Orbitals and Quantum Numbers Practice Questions

1. What are the shapes of s, p, and d orbitals respectively?
$s=$ spherical $\quad p=$ dumbbell $\quad d=$ cloverleaf
2. How many 1s orbitals are there in an atom? 4p orbitals? 4d orbitals?

1s: $14 \mathrm{p}: 3$ 4d: 5
3. What is the maximum number of orbitals with:
$\mathrm{n}=4$
$I=1$
$\mathrm{n}=2 \quad \mathrm{I}=\mathbf{2}$
$n=3 \quad I=2$
$n=5 \quad I=1 \quad m_{l}=-1$
3 (the $4 p$ orbitals)
none (l must be < n)
5 (the 3d orbitals)
1 (3 q.n. define a unique orbital)
4. Which orbitals cannot exist?
$2 p \quad 3 p \quad 4 d \quad 3 f \quad 6 s \quad 2 d$

3f and 2d
5. Write a set of quantum numbers for a $4 f$ orbital.
$n=4 \quad I=3 \quad m_{l}=3,2,1,0,-1,-2,-3$
6. Describe the electrons defined by the following quantum numbers:

n	I	m_{l}	
3	0	0	3s electron or orbital
2	1	1	2p electron or orbital
4	2	-1	4d electron or orbital
3	3	2	not allowed (I must be <n)
3	1	2	not allowed $\left(m_{1}\right.$ must be between $-I$ and I)

