Assignment #1:
Due August 31

1. Suppose \(f(n) = O(g(n)) \) and \(f(n) \neq o(g(n)) \), is the statement that \(f(n) = \Theta(g(n)) \) true? If your answer is yes, prove it; if it is no, provide a counter example.

2. Does the statement \([f(n) = O(g(n))] \) imply the statement \([2f(n) = O(2g(n))] \)? Is the converse true? Give proofs or counter examples. You may assume that both functions are nonnegative, increasing and their limits are \(\infty \) as \(n \to \infty \).

3. Exercises 3.2-4

4. Problem 3.3 (a)

5. Show that (i) \(\sum_{i=1}^{n} i^2 = \Theta(n^3) \)

6. Challenge Problems: Do not turn it in. No answers will be provided.

 (a) Show that \(\sum_{i=1}^{n} i^k = \Theta(n^{k+1}) \) for any positive integer \(k \).
 (b) Show that \(\sum_{i=1}^{n} \frac{1}{i} = \Theta(\log n) \)
 (c) 3.2-5