
Information & Management 24 (1993) 93-103

North-Holland

93

Research

Multilevel security for information
retrieval systems

Bhavani Thuraisingham
The MITRE Corporation, Bedford, M4, USA

In this paper, we describe multilevel security issues for
information retrieval database management systems. We first

discuss security issues for document representation; in partic-

ular, issues on developing an appropriate data model for
representing multilevel information retrieval applications are

given. Then we consider the security issues for document

manipulation.

Krywordst Information retrieval database systems; Multilevel

security; Document representation and manipulation; Data

model; System architecture; Security constraints

Bhavani Thuraisingham is a lead en-
gineer with the MITRE Corporation
where she has initiated R & D activi-
ties in secure distributed database
systems, secure object-oriented data-
base systems, and secure intelligent
database systems. She is currently
working on multilevel object-oriented
data models, approaches to handle
the inference problem, theory of con-
currency control for multilevel data-
bases, and modeling the security engi-
neering process. Previously she was at

Honeywell Inc. where she was involved with the design of
Lock Data Views, and before that at Contra1 Data Corpora-
tion where she was involved with the development of CDC-
NET. She was also an adjunct professor of computer science
and a member of the graduate faculty at the University of
Minnesota. Dr. Thuraisingham received the M.S. degree in
computer science from the University of Minnesota, MSc.
degree in Mathematical Logic from the University of Bristol,
and the Ph.D. degree in Recursive Functions and Com-
putability theory from the University of Wales, Swansea. She
has published over thirty journal articles in database security,
distributed processing, artificial intelligence applications, and
computability theory. She is a member of the Editorial Board
of the Journal of Computer Security and serves as the pro-
gram chair of the 6th IFIP 11.3 working conference in database
security.
Correspondence to: Bhavani Thuraisingham, The MITRE Cor-

poration, Bedford, MA01730, USA.

1. Introduction

Due to the explosion in demand for informa-
tion, retrieval techniques have become indispens-
able to the efficient usage of computerized library
facilities. These library facilities include the tradi-
tional information retrieval systems [VANR79]
and the more recent hypermedia systems
[ACM88]. However, easy access to information
has also provided an avenue for malicious users
to abuse these facilities which result in breaches
in security. ’

Current information systems for library use
provide very little security. If a user has password
access to an information system, then there is
immediately access to almost all the information
stored in that system. Recently, some hypermedia
systems, such as HAM [CAMP88], have been
developed which incorporate discretionary secu-
rity measures. Here, access control lists are at-
tached to the various entities stored in the
database. Access control lists usually specify which
user or group of users have read or write access
to the entities. For many applications such as
those used in the military environment, not all of
the entities stored in the system have the same
sensitivity levels. Furthermore, the users of these
systems are also cleared to various security levels.
That is, in such systems appropriate mandatory
security controls are also needed. The intent is
for the users to access and share a database with
data at different sensitivity levels without violat-
ing security. Information retrieval database man-
agement systems that are capable of handling
multilevel data and users are called Trusted In-

’ We consider document processing systems, text processing
systems, and information retrieval systems to be the same

thing.

037%7206/93/$06.00 0 I993 - Elsevier Science Publishers B.V. All rights reserved

Information & Munugement

/ Document

1

Fig. I. Document representation

formation Retrieval Database Management Sys-
tems (TIR-DBMS). 2z

In this paper, we investigate multilevel security
issues for information retrieval database systems.
We first describe the essential features of infor-
mation retrieval systems ad then discuss the mul-
tilevel security impact on these systems. The se-
curity issues can be grouped into two categories.
The first consists of issues on multilevel data
representation and the second consists of issues
on multilevel data manipulation.

’ Note the following definitions. Discretionary security mea-

sures are usually in the form of rules which specify the type
of access that users or groups of users may have to different
kinds of data. In contrast. mandatory security controls re-

strict access to data depending on the sensitivity levels of

the data and the clearance level of the user. By a sensitivity

level. we mean the information attached to the data which

reflects its sensitivity. Each user is cleared at a particular
level which is called his clearance level. A multilevel

database is a database in which the data are assigned
different sensitivity levels. For a discussion of these defini-

tions, we refer the reader to [TCSECXS].
’ Such systems could also be called multilevel secure informa-

tion retrieval database management systems.

