem is NP-

hard [17,22,23].

Fig. 1. Shortest path preserving homotopy type.

The topological concept of homotopy captures the notion of deforming paths [1,21]. A path is
a continuous map 7 : [0,1] — R2 Let o, 3: [0,1] — R? be two paths that share starting and
ending endpoints, a(0) = 8(0) and a(1) = B(1). Let B C R? be a set of barriers such that
the paths a and 3 avoid B. The paths a and 3 are homotopic with respect to the barrier
set B if a can be continuously transformed into 3 avoiding B; more formally, if there exists
a continuous function I' : [0, 1] x [0, 1] — R? with the following three properties:

['(0,t) = a(t) and T'(1,t) = B(t) for 0 <t < 1,
(2) T'(s,0) = (0) = B(0) and T'(s,1) = a(l) = 4(1) for 0 < s <1,
(3) I'(s,t) ¢ Bfor0 <s<land0<t<1.

The problem can be stated as follows.

Shortest Homotopic Path (SHP) Problem. Given n, disjoint paths and n; point
barriers, find the shortest homotopic paths. We assume that the endpoints of the paths
are barriers as well. Let n = 2n,, + n; be the total number of barriers. Let k;, (resp. ko)
be the total number of edges of the input paths (resp. output paths) and let & = K, + Kour-

Hershberger and Snoeyink [14] gave a O(nk;,) algorithm for one path, n, = 1, which is
optimal in the worst case assuming that the running time is evaluated in terms of input
parameters n and k;,. Recently Cabello et al. [5] studied the problem of testing whether two
paths with common endpoints in the presence of obstacles are homotopic. They mentioned
that computing shortest homotopic paths is expensive for testing homotopy since the shortest
path can have Q(nk;,) edges which is quadratic in terms of the input size O(n + k;,,) in the
worst case. The key idea of the algorithm is to compute canonical paths that can be found
by rectifying the paths and shortcutting them using segment dragging by Chazelle [7].

Very recently Efrat et al.[11] presented an output sensitive algorithm for computing the
shortest homotopic paths. The algorithm runs in O(n3/2 + kin log n + koye) time. In the first

phase of the algorithm they apply shortcuts to compute z-monotone paths using an efficient
algorithm for computing canonical paths [5]. The computation of the canonical paths is
based on segment dragging [7,5]. The monotone paths are then bundled into O(n) groups
of homotopically identical paths. Then, the deterministic algorithm for computing shortest
homotopic paths is based on recursive partition of the paths and routing procedure applied
to the largest increasing (decreasing) sequence of paths. The running time of this phase is
O(n®/* + k). Efrat el al.[11] also show that this bound can be improved to O(nlogn 4+ k)

using randomization.

We focus on two versions of SHP problem: (1) simple input paths and (2) non-simple
paths. For simple paths we show that the shortest homotopic paths can be computed in
O(n log' ™ n + k;, logn + kout) time where ¢ > 0 is an arbitrarily small constant. For non-
simple paths we design an implicit funnel algorithm that computes the shortest paths in
O(n?*s + klog®n) time. To the best of our knowledge, this is the first output-sensitive al-
gorithm for general paths. Note that the constants hidden in the notation depend on e.
We also show that for relatively small & the running time can be improved to O((n +
n*PE23 4 k)polylog(n)) where polylog(x) denotes a polylogarithmic function logo(l)(;c). The
improvement is based on hierarchical cuttings [19] and their space-time tradeoff. Note that
if £ = ©(n) the algorithm runs in O(n*/3polylog(n)) time. This matches up to a polyloga-
rithmic factor to a lower bound of Q(n*/?) obtained from testing homotopy [5].

The paper is organized as follows. We consider SHP for simple paths in Sections 2-4. In
Section 2 we reduce the problem to the case of monotone paths by applying techniques
from [5,11]. In Section 3 we show how to compute the shortest path in a simple polygon
with barriers in linear time. In Section 4 we develop an algorithm for computing all the
shortest paths. In Section 5 we consider SHP for non-simple paths. In Section 6 we discuss
the algorithm for non-simple paths when £ is relatively small.

2 Reduction to Monotone Paths.

In this Section we briefly describe the construction of the canonical rectified paths [5] and the
bundling [11]. As in [11] we use the canonical paths to shortcut the given path and divide it
into x-monotone paths, i.e., the paths that are monotone with respect to the direction OX.
A path is monotone with respect to a direction d if any line orthogonal to d intersects the
path at most once. One can partition a path into z-monotone pieces by exploring its vertices
locally, i.e. we break the path at a vertex if two edges incident to the vertex do not form a
z-monotone path as illustrated in Fig. 2 (b) (this partition might not capture the shape of
the shortest path, see Fig. 1). We can treat these monotone paths as horizontal segments

and obtain rectified paths [5], see Fig. 2 (c).

To rectify the paths one needs an “aboveness” relation between the monotone paths and the

- - — - — = = —=q
Q
°
o— — — — —0
- - - - - - — - — — — —0

@ (b) (©)
Fig. 2. (a) Path ab, (b) Monotone paths, (c¢) Rectified paths.

barriers. A path is represented as a sequence of points that it passes above (overbar) and
below (underbar). For example, the path ab depicted in Fig. 2 is recorded as the sequence
ab=ABCDEFFEDCBAABCDEFFEDC. An adjacent pair of repeated symbols can be
deleted by deforming the path without changing the homotopy class. The deletion can be
repeated until we obtain canonical sequence. The path shown in Fig. 2 has the canonical

sequence ab = ABCDEFFEDCBABCC, see Fig. 3.

