Assignment #7

1. 34-1: (a),(b)

 (a) The corresponding decision problem is the following: Given $G = [V, E]$, and a positive integer k, is there an independence set in G of size k is the decision problem. Thus

 $\text{INDEPENDENCE} = \{(G, k) : G \text{ is a graph with an independence set of size } k\}$

 To show that it is NP, we use the independence set itself as the certificate. It is easy to verify that a given set is indeed an independent set or not and check its size in polynomial time.

 To show that it is NP-complete we show that $\text{CLIQUE} \leq_p \text{INDEPENDENCE}$. Given an instance of CLIQUE with (G, k), let \overline{G} be the complement graph of G. Let the corresponding INDEPENDENCE instance be on the (G, k). There is a clique of size k in graph G iff there is an independent set of size k in \overline{G}. In fact the same set does it. Hence the reduction is complete.

 (b) Run INDEPENDENCE over G with values of k in a binary search manner.

2. 34.5-2

 To show that this problem is in NP, we use the vector x as the certificate. We now have to check that it satisfies each constraint in the system $Ax \leq b$ and this can be done in polynomial time. To show that it is NP-complete, we show that $3\text{-SAT} \leq_p 0 - 1\text{IP}$. To do this for each variable in 3-SAT, we have a variable in $0 - 1\text{IP}$ and for each clause we have a constraint. For example, if a clause looks like $(x_3 \lor \neg x_5 \lor x_8)$ the corresponding constraint would be $y_3 + (1 - y_5) + y_8 \geq 1$. The size of this IP is polynomially related to the boolean expression and the instance of 3-SAT has a yes answer iff the IP has a solution. The reduction is complete.

3. 34.5-5: Show that $\text{SET-PARTITION} \in \text{NP-C}$

 Solution:

 Certificate is A itself. Given A it is easy to check if A is the required set in polynomial time by adding numbers in A and $S - A$.

 To show that $\text{SET-PARTITION} \in \text{NP-C}$: will show $\text{SUBSET-SUM} \leq_p \text{SET-PARTITION}$.

 Let the instance of SUBSET-SUM be (S, t). In this problem we want to know if $\exists B \subseteq S : \sum_{x \in B} x = t$.

 Let $\hat{S} = S \cup \{t+1\} \cup \{(\sum_{x \in S} x) - t + 1\}$ and consider the SET-PARTITION problem with \hat{S}.

 If the answer to this partition problem is "yes" with $A \subseteq \hat{S}$, then $\sum_{y \in A} y = \sum_{y \in \hat{S} - A} y$. Exactly one of the last two elements in \hat{S} is in A and the other
is in $\tilde{S} - A$. This is because their sum exceeds the sum of all other elements (and all elements are positive). For the sake of specificity, let \(\{t + 1\} \in A \). This implies \(\{\sum_{x \in S} x - t + 1\} \in \tilde{S} - A \). Hence

\[
\left(\sum_{y \in A - \{t + 1\}} y \right) + (t + 1) = \left(\sum_{y \in \tilde{S} - A} y \right) + (\sum_{y \in S} y) - t + 1
\]

\[
\Rightarrow \left(\sum_{y \in \tilde{S} - A} y \right) = t
\]

If the answer to SUBSET-SUM is yes, let $B \subseteq S$ satisfy the relation that $\sum_{y \in B} y = t$. Let $\tilde{S} - A$ in SET-PARTITION be $B \cup \{\sum_{x \in S} x - t + 1\}$ it is easy to show that this works. Thus, SUBSET-SUM \leq_p SET-PARTITION. t can be computed in polynomial time.

4. 34.1-6: do union, intersection, complementation, and concatenation.

Solution:

Complementation: Must show that $\{L \in P\} \implies \{\overline{L} \in P\}$

$L \in P$ implies that there is an algorithm A that decides L and the time taken by A is given by $T(n) = O(n^k)$. This implies that there is a constant c such that $T(n) \leq cn^k$. Now given a string $x \in \{0, 1\}^*$ run algorithm A till either it accepts or rejects x. If it accepts then output $x \not\in \overline{L}$ else output $x \in \overline{L}$. Thus there is an algorithm A' that decides \overline{L} in polynomial time.

Rest is left to you.

5. 34.2-9

Solution:

To do this we must show $\{L \in P\} \implies \{\overline{L} \in NP\}$.

But $\{L \in P\} \implies \{\overline{L} \in P\}$ by 34.1-6. Also $P \subseteq NP$. So the result follows.