2. Information retrieval system concepts

In this section, we discuss issues on document
representation and manipulation.

2.1. Document representation

An initial step towards developing an informa-
tion retrieval system is to develop a conceptual
data model for representing documents. Such a
model is essential, as users should not be bur-
dened with the internal structure of the docu-
ments. A conceptual model for document repre-
sentation is illustrated in figure 1, where a docu-
ment is composed of cover, abstract, table-of-con-
tents, set-of-chapters, references, and appendix.
The cover consist of title and authors. Set-of-
chapters consists of chapters 1, 2, and 3. Chapter
1 consists of a paragraph and a figure. The un-
shaded circles illustrate the standard portion of a
document and the shaded circles illustrate
“Authors:“, etc.) ad shaded squares for nonstan-
dard data (such as text, graphics, etc.).

Figure 2 illustrates the fact that two docu-
ments share the same paragraph. Document shar-

Information & Management B. Thuraisingham / Multiled security 95

Fig. 2. Object sharing.

ing could reduce the storage overhead to a great
extent. The data model should have the capability
of representing the fact that different documents
share their contents. Another important require-
ment that must be supported by the data model is
versioning. For example, a document can un-
dergo several iterations. Its evolvement over time
should be represented by the model. Other desir-
able features that could be supported by the
model include attribute specification and opera-
tion specification. Attributes describe properties
of a document such as its author, publisher, and
publication date. Documents are manipulated by
the operations specified. For example, the opera-
tion “change-font-size”, could be used to change
the font size of a document.

In the beginning, simple graphical models were
used to represent documents. More recently, se-
mantic data models such as the entity relation-
ship model and object-oriented data models have
been used for this purpose. Object-Oriented data
models (see, for example, WOEL861) are becom-
ing very popular for representing documents. For
example, the IS-A and IS-PART-OF constructs
enable the classification and representation of
complex documents. The instance variable con-
struct enables the specification of properties of
documents. Through methods, the documents can
be accessed and manipulated efficiently. There-
fore, we will focus on the object model in dis-
cussing the security issues.

2.2. Document manipulation

The document manipulation operations in-
clude browsing, on-line document querying, up-
dating, and indexing. Browsing operation is in-
volved with scanning a collection of documents or
parts of documents starting from an initial point.
Typically, a user would issue a list of key words.
Objects called “key word objects” are scanned
and the correct key word object is selected. From

this object, the user can traverse an appropriate
link to access the initial document. Browsing then
continues by traversing links that connect the
various documents.

There are essentially two ways to make use of
the on-line query processor. One is a bibliograph-
ical search where a user would issue a list of key
words and the system would then give out a list of
publications. The second type of request is a
document display where a user requests an entire
document or parts of a document be printed. To
retrieve a document or parts of a document, the
user would have to use an appropriate document
query language or write an application program.
If the system is object-oriented, then query lan-
guages developed for the object-oriented data
model could be utilized for this purpose. At pre-
sent, research is also directed towards natural
language-based query languages for information
retrieval systems. 4

When updating a document, multiple users
may access it at the same time. Therefore, consis-
tency of the document must be preserved. For
example, if two users attempt to update a docu-
ment at the same time or a user attempts to
update a document while another user is reading
it, then appropriate concurrency control tech-
niques must ensure that the document is left in a
consistent state.

Indexing is necessary to maintain large docu-
ments. It is often generated from the text of the
document. The most popular index method used
is the key word index. Here, the index objects
contain key words that have pointers to the spe-
cific parts of a document. Indexing can be done
automatically, where the index objects are up-
dated by the system when the writer updates a
document, or indexing is done declaratively where
the writer makes indexing decisions. ’

’ Note that in [JAME85] three types of requests are de-

scribed: bibliographical search, document assembly where a

document is assembled and printed externally, and immedi-
ate display where a document is displayed on screen. We do
not differentiate between the second and third requests.

s We have also carried out a preliminary investigation of
security issues for multimedia system. This investigation is

reported in [THURotJa]. Multimedia systems are more com-
plex than document retrieval systems as they not only in-

clude textual and graphical data, but they also include

animation, sound, and video data.