. T S
Y
. Do Fg \ \
Bl | | S92 |
L I ! ! >
| |
[T, ! - S3
| | I [[
[! s !
| | - | .
* A o | I I
£
a I Fig. 4. Bundling homotopically equivalent seg-
l ments Sq,...,84. Segment s;,7 > 1 is the only
Fig. 3. Rectified canonical path. child in the aboveness tree.

In order to generate the rectified paths we compute a triangulation or a trapezoidation [11]
using an algorithm by Bar-Yehuda and Chazelle [2]. The running time of the triangulation al-
gorithm is O(n log't* n+k;,) for any fixed ¢ > 0. The monotone paths induce an “aboveness”
relation that is acyclic. The rectified paths and new positions of barriers are computed using
their ranks as y-coordinates [5]. The rectified paths can be shortcut by vertical segments
producing canonical rectified paths. Applying the segment dragging queries by Chazelle [7]
shortcuts can be done in O(k;, logn) time using O(nlogn) preprocessing time and O(n)
space.

The number of homotopically different paths produced by shortcutting is at most 2n [11].
The homotopic paths can be bundled reducing the problem to the case n, < 2n. To bundle
the paths we order the paths and the barrier points again. We even rectify the paths so that
now each path in the rectified model is represented by a horizontal segment. For this we
map the canonical paths back to the real paths, truncate them and retriangulate. We rank
the paths and some barriers (not all!) — we exclude barriers that are path endpoints. Note
that all path endpoints are the barriers, for example the paths in Fig 3 are aF, BF, BC and
bC. We compute the bundles using the property that the ranks of paths homotopic to a
path form a sequence of numbers r,r + 1,..., 7’ for some integers r and r’, see Fig. 4. The
property follows from the fact that the homotopically equivalent segments form a chain in
the aboveness tree [5] and the ranks are obtained from the inorder traversal of the tree. In
Sections 3 and 4 we use this ranking and assume that n, < 2n.

3 Shortest Monotone Paths.

We show how to compute the shortest path of a z-monotone path. The barrier points that
are above or below the path are the only barrier points that may affect the shortest path.
We reduce the problem of constructing the shortest homotopic paths to a problem of finding
a shortest monotone path in a simple polygon with colored barriers so that the barriers are
separated by the path according to their colors. The problem can be defined as follows.

Shortest monotone path. Let P be a simple z-monotone polygon' and let s, ¢ be two
points in P. Let S be a finite set of points (barriers) inside P so that each point is colored
red or blue. We assume that all the points PUS U{s,t} have distinct z-coordinates. Find
the shortest path from s to ¢ in P so that every point of S above (resp. below) the path
is red (resp. blue).

In general, if the z-order of barriers is unknown, one can expect the worst case complexity

O(|S|log | S|+ |P]). We assume that the barriers are sorted.

Lemma 1 The problem above can be solved in linear time assuming that the barriers are
sorted by x-coordinates.

Proof: We connect the barrier points inside P to the boundary of P according to the colors,
see Fig. b for example. We draw vertical segments passing through the points s and ¢. We
obtain a polygon that can be slightly perturbed to make a simple polygon. The segment
endpoints on the boundary of P can be found by a simultaneous scan of the vertices of P
and the barriers in the z-order. The shortest path in a simple polygon can be found in linear
time [13,14]. Clearly, the produced path satisfies the color constraint. m

1" A polygon is z-monotone if its boundary is the union of two z-monotone paths.

<

Fig. 5. Shortest path separating red and blue points.

It is straightforward to modify the algorithm above so that the general case where a red point
and a blue point coincide. We can interpret them as points infinitesimally close to each other
(the red point above the blue one). The case where many points have the same z-coordinate
can be handled as well. The only constraint is that a blue point cannot be above any red
point.

4 Shortest Paths.

We apply a divide-and-conquer approach based on the efficient algorithm from the previous
section. Since the paths are given in the order according to the ranks we divide the problem
into subproblems with approximately half of the paths. In what follows we discuss how to
generate polygons, color barriers and compute the shortest paths efficiently.

Let IT = {m,m,,...} be the set of monotone paths produced by shortcuts and bundling.
The number of paths is O(n) and we assume that their order is consistent with the ranking
and aboveness relation. We even use above/below relation between paths according to the
ranking. We assume that m; is above m;4;. Let B be the set of barriers that are not path
endpoints. Let rank(m;) denote the rank of a path m; € II. Also let rank(p) denote the rank

of a point p € B. For any barrier point p we define rankmin(p) and rankmax(p) as

rankmyin(p) = min{rank(m;) | m; € P and p is an endpoint of m;}

rankma.x(p) = max{rank(m;) | 7; € P and p is an endpoint of m;}.

We start with the path 7; that is the median path of II. Let s and ¢ denote its start and
target points. The shortest path corresponding to m; can be constructed using Lemma 1 as
follows. Let R be a rectangle such that all data points are contained inside R. It can be
defined by enlarging the smallest bounding box of B and II. We pick two points a and b
slightly off R to make z-monotone polygon P = conv(R U {a,b}), see Fig. 6. Lemma 1 can

be applied to the polygon P and the shortest path corresponding to m; can be found. The
barriers can be colored using ranks as follows.

