PAGE

TOWARDS DISTRIBUTED, COLLABORATIVE COMPUTING

PARADIGM: AN EXPERIMENTAL APPROACH

By

AHAMED M. JEMAL

THESIS

Presented to the Faculty of

The University of Texas at Dallas

in Partial fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

May 2001
ACKNOWLEDGEMENTS

 First of all, my special thanks goes to my advisor Dr. Lawrence Chung for introducing me to the COBRA research ideas and his unlimited encouragement throughout the research project. This work wouldn’t be possible without the ultimate effort provided by Dr. Chung to coordinate the development team by attending meetings out of his busy schedule and reread my manuscript to pinpoint problems. Discussions with and indispensable comments from Dr. Chung have been very useful and have greatly helped shape the initial ideas into their present form. His support and guidance for the past year have been instrumental in shaping my carrer as a software engineer. I would also like to express my gratitude to Dr. Simeon Ntafos and Dr. Kang Zhang for serving on my thesis committee.

 I would like also to thank the many students and staffs of University of Texas at Dallas who participated in the COBRA project throughout the research period. Previous work on COBRA tool development from former students, Enxi Chi, Xiaolu Shi, Cuiping Zhang, Hong Wei, Guang-Ren Jou, Tao Huang, Murali, Cindy Hsin, DanDan Wang, Fenny Lin, Harini Kalahasti, Jayashree Mekala, Mei Geng, Minqi Li, Naveen K Yeddula, Padma Ravindranathan, Pi Chun, Ping He, Sangeet Gupta, Syjye Chen and Zhouwei has laid bases for the COBRA tool.

 Specially the ultimate effort presented by Fall 2000 and Spring 2001 COBRA development group members, Jun chen, Xiaohong Fu, Xiaotang Liu, Wenping Sun, Xiang Yan and Xin Liu, Weye Li, yinlin Ma, Jing Yang, Ling Chen, Hong Li, Wei Xia, Bing Shi, Nan Jiang and Larry Zhang has resulted in producing a stable COBRA tool set . These groups also provided a good documentation to help users understand the COBRA tool set as well as pointing existing issues to guide future developers. The Fall 2000 software architecture and design class deserves a special thanks for producing the COBRA architecture using reverse engineering process which becomes very useful for investigating current architectural issues and for giving an insight to enhance the COBRA tool during future development. Also Mrs. Bing YI, former COBRA member’s effort for explaining the COBRA tool set features initially and Ms. Marriam Ijaz’s useful comments on previous versions of the manuscript are most appreciated.

Finally, I like to present my infinite thanks for my family and friends who helped me in every way in becoming myself. Their support and confidence in me is a key factor in shaping my academic career.

May, 2001.

TOWARDS DISTRIBUTED, COLLABORATIVE COMPUTING

PARADIGM: AN EXPERIMENTAL APPROACH

Ahamed M. Jemal, M.S.C.S

The University of Texas at Dallas, 2001.

 Supervising Professor: Dr. Lawrence Chung

In today’s fast growing global software development era, complex software systems are componentized and developed in different sites by different teams. In this distributed software development environment, collaboration is expected to be the key success factor and yet one of the most difficult tasks, involving collaborative observation, understanding, discovery, learning, analysis, problem formulation and solving, and evaluation. Central to this kind of distributed, collaborative software development paradigm is the notion of collaborative knowledge networks -networks of intelligent agents (capable of) performing a wide variety of tasks through reasoning with shared knowledge to achieve shared goals. In order to enable these networks to come into existence, it is essential to be able to represent knowledge of software development and communicate such knowledge through the underlying computers and multi-modal communication networks. For example, one particular concern at this knowledge level lies in the modeling of distributed, cooperative, multimedia-based workflow. Currently various ideas of collaborative software engineering are being explored by the software and telecommunication communities in general, as evidenced, for example, by the UML and Rational Unified Process group. Not surprisingly, several groups within Nokia have also implemented software tools for this purpose as well, for example, TDE (telecom design environment) - a tool that targets on on-line team collaboration and is in use by Nokia engineers. This thesis presents the collaborative behavioral requirement and architecture project (hereafter, COBRA), for identifying problems in distributed collaborative computing paradigm and provide solutions using an experimental approach. The COBRA is an on-going, experimental project which focuses on: investigation of key concepts for addressing issues and problems in the distributed, collaborative software development paradigm, provision of promising techniques as solutions to the issues and problems formulated, characterization of practical methodologies for mapping the problem concepts into the solution techniques, and development of a tool set which would support the use of such concepts, techniques and methodologies. More specifically, the COBRA project focuses on developing a “virtual office” prototype environment for distributed cooperative software engineering that supports informal communication as well as planning, defining, manipulating and supervising cooperative software development activities.