96 Research

3. Security considerations

We now discuss the security impact on docu-
ment representation and document manipulation.

3. I. Document representation

Since the object-oriented data model supports
the data representation requirements imposed on
documents at the conceptual level, the underlying
secure data model is based on such a model. We
consider the ORION data model which has been
developed at MCC [BANE871 and discuss multi-
level security issues for such a model. We state a
set of security properties for the support of gen-
eralization/ specialization hierarchy, attribute/
method specification, complex objects, and ver-
sioning. ’

The following security properties SPl and SP2
are the elementary properties of the model.

Security Property SPl: If o is an object (either an
object-instance, class, instance variable, or a
method) then there is a security level L such that
Level(o) = L.

Security Property SP2: All basic objects (exam-
ple, integer, string, boolean, real, etc.) are classi-
fied at system-low.

The following property SP3 is required as it
makes no sense to classify a document at the
Secret level while the document class which de-
scribes the structure of a document is at the
TopSecret level. On the other hand, a Secret
document class could have Secret and Top Secret
document instances. ’

Security Property SP3: The security levels of the
instances of a class dominate the security level of
the class. (See Figure 3.)

The property SP4 is needed because there
should not be an Unclassified English document
if all documents are to be classified Secret.

’ A more detailed discussion of the model is given in

[THUR90b].
’ Note that system-low (system-high) is the lowest (highest)

level supported by the system. We assume that the security

levels forms a lattice with Unclassified < Confidential <

Secret < TopSecret.

Information & Management

Document Class (Unclassified)

pJ-$zjJ

Fig. 3. Class-instance relationship.

Fig. 4. Class-subclass relationship.

Security Property SP4: The security level of a
subclass must dominate the security level of its
superclass. (See Figure 4.)

Next, we describe alternate security properties
that may be enforced on the instance variables
(we consider simple and complex instance vari-
ables) and methods. Two ways to assign security
levels to instance variables of a class are as fol-
lows:

Security Property SP5: The security level of an
instance variable of a class is equal to the security
level of the class. (See Figure 5a.I

Security Property SP5 *: The security level of an
instance variable of a class dominates the security
level of the class. (See Figure 5b.)

If the property SP5 is enforced, the objects are
assumed to be single level. If the property SP5*
is enforced, the objects could be multilevel. 4t the
conceptual level at least, the model should reflect
the real-world closely. Two ways to assign secu-
rity levels to methods are

Publisher(u) Publisher (S)

Fig. 5. Class-instance variable relationships

Information & Management B. Thuraisingham / Multileuel security 91

Fig. 6. Object-instance variable relationships.

Security Property SP6: The security level of a
method of a class is equal to the security level of
the class.

Security Property SP6*: The security level of a
method of a class dominates the security level of
the class.

Two ways to assign security levels to instance
variables of an instance object of a class are

Security Property SP7: The security level of an
instance variable of an object is equal to the
security level of the object. (See Figure 6a.)

Security Property SP7 *: The security level of an
instance variable of an object dominates the secu-
rity level of the object. (See Figure 6b.)

The next two security properties describe the
relationships between the level of an instance
variable and the level of its value.

Security Property SP8: The level of the value of
an instance variable must be dominated by the
level of that instance variable. (See Figure 7.)

Security Property SP9: If the instance variable c
of an object is a complex instance variable, the
security level of c is L, and if 01, 02,. . . , on are
the objects that form the value of the instance
variable c, then the security levels of 01, 02,. . . ,
on are dominated by L. (See Figure 8.)

The following are the security properties of
versions of objects.

Fig. 7. Instance variable value relationship.

Fig. 8. Complex instance variable.

SPlO: Let v be a version instance of the object
o. Then Level(v) 2 Level(o).

SPll: Let g be the generic instance of an object
o. Then Level(g) = Level(o).

SP12: Let o’ have an instance variable link to
version v of object o. Then Leveho’) r Level(v).

SP13: Let o’ have an instance variable link to
generic instance g of object o. Then Level(o’) r
Level(g).

SP14: Let o’ have an instance variable link to
an object o. Let v’ be a version instance of 0’.
Then the instance variable link of v’ points to
one of the following:

(i) NIL
(ii) o, provided LevelCv’) r Level(o)

(iii) generic instance g of o, provided Level(v’) 2
Level(g), and

(iv) a version instance v of o, provided Level(v’)
2 Level(v).