Coloring Rule. A barrier point p € B is colored red (resp. blue) if rank(p) < rank(m;) (resp.
rank(p) > rank(m;)). A barrier point p € B\ B is colored red (resp. blue) if rankmin(p) <
rank(m) (resp. rankmax(p) > rank(m)). Note that, if rankmin(p) < rank(m) < rankmax(p),
the point p is colored in both red and blue colors.

I
I
b
o
oy)b
I
r e . 1
I '\0./\
R e 1
P

Fig. 6. Polygon P.

4.1 Splitting a Polygon.

In order to apply the algorithm from Lemma 1 recursively, the polygon P needs to be
divided into two polygons. One possible idea is to connect the points a and b. If we apply the
algorithm to find the shortest path ab among the barriers colored according to m;, it will not
necessarily contain the shortest path st, see Fig. 7. However we can still use this approach
recursively and all paths produced in this way do not cross the path st. One can prove that
the missing edges of st form at most two subpaths of st (in head and tail). These missing
pieces can be found later.

Fig. 7. The shortest paths ab and st.

We avoid the problem of fixing the paths. Instead we apply the algorithm three times and
compute the shortest paths as, st, and tb. Notice that the vertices s and ¢ contribute to

both subproblems since they participate in the boundaries of two produced polygons. We
call this procedure Split(P,s,t). We have to be careful in defining the extensions as and
tb so that they respect the vertical order of the paths m,my,... (i.e., if m; is above (below)
m; then the extension of m; is above (below) ;. The same holds for relations between paths
and barriers). Recall that the order is generated using the rectified paths. The rectified path
model and the ranking of the rectified paths and the barriers is a nice (not just visual) tool
to explain the order constraint and the partition of the barriers. We can double the rectified
path endpoints and the barrier points that determine the vertical segments, see Fig. 8 (b)
(note that a barrier point can support many vertical segments as the point F in Fig. 8 (a)).
Then the extensions and corresponding partition of the points is naturally defined, see Fig.

E”o ° G" E”o ° G"
| 7 | | 7 | // . \\
| ° tG | ° I / ° \
[] ! / Y / \
o B I G 17 G A
| °D | D B 1 PN
o :IJ e ? —_ — —»
. . A b
| o(I I o # ‘N o ! s
| ° | \ ° /
| E'® ° | \ o ° /
° A t T B S// [] A tl | \ S” [] A tl /
) 8) \ 2 /
s ;/ ° BI ./ ° BI
@ (b) (©)

Fig. 8. (a) Rectified paths, (b) Doubling the path endpoints s,¢ and the support points B, F, G,
(c) Extensions of the horizontal segments to ab.

Lemma 2 The extension astb is correct, i.e., the shortest paths as and tb do not cross the
shortest paths of w,my,

s ¢ p
ST e
(a) (b)

Fig. 9. The path 7] crosses the path asth. The convex vertex p of the polygon P'.

Proof: Suppose to the contrary that a path, say 7;, has the shortest path 7’ that crosses
the shortest path as, the extension of a path m;. Without loss of generality we assume that
rank(m;) < rank(m;). The endpoints of m; cannot be above astb by the definition of the
extension as and the coloring rule. Then a cross point of as and 7’ is a vertex of a polygon
P’ see Fig. 9 (a). There are only two vertices of P’ where 7 and as cross, i.e., the leftmost
vertex and the rightmost vertex.

The polygon P’ has at least three convex vertices and at least one of them is not a cross
point. Suppose that it is a point p € 7}, see Fig. 9 (b). The point p is the barrier point below
! (it is colored blue when the shortest path ; found). Therefore p is blue when the shortest
path as found. This contradicts the algorithm of Lemma 1. The case where the lower chain

as of P’ has a convex vertex is similar. The lemma follows. =

There is another potential problem. After we construct the path astb and divide the current
polygon by the path, the resulting polygons might be not simple, see Fig. 10 (a). The
polygons on either side of the path astb have the property that they are z-monotone and
their projections on the z-axis are disjoint. Note that many polygons can be generated if
the current polygon has red points on the upper side and blue points on the lower side
(especially if they alternate). Our algorithm can deal with multiple polygons and divide
them recursively. To do this efficiently we build the following data structure.

Py

P]_,P2 P37P4)P5
{e2},{es, €5} {e1},{es}

(a) (b)

Fig. 10. (a) Multiple polygons. (b) Tree representation.

4.2 Data Structure.

Let T be a binary search tree of height O(logn) whose nodes correspond to the paths
Ty, Tg,.... Lhe tree T is defined recursively: the root has the median path 7; and the subtrees
of its children are constructed for the sets {m;,7 < i} and {m;,7 > i}. At every node v € T
we store a pointer path(v) of its path. We associate the set of polygons with a node v of T
denoted by pi(v), p2(v), ... in the sorted order of z-projections. The root has one polygon P
associated with it py(vreot) = P, see Fig. 6. With each polygon produced by Split we store
its side, “top” or “bottom”, that is generated. For example, the polygons Py, P, in Fig. 10
(a) are marked “bottom” and Ps, Py, P5 are marked “top”.

The polygons associated with the children of v are constructed by splitting the polygons
p1(v), pa(v), ... using the path astb where s and ¢ are endpoints of the path path(v). Let
a;(v) and b;(v) be the leftmost and rightmost vertices of a polygon p;(v). First we locate s

and ¢ in the intervals [a;(v),b;(v)]. If they fall into the same interval, say [a;(v), b(v)], we
apply the procedure Split(p;(v), s, t). If they fall into different intervals, say s € [a;(v), b;(v)]
and ¢ € [a;(v),b;(v)] then we split i-th and j-th polygon by calling Split(p;(v), s, b;(v)) and
Split(p;(v),a;(v),t). If one of the points s or ¢ (or both) falls out the intervals we do not
split polygons using this point (as a parameter in Split()). For each polygon p;(v) that
misses both s and ¢ we call Split(p;(v),a;(v),b;(v)).