TABLE OF CONTENTS

vACKNOWLEDGEMENTS

viiABSTRACT

ixTABLE OF CONTENTS

xiLIST OF TABLES

xiiLIST OF FIGURES

1CHAPTER 1
INTRODUCTION

6CHAPTER 2
COBRA CONCEPTS

62.1
Why Distributed, Collaborative Processing System

82.2
What is needed for Distributed, Collaborative Processing System.

92.3
How Distributed, Collaborative Processing System can be constructed

12CHAPTER 3
REQUIREMENTS

133.1
Functional requirement

213.1.1.
 Unified modeling language diagrams

343.2
Non-Functional Requirements

37CHAPTER 4
ARCHITECTURE DESIGN

404.1
COBRA System components

484.2
The NFR framework for COBRA Architecture

524.3
Softgoal Interdependency Graph

734.4
Existing COBRA Architecture

103CHAPTER 5
COLLABORATIVE SCENARIO BETWEEN REMOTE SITES

1055.1
Collaboration Cycle

1135.2
Scenario Observation

1175.3
Scenario Summary

118CHAPTER 6
COBRA TOOL IMPLEMENTATION

1186.1
APN implementation

1196.2
Pert Chart implementation

1256.3
COBRA tool concepts and features

135CHAPTER 7
RELATED WORK

140CHAPTER 8
COBRA TOOL DEVELOPMNET PROCESS OBSERVATION

148CHAPTER 9
SUMMARY

1489.1
Conclusion

1519.2
Future Research

152APPENDIX A
SIG DIAGRAMS

163APPENDIX B
COBRA TOOL SET USER GUIDE

172APPENDIX C
COBRA PROJECT DEVELOPMENT GROUPS REPORT

198BIBLIOGRAPHY

LIST OF TABLES

60Table 4‑1 Softgoal satisficing by Architecture styles SIG figure 4.3.9

60Table 4‑2 Claims for SIG figure 4.3.9

62Table 4‑3 Softgoal satisficing by Architecture styles SIG figure 4.3.10

62Table 4‑4 Claims for SIG figure 4.3.10

64Table 4‑5 Softgoal satisficing by Architecture styles SIG figure 4.3.11

64Table 4‑6 Claims for SIG figure 4.3.11

66Table 4‑7 Softgoal satisficing by components SIG figure 4.3.12

68Table 4‑8 Softgoal satisficing by Architecture styles SIG figure 4.3.13

68Table 4‑9 Claims for SIG figure 4.3.13

70Table 4‑10 Softgoal satisficing by Architecture styles SIG figure 4.3.14

70Table 4‑11 Claims for SIG figure 4.3.14

72Table 4‑12 Softgoal satisficing by Architecture styles SIG figure 4.3.15

72Table 4‑13 Claims for SIG figure 4.3.15

138Table 7‑1 Collaboration tool comparison

139Table 7‑2 Collaboration tool comparison for tool architecture

139Table 7‑3 Collaboration tool comparison for tool features

LIST OF FIGURES

21Figure 3.1 Usecase diagram for COBRAS

23Figure 3.2 Sequence diagram for COBRAS

24Figure 3.3 Activity diagram for COBRAS

25Figure 3.4 Class diagram for COBRAS

26Figure 3.5 Class diagram for COBRAS

27Figure 3.6 Class diagram for COBRAS

29Figure 3.7 Object diagram for COBRAS

30Figure 3.8 Collaboration diagram for COBRAS

31Figure 3.9 Component diagram for COBRAS

33Figure 3.10 Deployment diagram for COBRAS

38Figure 4.1 High level Client/Server architecture model for COBRAS

39Figure 4.2 Detail Client/Server architecture model for COBRAS

44Figure 4.3 Client/Server Communication setup model for COBRAS

49Figure 4.4 Horizontal Topic decomposition

50Figure 4.5 Type decomposition

50Figure 4.6 Topic decomposition

52Figure 4.7 Legend for SIG

53Figure 4.8 High Level Model of Software Architecture

54Figure 4.9 COBRAS Architectural Style Alternatives

55Figure 4.10 COBRAS Architectural Components

56Figure 4.11 COBRAS Architectural Interaction Alternatives

56Figure 4.12 COBRAS Architectural Constraint Alternatives

57Figure 4.13 COBRAS Architectural Pattern Alternatives

57Figure 4.14 COBRAS NFRS for Rational

59Figure 4.15 SIG for COBRAS Architectural style Alternatives (see note)