SP1.5: If c is an object (or a version) and c’ is a
version of c and 1 is a version link from c to c’,
then level(l) 2 Level(c).

Figure 9 illustrates a version derivation hierar-
chy of: Unclassified object. Here, versions are

Fig. 9. Version derivation hierarchy.

98 Reseurch lt~fornzution R Munagrnwn~

Fig. 10. Relationships between objects.

created within and across security levels. The link
from an object (or version) to a version is called a
version link. The generic instance has informa-
tion on the version derivation hierarchy. Assum-
ing that there are only two security levels, Unclas-
sified and Secret, the generic instance stores Un-
classified information of the hierarchy at the Un-
classified level, and Secret information of the
hierarchy at the Secret level. In Figure 9, the
generic instance of object 0 has: Unclassified
version instance Vl. V2 is a polyinstantiated ver-
sion of Vl at the Secret level. V3, V5, and V7 are
historical versions of Vl, V2, and V3, respec-
tively. V4 and V6 are alternate versions of V3
and V5, respectively. V8 is a historical version of
V4 at the Secret level. V7 is a historical version
of V8. That is, over time, the Secret version V8
will evolve to the Unclassified version V7. We use
P, H, and A for polyinstantiated, historical, and
alternate versions respectively. Note that polyin-
stantiation is a mechanism to handle cover sto-
ries. It can be regarded as a form of versioning
across security levels. ’ Figure 10 illustrates
polyinstantiation of sections.

’ Versions are different interpretations of the same entity or
event. Cover stories are usually false or inaccurate informa-

tion that is generated at the lower security levels so that

users at these lower levels do not deduce the sensitive
information at the higher levels. Polyinstantiation is a mech-
anism that has been proposed in multilevel relational

DBMS to handle cover stories.

3.2. Document munipulution

We discuss some of the issues involved in
designing a TIR-DBMS which supports the docu-
ment manipulation requirements. In particular,
security policy as well as architectural issues are
considered.

3.2.1. Security policy
A basic mandatory security policy of an

object-oriented database system is as follows:
Subjects are the active entities, such as processes
acting on behalf of users, and objects are the
passive entities such as classes, instances, and
methods. Subjects and objects are assigned secu-
rity levels (we will use the terms subjects and
users interchangeably). The following rules con-
stitute the policy.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

A subject has read access to an object if the
subject’s security level dominates that of the
object.
A subject has write access to an object if the
subject’s security is equal to that of the ob-
ject. ’
A subject can execute a method if the sub-
ject’s security level dominates the security
level of the method and that of the class with
which the method is associated.
A method executes at the level of the subject
who initiated the execution.
During the execution of a method ml, if
another method m2 has to be executed, then
m2 can execute only if the execution level of
ml dominates the level of m2 and the class
with which m2 is associated.
Reading and writing objects during method
execution are governed by the properties (i)
and (ii).

3.2.2. Architectural issues
Various architectures have been proposed for

developing a Trusted DBMS. We believe that
these architectures could be utilized to develop a
TIR-DBMS also. They include (i) Operating Sys-
tem providing Mandatory Security, (ii) Kernel-
ized, (iii) Integrity Lock, and (iv) Distributed Ar-
chitecture [AFSB83].

’ Note that we enforce the write-at-your-level policy and not
the *-property (write-at-or-above-your-level) of the Bell and

LaPadula policy [BELL75].

Information & Management B. Thuraisingham / MultileL>el security 99

In the first architecture, the operating system
provides the mandatory security. The TIR-DBMS
basically runs as an untrusted application on top
of the operating system. That is, the multilevel
documents are decomposed and stored in single
level fragments. The operating system controls
access to the single-level fragments. In general, a
subject should be able to read an object if the
subject’s security level dominates that of the ob-
ject and a subject writes into an object if the
subject’s security level is that of the object. When
a user asks for the contents of a document, the
TIR-DBMS must construct the portion of the
document from the fragments retrieved. In order
to do this, the TIR-DBMS must maintain map-
pings between the conceptual representation of
the multilevel document and its physical storage.
In order to facilitate browsing a document, the
TIR-DBMS must also maintain a network of
nodes and links. Each node will map into one or
more single-level physical storage objects. Users
should then be able to browse through docu-
ments classified at or below their level. In this
approach, the index files could be maintained on
a per security level basis. That is, the index file
for a document at level L is maintained at level L
also. One of the major advantages of this archi-
tecture is that the TIR-DBMS need not be
trusted. However, this would mean that the labels
displayed on the documents cannot be trusted.
Furthermore, the integrity of the data cannot be
guaranteed.