The barrier points. With each node v of T' we store a barrier set B(v). The barriers B(v)
are colored using the coloring rule when v is processed. The set B(v) is defined as follows.
The root has all the barriers, B(v,.,:) = B. Let m; be a path stored at a node v. The barrier
points of BN B(v) are partitioned into two sets and assigned to the children of v according
to the colors. If a point of B(v) N (B\ B) gets one color it goes to the corresponding child
of v. A two-colored point of B(v)N (B \ B) goes to a child u if it is a vertex of a polygon
pi(u). This can be done in linear time for all two-colored barriers of v if the polygons of its
children and the z-order of B(v) are known. The z-order of the barriers for children can be
maintained in linear time.

The polygons that are split go to the corresponding children nodes. We mark the correspond-
ing sides of these polygons. We assign the other polygons according to their marked sides,
i.e. if a polygon P; has marked top (bottom) side it goes to the child node in the same way
as P was created.

p1(w) A1 (w) pa(w)

@

(b)
Fig. 11. Generating A-paths. A;(w) is combined from Aq(v), az2(v)ba(v) and Ay (v).

The polygons p;(v) stored at a node v of T are connected by paths. We organize a hierarchical
data structure A for these paths. A path connecting two polygons, say p;(v) and piy1(v), is
represented as a A-path A\;(v) in A. A A-path connecting two vertices, say ¢ and d, is created
when two polygons p;(v) and pi41(v) are connected first time, i.e., ¢ = b;(v) and d = a;41(v)
and the path cd is not A-path of the parent of v. An elementary A-path is a sequence of
edges, for example the path (eq4, €5) is A-path of the left child in Fig. 10. In general, a A-path
is a list of A-paths that are created earlier. This is illustrated in Fig. 11. The polygons and
A-paths of a node v are shown in Fig. 11 (a). The polygons and A-paths of children of v are

10

shown in Fig. 11 (b). The A-paths of u are the same as ones of v. The node w has one A-path
that is combination of three paths A;(v), ag(v)be(v) and Ay(v).

4.3 Pointl Location.

With each elementary path A; we store a binary search tree T'();) of its vertices so that point
location can be done in O(logn) time. The binary tree T(A;) can be constructed in linear
time when the path A; is created.

Let A; be a A-path. If A; has O(1) A-components, we create a binary search tree T'()\;) of size
O(1) whose leaves are the A-components. If a A-path A; has more than a constant number
of A-components we store a weighted binary search tree T'(\;) associated with A;. The leaves
of the tree T'(\;) correspond to A-components. The weight of a node is the total length (the
number of edges) of the underlying path. We store the size of each A-path in A to provide
the weights of leaves in T'();). The tree T'(A;) can be constructed in linear time in terms of
the number of leaves.

Lemma 3 A point can be located in a A-path in O(logn) time.

Proof: Let A; be a A-path and p be a point to locate in A;. The search procedure recursively
processes a node of the tree T'(\;). If the tree T'(\;) has O(1) size then T'(};) is processed in
O(1) time. The tree T'();) can also be processed in O(1) time even if T'();) is a weighted tree
(when a leaf of T'();) with large A-component is located in O(1) time). The total number of
these cases (over all trees) is O(log n) since the height of 7" is O(log n).

In the remaining cases the algorithm searches in weighted binary trees. Suppose that the
search in T'(X;) visits [= Q(1) vertices. The sequence of visited vertices has property that,
among every O(1) consecutive vertices, there is a vertex whose weight smaller the weight of
its parent by at least a constant factor @ > 1. Therefore the weight of the last vertex (the
size of the underlying path) dropped by a factor O(c') where ¢ > 1 is a constant. The total
number (over all trees) of visited nodes is O(log n) since the total number of edges in the

path A; is O(n). =

4.4 Shortest Path Retrieval.

We show how the shortest path homotopic to m; can be computed. Let s and ¢ be the
endpoints of 7;. Consider the moment when =; is processed at a node v € T. If the points
s and ¢ lie in the same polygon then the procedure Split reports the shortest path. If the
points s and ¢ lie in different polygons, say p;(v) and pj(v), then Split applied to them
can output only two parts of the shortest path st. The interconnection can be computed as

11

follows. For a polygon pi(v), j <1 < 7', its contribution from a;(v) to bj(v) is computed in
Split applied to p;(v). Connections between the polygons are A-paths and can be extracted
from A. An elementary A-path is reported in linear time. If a A-path is composed from other
paths they are reported recursively.

Lemma 4 The shortest path homotopic to m; can found in O(logn+ K) time using T where
K is the number of edges of the shortest path.

Proof: The existence of the path follows from the “aboveness” relation on the paths. The
algorithm is correct since the shortest paths and its components, A-paths, are connected.

The location of the points s and ¢ requires O(log n) time by Lemma 3. The A-paths of the
shortest path st can be computed in O(K + logn) time. They can be reported in O(K)
time. =

4.5 Space Reduction.

The above data structure takes O(nlogn) space since an edge of a shortest homotopic path
can participate in O(log n) polygons stored in T', one per level. In order to reduce the space
we use the following trick. We construct 7" in top-bottom fashion and store the polygons only
at one level. The nodes of T" are processed level by level and the shortest paths are reported
at the time when their nodes are traversed. The A-paths are updated when T' is processed.