61Figure 4.16 SIG for COBRAS Architectural style Alternatives (see note)

63Figure 4.17 SIG for COBRAS Architectural style Alternatives (see note)

65Figure 4.18 SIG for COBRAS Architectural Components decision point

67Figure 4.19 SIG for COBRAS Architectural Interaction decision point

69Figure 4.20 SIG for COBRAS Architectural Constraint decision point

71Figure 4.21 SIG for COBRAS Architectural Patterns decision point

75Figure 4.22 Java event classes and event listener interfaces used by the application

80Figure 4.23 Overall architecture for COBRAS

103Figure 5.1 Online collaboration

106Figure 5.2 Collaborative Processing (view from Ontario)

107Figure 5.3 Collaborative Processing (view from Texas)

108Figure 5.4 Collaborative Processing (view from North Carolina)

118Figure 6.1 APN primitives

118Figure 6.2 Fundamental notions of APN

122Figure 6.3 APN and PERT mapping differences

122Figure 6.4 Synchronization mapping between APN and PERT

123Figure 6.5 PERT Chart

124Figure 6.6 PERT Chart implementation

 TOC \h \z \c "Figure A"

153Figure A 1 Skeleton SIG for COBRAS Architectural components

154Figure A 2 Skeleton SIG for COBRAS Architectural components

155Figure A 3 Skeleton SIG for COBRAS Architectural styles

156Figure A 4 Skeleton SIG for COBRAS Architectural Styles

157Figure A 5 Skeleton SIG for COBRAS Architectural Interactions

158Figure A 6 Skeleton SIG for COBRAS Architectural Interactions

159Figure A 7 Skeleton SIG for COBRAS Architectural Constraints

160Figure A 8 Skeleton SIG for COBRAS Architectural Constraints

161Figure A 9 Skeleton SIG for COBRAS Architectural patterns

162Figure A 10 Skeleton SIG for COBRAS Architectural patterns

164Figure B 1 DOS prompt in Java environment

164Figure B 2 Bringing up COBRAS environment

165Figure B 3 COBRAS user interface screen

INTRODUCTION

In today’s fast growing global software development era, where complex software components are developed in many remote sites by different teams, to produce a quality and a successful software system a new paradigm must be embraced. In this new distributed, cooperative processing paradigm, humans are expected to collaborate during observation, understanding, discovery, learning, analysis, problem formulation and solving, evaluation (and of course entertainment too). Central to this paradigm is the notion of collaborative knowledge networks - networks of intelligent agents (capable of) performing a wide variety of tasks through reasoning with, and about, knowledge to achieve shared goals. These networks utilize the underlying multimodal communication networks and computers, and intended to enrich the set of existing modalities and their interactions.

To conquer the inherent complexity of a collaborating society, this research introduces the COBRA tool set which will assist the distributed agents with sharing of knowledge, detection and resolution of conflicts, coordination of distributed tasks, individualization, differentiation and integration of products. Ultimately the tool set is intended for quicker adaptation of the project to changes, flexible sharing of resources, more accurate system modeling, reduction in duplicated efforts, decreased cost of travel, more flexible scheduling of deadlines and task duration’s, easier coordination, reduction in project cycle and cost, more creative productivity, etc. One particular concern at this level lies in the modeling and analysis of distributed, cooperative, multimedia-based workflow.