In the second architecture, in addition to the
operating system, the TIR-DBMS also enforces
mandatory access control on its own objects. For
example, consider a multilevel document consist-
ing of Unclassified, Secret, and TopSecret sec-
tions. The document could be stored in a TopSe-
cret segment. Access to this segment is controlled
by the operating system. Then a trusted process
which is part of the TIR-DBMS will control ac-
cess to the individual portions of the document
depending on the security level of the user. Index
files could also be maintained by trusted pro-
cesses. Such an approach is expected to give
better performance over the first architecture.
Furthermore, one could also trust the labels dis-
played in the document. However, the amount of
trusted code that must be part of the TIR-DBMS
needs to be determined.

In the third architecture, there are three major

modules that make up the TIR-DBMS. An un-
trusted frontend, a trusted filter, and an un-
trusted back-end. Whenever data (which could be
an entire document, a section, or even a para-
graph) is entered, the trusted filter computes a
checksum depending on the security level of the
user and the value of the data. The data together
with its checksum is stored by the untrusted back-
end. When a user requests a retrieval operation,
the back-end retrieves the data together with its
label ad checksum and gives it to the filter. The
filter recomputes the checksum for the data and
label. If the new checksum does not match with
the checksum. Since the data could be as large as
a document or as small as a word, the checksum
computation technique could be quite complex.
Therefore, we believe that building a realistic
system with this approach may not be feasible.

In the fourth architecture, a trusted front-end
is connected to untrusted back-end machines,
each operating at a single classification level.
Several configurations have been proposed. On
one end of the spectrum, there is no replication
of data. That is, the machine operating at level L
manages the database at level L. At the other
end of the spectrum, there is total replication.
That is, the data at level L is replicated at all
databases at level L* > L. The machine operating
at level L’ manages the database at level L’. In
both architectures all communication is via the
front-end. In the case of the replicated architec-
ture, updates are straightforward as the user at
level L updates the database at level L. Query
processing becomes quite complex as the user’s
query may have to be decomposed and sent to
the machines at or below the user’s level. Also, if
a request is sent to a lower level machine, then a
check must be made that such a request does not
contain sensitive information. For a multilevel
document with classification at the paragraph
level, the techniques would be quite complex.
Browsing documents across different security lev-
els also becomes quite complex. In the case of the
replicated architecture, query processing is
straightforward. Since data is replicated at the
higher levels, a user’s request at level L is only
sent to the machine operating at level L. The
update operation is more complex as the consis-
tency of the replicated copies must be main-
tained. Furthermore, during updates the actions
of a process at a higher level machine must not

Information d; Murqement

Fig. 11. System architecture for a TIR-DBMS.

interfere with a process at a lower level machine.
The architecture selected will depend on the

requirements. For example, if a system has to
provide high assurance, then one might favor the
first architecture. If performance is a major con-
cern, then the second architecture might be pre-
ferred.

3.2.3. A possible design
In this section, we discuss a possible design of

a TIR-DBMS based on the first architecture. In
this design, multilevel documents are stored in
single-level fragments. The index files are also
single level. Mandatory access to the single-level
fragments is controlled by the operating system.

