Assignment #4:
March 5
Proofs or counter-examples absolutely necessary for this assignment!

1. Let $G = [V, E]$ be an undirected graph. We want to check if it is connected. The only questions that we are allowed to ask are of the form: "Is there an edge between vertices i and j?". Using an adversary argument show that any correct deterministic algorithm to decide if G is connected must ask $\Omega(n^2)$ questions.

2. Exercise 16.2-7: Suppose you are given two sets A and B, each containing n positive integers. You can choose to reorder each set however you like. After reordering, let a_i be the i^{th} element of set A, and let b_i be the i^{th} element of the set B. You then receive a payoff of $\prod_{i=1}^{n} [a_i b_i]$. Give an algorithm that will maximize your payoff. Prove that your algorithm maximizes the payoff, and state its running time.

3. With respect to Exercise 16.1-4: (a) Show that repeated Activity Selection does not work; (b) Find another greedy algorithm; (c) Prove that this algorithms works correctly.

4. The following problem is known in the literature as the knapsack problem: We are given n objects each of which has a weight and a value. Suppose that the weight of object i is w_i and its value is v_i. We have a knapsack that can accommodate a total weight of W. We want to select a subset of the items that yields the maximum total value without exceeding the total weight limit.
 (i) If all v_i are equal, what would the greedy algorithm yield? Is this optimal?
 (ii) If all w_i are equal, what would the greedy algorithm yield? Is this optimal?
 (iii) How should the greedy algorithm be designed in the general case? Is this optimal? [Be careful to distinguish between two versions of the problem: in one we are allowed to select fractional items and in the other we are not allowed to do this.]

5. Consider the following generalization of a scheduling example done in class: We have n customers to serve and m identical machines that can be used for this (such as tellers in a bank). The service time required by each customer is known in advance: customer i will require t_i time units ($1 \leq i \leq n$). We want to minimize $\sum_{i=1}^{n} C_i(S)$, where $C_i(S)$ represents the time at which customer i completes service in schedule S. How should the greedy algorithm work in this case? Is it guaranteed to produce optimal solutions?
6. Challenge Problem I: A celebrity in a collection G of n people is a person who is known by all other $n - 1$ people but who does not know any of them. We are given a collection G of n people and want to know if this collection has a celebrity in it and if one exists to identify the celebrity. We are allowed to ask questions of the form: ”Does person A know person B?” for any two persons A and B. We want an algorithm that asks minimum number of questions to decide whether the group has a celebrity. Derive a lower bound for the number of questions that need to be asked in the worst case.