We show that the space required for 7' is O(n). The polygons stored at nodes of the same
level are interior-disjoint. They take O(n) space since every edge is stored at most twice.

The edges of elementary A-paths are stored in A so that an edge is stored at most twice.

Theorem 5 The above algorithm compules the shortest homotopic paths in O(nlogn + k)
time.

Proof: By Lemma 4 it suffices to show that 7" is constructed in O(nlogn) time. By Lemma

1 the processing of the nodes at the same level takes O(n) time since the total complexity
of polygons is linear. The theorem follows. =

Combining this with the preprocessing we obtain the main result for simple paths.

Theorem 6 SHP problem can be solved in O((n + ki,)logn + kyyu) time assuming that a
triangulation of the paths and the barriers is given.

Corollary 7 SHP problem can be solved in O(n log'** n + k;, logn + kout) time.

12

5 Non-simple Paths.

If the paths are allowed to intersect themselves, see Fig. 12, an algorithm by Hershberger
and Snoeyink [14] can be applied. The running time of the algorithm is O(kn). As Efrat
et al.[10] pointed out there exist non-trivial examples (even for simple paths!) where & can
be much larger than n, for instance k& = Q(2"). We are not aware of any output-sensitive
algorithms for finding the shortest homotopic paths in the case of non-simple paths. We
design an algorithm that computes the shortest paths in O(log”n) time per vertex.

D
)

(.

a L N .
b

Fig. 12. Non-simple path ab is homotopic to the segment [ab].

Our algorithm has two phases:
g p
(i) we reduce the problem to z-monotone paths, and
i1) we find the shortest homotopic paths for the monotone paths.
p1c p p

The algorithm of the first phase is a slight modification of the algorithm by Efrat et al. [10]
that shortcuts the paths using the simplex range search [8]. A data structure of the simplex
range search is constructed for the barrier points. Shortcuts applied for simple paths are
illustrated in Fig. 13 (a) and (b). In order to shortcut the path using vertical lines the
algorithm uses the range search to find the leftmost or the rightmost barrier point in the
query triangle. The triangles of the range search are shaded in Fig. 13. Efrat et al. [10]
distinguished left and right shortcuts that depends on what side of the new vertical segment
the range search region lies. For example, a left shortcut is depicted on Fig. 13 (a) and three
right shortcuts are depicted on Fig. 13 (b).

Lemma 8 (Efrat el al.[11]) Let m be a path, and let p be a result of performing left and
right phases of elementary vertical shortcuts on m until no more are possible. Suppose that
the local left and right extremes of p are locked at the terminals t;,, ..., t;, in that order. Lel
o be a shortest path homotopic to w. Then the local left [right] extremes of o are locked at

13

exactly the same ordered list of terminals, and furthermore, the portion of o between t;, and

t is a shortest path homotopic to the portion of p between those same terminals.

41

Lemma 9 (Efrat el al.[11]) The number of elementary vertical shortcuts that can be ap-
plied to a set of paths with a total of k;, segments is at most 2k;, .

< T

@ (b)

}>< S
- | — | ~_ -

-) I////\\ °
©

(d)

Fig. 13. (a) and (b) Shortcuts of simple path. (c¢) and (d) Shortcuts of non-simple paths. The regions
for range search are shaded.

We show that if the paths are non-simple shortcuts can still be applied. If two edges of a
simple path cross they can be shortcut by applying shortcut test twice: before the crossing
point and after it. An example illustrated in Fig. 13 (c) shows a region for the first search
(shaded triangle) and the shortcut found in the region (determined by the leftmost barrier
point). Fig. 13 (d) illustrates an example where two searches are needed and the second
region is shaded. The result of shortcuts is a set of z-monotone paths (possibly intersecting).

Lemma 10 Let m be a path and let o be the shortest path homotopic to m and let u be a
result of performing shortcuts on m until no more are possible. Let p1, pa, ... be x-monotone
components of u and let oy, 09,... be x-monotone components of o. Then

(i) each path o; has the same endpoints as p; and is the shortest homotopic path of p;, and
(1) the number of shortculs is at most two limes the number of edges of .

Proof: (i) It follows by essentially the same “rubber band” argument as [11]. The endpoints
of the paths y; are the terminals that must be present in o even if 7 is non-simple path.

(ii)) We use the counting scheme by Efrat et al. [11]. Each shortcut removes either a vertex
or an edge of m, see Fig. 13. u

14

The first phase takes O(n?*¢) time for preprocessing, O(k;, log” n) time for shortcutting the
paths, and O(n**°) space.

The second phase is more difficult.

5.1 Implicit Funnel Algorithm.

Recall that the problem is to find the shortest homotopic paths in the presence of point
obstacles. One can apply the algorithm from Lemma 1. As a result, the running time is
at least n times the output size which is too expensive. Instead we use an idea of implicit
representation of funnel. Let @ = py,ps,... be an z-monotone path. Let [(p) denote the
vertical line passing through a point p. For a two points p and ¢, let [(p)l(q) denote the slab
between two vertical lines I(p) and I(q). A funnel with apex p; and base I(p) is defined as
follows. Let By be the set of points that includes p; and the barrier points lying in the slab
[(p1)l(p) and above 7. Let U be the lower envelope of By. Let By, be the set of points that
includes p; and the barrier points lying in the slab [(p;){(p) and below 7. Let L be the upper
envelope of By,. The funnel is the area between U and L restricted by I(p), see for example
Fig. 14 (a) where p = p,. We represent the funnel implicitly as the triangle defined by the
extensions of edges incident to p; and [(p;), see Fig. 14 (b).