A system architecture for a TIR-DBMS based
on the object model is shown in Figure 11. Users’
requests are mediated by the User Interface
Manager (UIM). The UIM is responsible for
parsing the requests and generating an internal
representation. It interfaces to the Object Man-
ager (OM), which consists of five major modules:
the Schema Manager (SM), the Browser, the
Query Manager (QM), the Transaction Manager
(TM), and the Presentation Manager (PM). The
SM is responsible for manipulating the object-ori-
ented representation of documents. The user’s
view of the multilevel database is object-oriented.
The storage and manipulation of the structure of
the documents is the responsibility of SM. The
Browser is invoked when users ask to scan the
various documents. The QM is responsible for
query processing. That is, the user’s queries on

objects are processed by the QM and translated
into an appropriate language so that the Storage
Manager (STM) can execute the query. Similarly,
the TM is responsible for managing the transac-
tions on objects. The PM is responsible for order-
ing the documents so that they can be presented
in a appropriate format to the user. Note that the
Browser, QM, TM, ad PM all access the schema
and structure information via the SM. The STM
is responsible for storing and manipulating the
data. It is the responsibility of the STM to de-
compose multilevel objects into single levels ob-
jects so that they ca be stored in single-level files
or segments.

What is interesting about this architecture is
that the STM, which is responsible for managing
the storage objects, is separate from the OM,
which represents and manipulates the objects at
the conceptual level. Because of this separation,
the STM need not be an object-oriented database
system. That is, a relational database system could
be used to manage the multilevel database. This
way, one can take advantage of commercially
available multilevel relational database systems
for a near-term implementation of a TIR-DBMS.

It should be noted that, if the schema is stored
at different security levels, then the access to
these objects by the SM should be mediated by
the operating system. For example, suppose that
the existence of a paragraph of a document is
Secret. When an Unclassified user requests for
the structure of the document which contains the
Secret paragraph, he should not be notified that
it is not available. Thus the structure is entirely
maintained by the SM component of the OM.
Therefore, the access to the structure by the SM
should be mediated by the operating system.

3.2.4. Security constraint processing
In a multilevel environment, each data entity

(such as document, paragraph, section, etc) is
assigned a security level. However, we have not
yet described how the security levels may be
assigned to these data entities. One option is for
an object to be assigned the security level of its
creator. However, if the multilevel world is com-
plex and dynamic, then not only may several rules
be used to determine the security level of an
object but the level of the object may also change
with time. Therefore, an effective tool is needed
to classify and reclassify the objects as necessary.

Information & Management

In our approach, we use security constraints to
assign security levels to the objects. They provide
an effective and versatile classification policy.
They can be used to assign security levels to the
data depending on their content and the context
in which the data is displayed. They can also be
used to reclassify the data dynamically. We be-
lieve that processing security constraints is the
first step toward controlling unauthorized infer-
ences in a TIR-DBMS.

We have defined various types of security con-
straints. They include the following:

(i)

(ii>

(iii)

(iv)

(VI

(vi)

(vii)

(viii)

(ix)

Constraints that classify a database, a class,
or an instance variable. These constraints
are called simple constraints.
Constraints that classify any part of the
database depending on the value of some
data. These constraints are called content-
based constraints.
Constraints that classify any part of the
database depending on the occurrence of
some real-world event. These constraints
are called event-based constraints.
Constraints that classic associations be-
tween classes and instance variables. These
constraints are called association-based
constraints.
Constraints that classify any part of the
database depending on the information that
has been previously released. These con-
straints are called release-based con-
straints.
Constraints that classify collections of in-
stances. These constraints are called aggre-
gate constraints.
Constraints which specify implications.
These are called logical constraints.
Constraints that classify any part of the
database depending on the security level of
some data. These constraints are called
level-based constraints.
Constraints which assign fuzy values to their
classifications. These are called fuzzy con-
straints.

Our approach is to process certain security
constraints during query processing, certain con-
straints during database updates, and certain con-

B. Thuraisingham / Multiler,el security 101

straints during database design. “’ When con-
straints are handled during query processing, they
are treated as a form of derivation rules. That is,
they are used to assign security levels to the data
already in the database before it is released.
When the security constraints are handled during
update processing, they are treated as integrity
rules. That is, they are constraints that must be
satisfied by the data in the multilevel database.
When the constraints are handled during database
design, they must be satisfied by the database
schema of a multilevel object-oriented data-
base. ”

One way to enforce security constraints in an
object-oriented database system is to incorporate
them as special types of methods. We call these
constraint methods. The following alternate prop-
erties may be enforced:

CZ7: The security level of a constraint method
is the security level of the class with which it is
associated.

Cl 7 *: The security level of a constraint method
dominates the security level of the class with
which it is associated.

