Assignment #1:
Due January 18

1. Which pairs of statements of the type \(f(n) = A(g(n)) \) are incompatible? Here \(A \in \{ \Theta, \Omega, O, \omega, o \} \). Give reasons.

2. Is the statement \([f(n) = O(g(n))]\) imply the statement \([2^{f(n)} = O(2^{g(n)})]\)? Is the converse true? Give proofs.

3. Let \(f(n) = n^{\log_b a}(\lg n)^k; b > 1; a \geq 1 \). Which of the following statements are true:

 (a) \(f(n) = O(n^{\log_b a - \epsilon}) \) for some \(\epsilon > 0 \)

 (b) \(f(n) = \Theta(n^{\log_b a}) \)

 (c) \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for some \(\epsilon > 0 \)

4. Exercises 3.1-4 (page 50): Is \(2^{n+1} = O(2^n) \)? Is \(2^{2n} = O(2^n) \)?

Exercise 3.2-4 (page 57): Is the function \([\lg n]!\) polynomially bounded? Is the function \([\lg \lg n]!\) polynomially bounded?

5. Problems: 3-1: Let \(p(n) = \sum_{i=0}^{d} a_i n^i \) where \(a_d > 0 \), be a degree-\(d \) polynomial in \(n \) and let \(k \) be a constant. Show that:

 (a) If \(k \geq d \), then \(p(n) = O(n^k) \)

 (b) If \(k \leq d \), then \(p(n) = \Omega(n^k) \)

 (c) If \(k = d \), then \(p(n) = \Theta(n^k) \)

 (d) If \(k > d \), then \(p(n) = o(n^k) \)

 (e) If \(k < d \), then \(p(n) = \omega(n^k) \)

Problem 3-2 Fill in the following table with yes/no in each slot: Assume \(k \geq 1; \epsilon > 0; c > 1 \)

<table>
<thead>
<tr>
<th>(f(n) = A)</th>
<th>(g(n) = B)</th>
<th>(O)</th>
<th>(o)</th>
<th>(\Omega)</th>
<th>(\omega)</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (n^k)</td>
<td>(n^\epsilon)</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(b) (n^\epsilon)</td>
<td>(e^n)</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(c) (\sqrt{n})</td>
<td>(n^{\ln n})</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(d) (2^n)</td>
<td>(2^{\frac{n}{2}})</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(e) (n^{\ln m})</td>
<td>(m^{\ln n})</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(f) (\lg(n!))</td>
<td>(\lg(n^c))</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>