‘ 1
|
U ' U(pe) o) 1)
| @
D1 o —4 P2 21 _/’/JT. Po
| |
L : a1 T :
\ ‘K\
-
(a) (b)

Fig. 14. (a) Funnel. (b) Implicit representation of funnel.

For every barrier point b we store all the remaining barrier points in a list L(b) = (b1, b2, .. .)
sorted by the slopes bb;, 1 = 1,2,.... The list L(b) can be computed in O(nlogn) time and

n lists for all the barriers can be computed in O(r?logn) time.

We show how to compute the implicit funnel with base I(p;). Let B’ be the set of barrier
points in the slab [(p;)l(p2). For a point b € B’ let A(b) denote the triangle formed by the
lines p1b, pip2 and [(pz). For any ray pib, b € B’ we can test if A(b) contains a barrier point
using the simplex range search. Using a binary search on L(p;) (see more details below) we
can compute the upper side p,q, and the lower side p;g; of the implicit funnel that have the
highest and the lowest slopes such that A(g;) has no barrier points, see Fig. 14 (b).

15

Suppose that we have computed the implicit funnel F' up to the vertical line through a point
pi. The funnel F' is a triangle with vertices py,r; and ry. Let ¢; and ¢y be the points of B
determining the sides of F, see Fig. 15. We do not assume the points py, ps, ..., p; lie inside
the funnel F', for example the point p; in Fig 15. In order to extend the funnel F' to the next
vertical line [(p;41) we apply binary search on L(p;) and compute

»

7
/

|

|

P

Pi

Fig. 15. The implicit funnel and the path pyps...p;.

i) ¢ e lowest point (point wi e lowest slope p;¢),) point visible from p; in the sla
i) ¢, the 1 t point (point with the 1 t slope p1¢,) point visible f pp in the slab
[(pi)l(pi41) and above the segment p;p;+1, and

(ii) ¢}, the highest point visible from p; in the slab I(p;)l(pi4+1) and below the segment p;p;4;.

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

:Pz’+1

I
I
I 1.
P1 : |pz+1

P
@ (b)
Fig. 16. (a) Polygon P, (b). (b) Polygon P;(b).

We describe the binary search in step (i). Let b be a barrier point. We define a polygon P,(b)
as a locus of points in the slab I(p;){(pi+1) above the segment p;p;11 and below the line p;b,
see Fig. 16 (a). A polygon P,(b) is either a trapezoid or a triangle. The test included in the
binary search for ¢} is whether, for a point b € B — {p;}, the polygon P,(b) is empty. If P,(b)
is a triangle then the test can be done using simplex range search in O(log n) time. If P,(b)
is a trapezoid then it can be partitioned into two triangles and range search is applied to

16

each triangle. Thus the test can be done in O(log n) time. The overall time for binary search

is O(log”n).

The binary search in step (ii) is similar to the step (i). We define a polygon P;(b) as a locus
of points in the slab [(p;)l(pi11) below the segment p;p;41 and above the line p;b, see Fig. 16
(b). The test included in the binary search for ¢ is whether, for a point b € B — {p:}, the
polygon P;(b) is empty. Clearly, the polygon P;(b) can be tested in O(logn) time.

If the wedges g1p1g2 and ¢{p1gh intersect then we update the funnel F' to be the intersection
of the wedges ¢i1p1¢g2 and ¢ip1¢} and the slab I(p)l(pi4+1). Otherwise the funnel with apex at
p1 collapses. Suppose that the ray pq} is below the ray piqi, see Fig. 17. The remaining case
where the ray p;q; is above the ray p;qy is symmetrical. The funnel point ¢; is the next point
of the shortest homotopic path. We report ¢; and update the funnel F' as follows. We assign
the apex of F' to p1 = ¢ and the base [(p;). The sides of F' can be found similarly to the
computation of the first funnel which is determined by the the segment pyp, lying in F. The
segment pyry lies in F' and can be used to compute F. Then we continue the computation
of the funnel up to the line I(p;41).

Fig. 17. Funnel collapse.

Theorem 11 The shortest homotopic paths of polylines can be computed in O(n***+klog”n)
time.

Proof: The preprocessing includes the following steps

(i) the computation of the lists L(b) for all barrier points b € B,

(ii) the construction of data structure for simplex searching [§],

(iii) shortcutting the input paths and creating z-monotone paths.

These steps take O(n?logn), O(n?*%), and O(k;, log” n) time respectively. The total prepro-
cessing time is O(n** + k;, log n). The total number of vertices of the produced z-monotone
paths is O(kiy).

In the second phase the implicit funnel algorithm spends O(logn) tests in every binary

search. Fach test takes O(logn) time so the total time of each binary search is O(log”n).

17

We count the total number of binary search calls. There are two ways of applying a binary
search. We apply the binary search when we promote the base of the implicit funnel. There
are O(k;,) such calls of the binary search. The second type of binary search call happens when
the implicit funnel collapses. In this case we report the apex of the funnel as a vertex of the
shortest homotopic path and we charge it to the binary search call. The total number of these
calls is at most k,y:. Thus the total number of binary search calls is O(kqy,) + kowr = O(k).
The theorem follows. =

Remark. One can apply Matousek’s data structure for range simplex searching [19] with
quadratic space and O(log®n) query time. The implicit funnel algorithm with this data
structure computes the shortest homotopic paths in O(n?logn + klog® n) time using O(n?)
space.