We also assume the previously discussed secu-
rity policy for constraint method execution. A
constraint method classified at level L can be
executed by any subject classified at level L or
higher.

We treat security constraints as a form of integrity con-

straints enforced in multilevel database systems. The logic

programming community [GALL781 has classified the in-

tegrity constraints into three groups. The first group con-

sists of integrity rules that must he satisfied by the data in

the database. The second group consists of derivation rules

that are used to deduce new data from the data in the

database. The third group consists of rules that are used to

design the database. We have taken a similar approach for

handling security constraints. That is, some constraints are

handled during database updates, some during query pro-

cessing, and some during database design.

Note that, in a multilevel relational system, we specify
security constraints as horn clauses [THUR87]. As a result,
the techniques developed for checking the consistency as

well as verifying the correctness of logic programs can be
applied for validating the security constraints. However, in

an object-oriented data model, we have used methods to
specify constraints. Research is needed on techniques for

checking the consistency of such constraints.

102 Research

We illustrate constraint method execution with
an example. Consider an Employee class with
instance variables OID, SS#, Name, Salary, and
Dept, and the following two constraints:

(Tl) If Salary is greater than 50K, then an em-
ployee instance is Secret.
(T2) After l/1/92, an employee instance is Se-
cret if the Dept is Security.

Each constraint is specified as a constraint
method. The first is a content-based constraint
and we assume that it is processed during
database updates. The second is an event-based
constraint and it is processed during query opera-
tion. Specification of the schema is shown in
Table 1.

Suppose an Unclassified subject requests the
creation of an employee instance with instance
variable values (10, John, 60K, Security). The
constraint method for the content-based con-
straint is invoked. It is executed and the instance
will be computed as Secret. It (or the calling
method) must then specify whether to abort the
update request or to create a Secret employee
instance in a new session via a Secret subject.

Next, suppose an Unclassified subject requests
the retrieval of all employee instances. The con-
straint method for the event constraint will be
invoked during the-query operation. Fit is deter-
mined that the date is 3/l/92, then only the
Unclassified employee instances whose depart-
ment values are not ‘Security’ and have salaries
less than or equal to 50K are returned to the
querying subject.

Constraints that are processed during database
design are the simple constraints, the association-
based constraints. and the logical constraints. We
illustrate with a simple example how such con-
straints may be enforced. Consider the following
association-based constraint.

(T3) Name and Salary Instance Variables of the
class EMP taken together are Secret.

Note that an Unclassified user could pose a
query to retrieve the SS# and Name instance
variable first and later pose a second query to
retrieve the SS# and Salary instance variables.
From the responses received for the two queries,

Informatior2 & Management

Table 1

Schema specifications.

CLASS DEFINITION:

Name: EMP

Level: Unclassified

Instance Variables:

OID: Class Integer, Level Unclassified

SS#: Class Integer, Level Unclassified

Name: Class String, Level Unclassified
Salary: Class Integer, Level Unclassified

Dept: Class DEPT, Level Unclassified

Update Methods:

UMethodI (EMP-Instance: Class EMP)

If EMP-Instance.Salary > SO K, then
Level (EMP-Instance) = Secret

(i.e. an instance variable of this instance is Secret)

Endif

End UMethodI

Query Methods:

QMethodI (EMP-Instance: Class EMP)

(If Date > 1 /I /92, do the following)
If EMP-Instance.Dept.Name = Security, then

Level (EMP-Instance) = Secret

Endif

End QMethodI

End Class Definition EMP

CLASS DEFINITION:

Name: DEPT

Level: Unclassified

Instance Variables:

OID: Class Integer. Level Unclassified

D#.: Class Integer. Level Unclassified

DName: Class String, Level Unclassified

End Class Definition DEP’I

the user could form the association between
Names and Salaries. One solution to handle such
a constraint would be as follows:

Create three classes: EMP, EMP-ASSOC, and
EMP-SAL. MP and EMP-SAL are Unclassified.

EMP-ASSOC is Secret. EMP has instance vari-
ables OID, SS#, Name, and Dept. EMP-SAL has
instance variables OID and Salary. EMP-ASSOC
has instance variables OID, SS#, Salary. Any
instance of EMP-ASSOC must be at least Secret
and have the association between SS#s and the
salaries. Since the class definitions have changed,
the constraints Tl and T2 may also need to be
modified. Note that since the relationship be-

Information & Management B. Thuraisingham / Multilel~el security 103

Table 2
Modified schema specifications.