Scenario analysis facilitates goal-oriented analysis of a system supporting the distributed, cooperative processing paradigm [5]. During scenario analysis, goals are identified of both

functional and non-functional for the system as well as for its context/enterprise (and possibly the development world as well). During scenario analysis, goals are related and co-related to each other, operationalized, supported by evidences or denied by counter-evidences, and prioritized. To illustrate the kind of scenarios that can typically be encountered during the distributed, collaborative system, a mobile communication system organization which has three geographically remote branches are taken as example. In this scenario different issues are discussed and how collaboration can be achieved by different branches is demonstrated.

Also the result of this part of our research will help understand how to make a smooth transition from the traditional GroupWare technology, which enforces more of fixed routes, rules and roles, to any enabling technology for the new distributed, cooperative processing paradigm, which should allow for more flexibility for the planning of routes, rules and roles, for the tracking of work progress, and for the adjustment of the old plan. Identifying synchronization and concurrency control patterns is also developed. An important emphasis will be placed in techniques for the transmission of knowledge, which will be done through the underlying multimodal communication media in the form of raw data, graphics, voice, etc., and for the integration and utilization of knowledge towards cooperative understanding, discovery and development.

Though it is not widely known and clearly understood yet, the concept of distributed collaboration has been around for a while. Research has been conducted in both academic and industry streams mostly in collaborative WebBased applications and collaborative educational applications. At M.I.T Artificial Intelligence Laboratory, the “Intelligent Information infrastructure Project” [17] developed an extremely general system for distributing and retrieving information that will work over major Internet protocols. On this project a wide-area collaboration system was developed for collaborating a national meeting. At the University of North Carolina, the Colab group [18] has been engaged in similar research of distributed collaboration. This group involves different projects such as Collaboration Bus, a software that makes easy to compose collaborative systems, CAETI - investigating software infrastructure to support the development of multi-user K-12 educational applications. Also the National Science Foundation supported an ABC project that was developed by the Colab group includes a distributed hypermedia file system and a distributed shared window system which supports efficient multiple views of a shared window in X- and Java-based environments.

 The GMPP project [15] describes a WebFlow environment that supports distributed coordination services on the World Wide Web. WebFlow leverages the HTTP Web transport protocols and consists a number of tools for the development of applications that require the coordination of multiple, distributed servers. Typical applications of WebFlow include distributed document workspace, inter/intra-enterprise workflow, and electronic commerce. Specially the new business paradigm e-commerce solution for B2B (Business-to-Business) lies in the heart of cooperative processing. TradeMatrix, a product by I2 technologies, Inc. [20] is one example that targets business groups, individuals for business and management. This system provides decision support solution for critical process and collaborative decision support across multiple partners. It also offers product design collaboratively between product and marketing mangers to produce a good quality product. Production processes can be monitored in real time so crucial decision can be made to meet customer’s demand.

However, the COBRA project is peculiar from the above mentioned and other distributed, collaborative projects in many aspects. In the COBRA project, a goal-oriented architectural approach is used and we emphasize in representation of and reasoning with key tasks needed for distributed collaborative processing. Interaction among the components of the system which help carry out the tasks is investigated. Specially the COBRA project focuses on developing incremental tool set which has been enhanced by the input of outside participants and also COBRA members by probing the fundamental issues of distributed, collaborative processing. Therefore, the COBRA project highly emphasizes in the distributed collaborative software engineering challenges and solutions.

This thesis also reports on the work, since 1994, of Dr. Lawrence Chung on COBRA project at The University of Texas at Dallas Computer Science department. The concept of the COBRA research project lies in the heart of my day to day professional activity in the telecommunication industry. Working as a Software Engineer for a leading International telecom company where collaboration between different remote sites is essential to produce a successful telecom software, I can easily relate to the problems and challenges of real time collaboration. Even though currently existing tools like TDE (telecom design environment) [16] aimed as a team collaboration tool for Nokia engineers is available, it has encountered many challenges. The highly desired real time collaboration feature between engineers is not attainable, communication drawbacks across continents as well as the speed of storing and retrieving information during collaboration has become cumbersome for users. Despite the high desire of the computer industry to embrace distributed collaborative groupware work environment, it can be seen from these and other collaboration projects introduced in the industry, the idea of collaboration as well as producing the state of art collaboration tools remains to be a challenge. Throughout the research project a parallel approach will be used between the ideal research concept and the team collaboration industry experience. Therefore, this research will try to address if not all, some of the issues facing today's computer industry who want to practice distributed collaborative teamwork environment.