6 An Improvement for Small £.

The above algorithm is output-sensitive and efficiently finds the shortest homotopic paths if
their size is Q(nQ) Note that k£ can be arbitrarily large relative to n since it includes k;,,. The
complexity of the shortest homotopic paths is ©(nk;,) in the worst case which can dominate

2+s>

the preprocessing time O(n***). In order to reduce the total running time we can use standard

space-time tradeoff techniques. Matousek [19] applied the technique to the range searching
with efficient hierarchical cuttings and obtained O((N + M + (NM)Q/S)polylog(N + M))

running time for answering M range queries against N points in the plane.

Theorem 12 (Matousek [19]) Let P be an n-point set in R? and let m be a parameter,
n < m < n®. The range searching problem with ranges being intersections of p half-spaces,
1 < p < d+1, can be solved with space O(m), query time Oy]ng—(d—p-l-l)/d) and
preprocessing time O(n't*4+m(logn)®) where e denotes an arbitrarily small posilive constant.

6.1 Optimizalion Queries

Our implicit funnel algorithm uses the simplex range searching structure [8]. The algorithm
can be modified to work with other data structures. The problem is that the simplex range
queries are not sufficient. We introduce a new type of queries and show how to modify
data structures for simplex range searching to answer these queries. First, we define extreme
points. Let p be a point in the plane and let A be a subset of the plane such p lies outside
the convex hull of A. A point g € A is extreme with respect to p and A if pg is an edge of
the convex hull of AU {p}. There can be at most two extreme points with respect to p and

A.

18

We define an optimization simplex query and the problem of optimization simplex searching
as follows. Let S be a set of n points in the plane. Preprocess S so that, given any query
simplex o and a query point p outside o, the extreme points with respect to p and S No can
be computed efficiently. The optimization queries can be used to find the implicit funnel.
For example, the point ¢} in the extension of the funnel to /(p;4+1) can be found using the
optimization simplex query with respect to the point p; and the simplex formed by three

lines I(p;),[(pit1) and p;pit1, see Fig. 16 (a).

We demonstrate how Matousek’s data structure [18] can be modified to answer optimization
simplex queries. The data structure is based on the following Partition Theorem.

Theorem 13 (Matousek [18]) Let S be a set of n points in R, d > 2, let s be an integer
parameter, 2 < s < n, and lel r = n/s. There exists a simplicial partition 11 for S, whose
classes S; satisfy s < |S;| < 2s, and whose crossing number is O(rl_l/d).

As in [18] we use the simplicial partition recursively to create a partition tree. The leaves
of the tree form a partition of S into subsets of size O(1). Each internal node v of the tree
corresponds to a subset 5, C S and to a simplicial partition II, of S,. Of that simplicial
partition, we store simplices and the cumulative weights of the corresponding subsets in the
node v. We also compute and store the convex hull of 5,. The simplicial partitions II, are
constructed by applying Partition Theorem with s = [/|S,|| (since d = 2). The depth of
the partition tree is O(loglogn).

An optimization query can be answered as follows. Let p be the query point and let o be the
query simplex. We start with the root of the partition tree. In general, a node v is processed
by checking the simplicial partition IL,. If a simplex ¢’ of 11, is contained in o we compute
two lines passing through p and tangent to the convex hull of ¢/ N S. These tangent lines
can be computed in O(log n) time. The points defining the lines are the extreme points with
respect to p and ¢’ N 5. The children nodes whose simplices are disjoint from o can be
ignored. We proceed with the remaining simplices. Let r = n/s. By Partition Theorem we
recurse in O(4/r) simplices only.

For the query time T'(n), we get a recurrence

T(n) < O(r)logn + O(/r)T(2n/r),r = /n,
with initial condition T'(n) = O(1) if n = O(1). The solution is easily verified to be T'(n) =

O(y/ - polylog(n)).

We analyze the space requirement. Let M(n) be the space needed for a modified partition
tree with n points. The recurrence is

M(n) = O(n) + O(/r)T(2n/r),r = \/n.

The solution of the recurrence is M(n) = O(n).

19

We show that the preprocessing time is the same as the time needed for construction partition
tree [18], O(nlogn). We spend an additional time to construct convex hulls in each node.
This gives the recurrence A(n) = O(nlogn) + O(\/r)A(2n/r),r = \/n where A(n) is the
additional time for a partition tree with n points. The solution is A(n) = O(nlogn). Thus
we proved the following lemma.

Lemma 14 We can preprocess n points in the plane in O(nlogn) time using O(n) space so
that optimization simplex queries can be answered in O(y/n - polylog(n)) time.

6.2 Guessing k and Space-Time Tradeoff

We want to apply range simplex searching depending on the parameter k. The problem is
that £ has the component k,,; whose value is unknown in the beginning. We use standard
logarithmic method that estimates k. We run our algorithm with guess that & = 2k;,. We
stop the algorithm if it finds more than k;, vertices in the output path. Then we double the
guess k = 4k;,, and repeat. If the guessed & is less than y/n/polylog(n) we apply the algorithm
from Lemma 14. If the guessed k exceeds n**® for some ¢ > 0, we run the algorithm from
Theorem 11. This strategy involves at most O(logn) runs and the total time is proportional
to the time of the last run. If &k is in the range [\/n/polylog(n),n**] the algorithm proceeds
as follows.