CLASS DEFINITION:

Name: EMP
Level: Unclassified

Instance Variables:
OID: Class Integer, Level Unclassified

SS#: Class Integer, Level Unclassified

Name: Class String, Level Unclassified

Dept: Class DEPT, Level Unclassified

Query Methods:

QMethodl (EMP-Instance: Class EMP)
[If Date > l/1/92, do the following}

If EMP-Instance.Dept.Name = Security, then

Level (EMP-Instance) = Secret

Endif

End QMethodI

End Class Definition EMP

(Class Definition for DEPT is as in table 2]

CLASS DEFINITION:

Name: EMP-SAL

Level: Unclassified

Instance Variables:
OID: Class Integer, Level Unclassified

Salary: Class Integer, Level Unclassified

End Class Definition EMP-SAL

CLASS DEFINITION:

Name:EMP-ASSOC
Level: Secret

Instance Variables:

OID: Class Integer, Level Secret

SS#: Class Integer, Level Secret

Salary: Class Integer, Level Secret

End Class Definition EMP-ASSOC

tween the salary instance variable and the other
instance variables of the class EMP is no longer
visible at the Unclassified level, the constraint Tl
is no longer meaningful. The constraint T2 is still
enforced on the class EMP. Specification of the
revised schema is shown in Table 2.

4. Summary

The explosion in the quantity of documents
that are being produced in almost all enterprises
today has resulted in computerizing the library
facilities. This has resulted in the development of

sophisticated information retrieval systems. How-
ever, this also means that there is a greater chance
of abuse of the information by untrusted users or
the system. Many of the systems provide little or
no form of security.

In this paper, we first stated the data represen-
tation and data manipulation requirements of
information retrieval system applications and then
discussed the security impact. in particular, we
discussed issues on developing a multilevel data
model for representing these applications and
architectural issues for a TIR-DBMS. The discus-
sion in this paper is the first step towards the
design and development of a TIR-DBMS.

References

[ACM@] Communications of the ACM. July 1988, Special

Issue on Hypertext Systems.

[AFSB83] Air Force Studies Board, 1983. Committee on Mul-
tilevel Data Management Security, Mulfiler,el Data Man-
agement Security, National Academy Press.

[BANE871 Banerjee. J. et al., January 1987, “Data Model
Issues for Object-oriented Applications,” ACM Transac-
rions on Office Information Systems, vol. 5. No. 1.

[BELL751 Bell, D. and L. LaPadula, 1975, Secure Computer
Systems: Unified Exposition and M&tics Interpretation,
Technical Report No: ESD-TR-75-306, Hanscom Air

Force Base, Bedford, MA.

[CAMP881 B. Campbell and J. Goodman. July 1988, “HAM:
A general purpose hypertext abstract machine”, Commu-

nications of the ACM.

[GALL781 Gallaire, H. and J. Minker. 1978, Logic and
Databases, Plenum Press.

[JAMEES] James. G., 1985, Document Databases, Van Nos-

trand, New York.

[TCSECXS] Trusted Computer Systems Evaluation Criteria,
Department of Defense Document, 1985.

[THUR87] Thuraisingham, M.B., December 1987, “Security
Checking in Relational Database Management Systems

Augmented with Inference Engines, Computers and Secu-
rify, vol. 6, #6.

[THUR90a] Thuraisingham, B., September 1990, “Multilevel
Security for Multimedia Systems,” Proceedings of the 4th

IFIP Database Security Workshop, Halifax. England.

[THUR90b] Thuraisingham, B., 1990, “Issues on Developing
a Multilevel Secure Object-Oriented Data Model,” MTP

394, The MITRE Corporation, Bedford. MA (a version

published in the Journal of Object-Oriented Programming,

Vol. 4, Nov/Dec 1991).

[VANR79] C.J. van Rijsbergen, “Information Retrieval”, But-
tetworths, second edition, 1979.

[WOEL86] Woelk, D. et al., 1986, “Object-oriented Approach
to Multimedia Databases,” Proceedings of the ACM SIG-

MOD Conference.