 Chapter 2 describes COBRA concepts. Functional and non-functional requirements are stated in Chapter 3. Architecture for COBRA system is presented in Chapter 4. An illustration of typical scenario of distributed collaborative system is shown in Chapter 5. COBRA tool implementation and features are presented in Chapter 6. Related work is discussed in Chapter 7. Observations made during the development of COBRA tool is presented in Chapter 8. The contribution of this thesis and the direction of future research is summarized in Chapter 9.

COBRA CONCEPTS

1.1 Why Distributed, Collaborative Processing System

In this era of continued growth of computer power and network connectivity, it is inevitable that the processes whereby people carry out their daily activities change drastically. In order to effectively understand and use such processes, a change of paradigm is needed, namely, from the centralized to the distributed, cooperative processing. The paradigm is to enable people to build knowledge networks - networks of intelligent agents capable of performing a wide variety of tasks through reasoning with, and about, knowledge - so that they may achieve higher-quality observation, discovery, learning, problem formulation and solving. For this purpose, the paradigm will utilize the underlying multimodal communication networks and computers, in providing techniques for collaboration among the distributed agents which would involve sharing of distributed knowledge, detection and resolution of conflicts, coordination of distributed tasks, individualization, differentiation and integration of products. The change in paradigm from the centralized to the distributed, cooperative processing presents both opportunities and challenges. Opportunities include quicker adaptation of the project to changes, more accurate modeling of the system behavior by reducing duplications, decreased cost of travel between geographically remote places, more flexible scheduling of deadlines and task duration’s, reduction in project cycle and cost, more creative productivity while enjoying in exotic places with more time and money available etc.

In order for us to exploit these opportunities, however, a number of hurdles have to be overcome. Taking an example, suppose an organization has a software project in which several of its branches should exercise concerted efforts. One of the branches, say one in Ontario, deals with one part of the project, base station control; another branch in Texas defines the behavior of

mobile devices (e.g., cellular phones and PCS); a third branch in North Carolina models the usage patterns of mobile devices. What should be done in order for all the project participants to produce a high quality system with minimum cost and time, and of course enjoyably? After all, these branches may well be virtual.

One issue lies in geographical distance between the branches, which causes difficulty for the branches in communicating with one another. Should they use physical mail to exchange model description? Perhaps not. It probably takes too much time. Should they exclusively use electronic transmissions through satellites, cellular phones, PCSs, etc.? Perhaps not. From time to time, those people at the branches need to talk to each other on the phone, using video-conferencing, through (real) meetings, etc. More likely than not, people will use multimodal. Another issue concerns integration of the different models produced at various branches. How do we ensure that they are consistent and complete with respect to one another, and of course most importantly the integrated models are what the customers really want. Likewise, how do we ensure that the proposed solution at the branches collectively meets the customers' expectation?.

Another hard issue is that the components of the entire system are developed possibly in several different contexts (and from several different perspectives). If the meaning of a component has to depend on the context in which it is used, then the meaning of a component that one branch proposes would change when it is placed in a bigger system, namely the integrated system. This issue brings up another important problem of coordination. Obviously, what one branch does at a given point time may well be dependent on what another branch has accomplished up to that point, and accordingly each branch needs to adjust its course of action. Nonetheless, we would want each branch to be able to make progress at it's own maximum pace as much as possible. There are also other important challenges here, such as change management (how do we keep track of both global and local changes and propagate them from one branch to another?). All the above issues need to be examined carefully and a solution must be provided to achieve a successful distributed collaborative processing.