We apply standard tradeoff technique, see for example [19]. The algorithm can occupy the
space m = O(n + k + (nk‘)Q/B). As in Lemma 14 we allocate the partition tree for a suitable
value of the parameter r and, for each its leaf, we create Matousek’s data structure with
quadratic space (see remark in the previous Section). Since the size of partition tree is O(r)

we find r from m = r°.

Theorem 15 The shortest homotopic paths for paths thal are not necessarily simple can be
found in time T(n, k) where

O(nlogn) if k < \/n/polylog(n),
T(n) =S 0((n + k + (nk)*®)polylog(n)) if /n/polylog(n) < k < n?ts,
O(klog®n) if k> n*te.

Proof: The algorithm is correct because it is correct in each of three cases. It should be
noted that the value of k is always a guess and the algorithm halts if the implicit funnel
algorithm discovers more than k& — k;, output edges.

The running time analysis for the second case is similar to [19]. =

20

7

Conclusion

We presented two output-sensitive algorithms for computing shortest homotopic paths in
the plane. The algorithm for simple paths runs in O(T'(n, k) + (n + kin) log n + kgyt) time
where T'(n, k;,) is the running time for triangulation. The algorithm for non-simple paths
takes O(log®n) time per vertex in the shortest homotopic paths and O(n**t® + ky, log® n)

time depending on the input. For the case of relatively small & we showed that the running
time can be improved to O((n + k 4 (nk)**)polylog(n)). In the case k = O(n) the running
time is O(n*/?polylog(n)). The SHP problem is related to the range searching and Hopcroft’s
problem. One could not expect an improvement of O(n*/?) bound for SHP problem unless
this bound is improved for Hopcroft’s problem. For example, Cabello et al.[5] show that
Hopcroft’s problem can be reduced to the problem of testing homotopy for non-simple paths.

Acknowledgements

I would like to thank the anonymous referees for many suggestions and comments.

References

[1]
[2]

[3]

M. A. Armstrong. Basic Topology. McGraw-Hill, London, UK, 1979.

R. Bar-Yehuda and B. Chazelle. Triangulating disjoint Jordan chains. Internat. J. Comput.
Geom. Appl., 4(4):475-481, 1994.

M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th Annu. ACM Sympos.
Theory Comput., pp. 80-86, 1983.

S. Bespamyatnikh. Computing Homotopic Shortest Paths in the Plane. In Proc. 14th ACM-
STAM Sympos. Discrete Algorithms, pp. 609-617, 2003.

S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink. Testing homotopy for paths in
the plane. In Proc. 18th Annu. ACM Sympos. Comput. Geom., pp. 160-169, 2002.
http://www.cs.uu.nl/people/sergio/publications /clms-thpp-02.pdf

B. Chazelle. A theorem on polygon cutting with applications. In Proc. 23th Annu. IEFFE
Sympos. Found. Comput. Sci., pp. 339-349, 1982.

B. Chazelle. An algorithm for segment-dragging and its implementation. Algorithmica, 3:205—
221, 1988.

B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for simplex range searching
and new zone theorems. Algorithmica, 8:407-429, 1992.

21

[9] R. Cole and A. Siegel. River routing every which way, but loose. In Proc. 25th Annu. IEEE
Sympos. Found. Comput. Sci., pp. 65-73, 1984.

[10] A. Efrat, S. Kobourov, and A. Lubiw. Computing homotopic shortest paths efficiently.
manuscript, April 29, 2002, 12 pages. http://arxiv.org/ps/cs.CG/0204050.

[11] A. Efrat, S. Kobourov, and A. Lubiw. Computing homotopic shortest paths
efficiently. In Proc. 10th Annu. Furopean Sympos. Algorithms, pp. 411-423, 2002.
http://link.springer.de/link/service/series/0558/bibs/2461/24610411 .htm

[12] S. Gao, M. Jerrum, M. Kaufmann, K. Mehlhorn, W. Riilling, and C. Storb. On continuous
homotopic one layer routing. In Proc. jth Annu. ACM Sympos. Comput. Geom., pp. 392-402,
1988.

[13] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms
for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
2:209-233, 1987.

[14] J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class.
Comput. Geom. Theory Appl., 4:63-98, 1994.

[15] D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear barriers.
Networks, 14:393-410, 1984.

[16] C. E. Leiserson and F. M. Maley. Algorithms for routing and testing routability of planar VLSI
layouts. In Proc. 17th Annu. ACM Sympos. Theory Comput., pp. 69-78, 1985.

[17] C. E. Leiserson and R. Y. Pinter. Optimal placement for river routing. STAM .J. Compul.,
12:447-462, 1983.

[18] J. Matousek. Efficient partition trees. Discrete Comput. Geom., 8(3), pp. 315-334, 1992.

[19] J. MatouSek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom.,
10(2), pp. 157-182, 1993.

[20] J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry, pp. 633-701. Elsevier Science
Publishers B.V. North-Holland, Amsterdam, 2000.

[21] J. R. Munkres. Topology: A first course. Prentice Hall, Englewood Cliffs, NJ, 1975.

[22] R. Pinter. River-routing: Methodology and analysis. In R. Bryan, editor, Third Caltech
Conference on VLSI, Computer Science Press, Rockville, Maryland, 1983.

[23] D. Richards. Complexity of single layer routing. IFFE Transactions on Computers, 33:286—288,
1984.

22