1.2 What is needed for Distributed, Collaborative Processing System.

The core objective of the COBRA project is an attempt towards understanding of the above mentioned vital issues, and providing workable solutions to the issues. In particular, the project intends to provide a set of automated support for achieving distributed, cooperative processing. The techniques we will adopt, and advance, include behavioral analysis, scenario analysis, and goal-oriented analysis. In the context of the new paradigm, the project will show how to:

● Make a smooth transition from micro-to-meso-to-macro-scopic architecture

● Develop software systems compositionally, in forward and reverse engineering

● The set of functional requirements on the enterprise include building a system behavioral model, non–functional requirements (hereafter, NFRs) include reliability, fast response, and adaptability.

● System functional requirements (hereafter SFRs) - provide model constructor, simulator, animator, concurrency, communication, negotiation support, consistency checker

● The tool set under development will assist in handling distributed, cooperative processing. To start with, it will offer basic utilities for:

(defining a system behavioral model (model constructor)

(simulator (scenario-driven) and animator

(constraint-based model validator

 Towards an enabling technology for the new paradigm, a number of functions will be offered for communication, coordination, integration and negotiation.

1.3 How Distributed, Collaborative Processing System can be constructed

 Research in the COBRA project involves studies at three levels of abstraction: i) the most general level of study about the paradigm, namely, distributed, cooperative achievement of shared goals; ii) distributed, cooperative modeling of system behavior using an Augmented Petri Net (hereafter, APN) formalism [14]; and iii) the most specific level of study of distributed, cooperative processing of a particular system behavior using an APN formalism. At the most general level, the COBRA tool will be used to model possible scenarios of the new paradigm: i) distributed (and centralized cooperation; ii) distributed and cooperative. Through these (meta-models of) scenarios as both a starting point and an aid for analysis, models of the paradigm will be built, analyzed and understood. This process will be repeated until a high level of confidence in the problem statement is reached.

One particular concern at this level lies in the modeling and analysis of distributed, cooperative, multimedia-based workflow. The result of this part of our research will help to understand how to make a smooth transition from the traditional GroupWare technology, which enforces more of fixed routes, rules and roles, to any enabling technology for the new distributed, cooperative processing paradigm, which should allow for more flexibility for the planning of routes, rules and roles, for the tracking of work progress, and for the adjustment of the old plan. It also identifies synchronization and concurrency control patterns.

As a test-bed, we are working on the modeling and analysis of system behavior using APN. APN is a formalism which is expressively more powerful than Finite State Machines [14]. Just like Petri Net, APN offers three modeling features, i.e., decision making, concurrency, and synchronization. However, APN is expressively more powerful conceptually than Petri Net, as it allows for general expressions to be associated with transitions as triggering/activation conditions (e.g., agent interaction, temporal events, internal events), and for various forms of actions to be associated with transitions as atomic transactions (e.g., agent interaction , temporal event generation, internal event generation - which bring about changes). Also a dynamic Pert (Program Evaluation Review Technique) Chart application will be implemented for project management and coordination based on APN. A Pert Chart is a project management tool used to schedule, organize, and coordinate tasks within a project (see section 6.2 for details on Pert Chart). Traditional Pert Chart representation lacks dynamic functionality to monitor project progress. A new conceptual approach for dynamic project planning and management tool to support for group collaboration is necessary to understand the nature of project and process

[23]. Dynamic project planning and monitoring can be achieved by incorporating the collaborative behavioral requirement and architecture system (hereafter COBRAS) APN simulation mechanism to Pert Chart concepts. Managing and planning projects dynamically will provide deeper understanding of the nature of the project and would result in more fruitful group interaction among participants.

The tool set will be implemented using Java/JavaBeans so as to enhance platform-independence, interoperability, composability (plug-and-play), and distributability. An incremental approach will be used in developing the tool set so as to have a running system throughout the project. Members of the COBRA project, as well as non-member practitioners in industry can play with the tool to debug deficiencies in both the problem statement and its solution. At the most specific level, the COBRA tool will be used to model the behavior of a variety of system types, including a mobile communication system. Hence, we will be using a three remote sites scenario for the particular system chosen to be modeled as presented in Chapter 5.

REQUIREMENTS

In order to achieve a smooth distributed collaboration, different dimensions of collaboration must be considered. We consider total collaboration and partial collaboration views as way to present the requirement for COBRA system.

Total collaboration: collaboration for both requirements engineering and architectural design.

Partial collaboration: some collaboration, and some distributed autonomy, for requirements elicitation, specification, validation, architectural componentization, architectural connection, architectural design verification, and collaborative integration if any distributed processing is involved.

The above two modes of collaboration can have several variants, and be combined. For example, a goal-oriented compositional requirements modeling would be a variant. Here, the starting point would be an overall understanding of the high-level objectives and goals to be achieved. Then, each local team may try to optimize system operations (involving various types of agents) at their own organizational units, and later put a concerted effort with other teams for a global optimization.

A goal-oriented compositional architectural design would be another variant. In this kind of architectural design, an architecture is built out of existing software components for most of which implemented systems are readily available [9]. The design process will still be goal-oriented in that the components are selected, possibly among competing alternatives located at multiple sites over the networks, according to the given requirements, which can possibly be modeled either distributively or collaboratively. One objective of this project is to investigate a flexible mechanism through which all modes of collaboration can easily be supported.

1.4 Functional requirement

Fundamental problems exist around the understanding of what ‘concept’ are shared, how they relate and what mechanisms should be adopted to allow systems to communicate and interoperate at all levels. The COBRA tool set under development will assist in handling distributed, cooperative processing. To start with, it will offer basic utilities for defining and validating (e.g., through animation and simulation) a system behavioral model. Towards an enabling technology for the new paradigm, a number of functions will be offered for:

Communication

(Both synchronous and asynchronous, both simple and more complex, both immediate

 and delayed, etc.

(Since asynchronous communication results in delayed communication synchronous

 communication is preferable whenever it is possible.

(Both simple and more complex communication methods. A simple communication may

 be desirable when communication is occurred on local area network with few

 participants where as a complex communication method must be considered for remote

 collaboration.

(Methods of communication between participating agents must be determined in advance

 to avoid communication conflict during collaboration. If an immediate interaction or

 response is desired, a synchronous communication mechanism must be presented

 where asynchronous method may be used for sending delayed messages.

(Different communication set-up mechanism must be considered. Centralized,

 distributed, hybrid with both centralized and distributed or with supervisor server for

 monitoring activities should be offered. For local communication a centralized system

 may be sufficient, where as for heavy collaboration between remote sites, distributed

 system is highly desirable.

Coordination

(Devise a plan who does what and when, check if everything done according to the plan,

 provide alternate action if any deviation from the plan, check for any defects, (if it

 exists ,rectify them).

(A plan must be developed in order to coordinate the agents efficiently. Rules on what

 should be done in certain conditions during collaboration is well defined and

 understood clearly by participating agents. The plan can be divided as primary fixed

 plan which can not be changed once the collaboration session begun and as flexible

 plan which can be changed by agents consensus during the collaboration session. Also a

 back up plan should exist in the case of original plan failure.

(Actions carried away must be checked periodically if they are executed according to the

 plan or not. A check point needs to be created during the session plan and agreed upon

 by participants how such situations should be handled.

(Check for any deviation that happens during the session, decide which agent to be

 notified first. What action should be taken in the case of original plan failure, and how

 soon the back up plan will be triggered should be known. In the case of critical

 deviation from the original plan, if the session will roll back to the previous state or it

 will be terminated must be stated clearly.

Integration

(Detect boundaries and differences between the models developed by different agents,

 negotiate if any inconsistencies are found, merge consistent parts.

(There are no universal rules to solve the above conflicts because they may happen at

 different situations and time during collaboration. Rather, an adaptability conflict

 resolution method should be used where a solution will provided depending on the

 present situation.

(Consistence parts should be merged together and categorized in a way that can be easily

 identified and accessible to participating agents. Consistence parts can be categorized

 as complete, on progress and pending for decision.

(Conflicts that may arise during collaborating session can be categorized as follows:

 1 Visual conflicts: can be caused between agents when drawing the same object in different sites in the same position. This visual conflict may not seem critical from single user point of view which does not require collaboration, however, it is critical when collaboration takes place between a group of users. During group collaboration an overlapping of drawing on the same space in different sites design space must not occur when sending and receiving work. How to display works done in different sites in the users design space must be considered carefully. The proximity of each object need to be communicated well to avoid any visual conflicts.
 2
Syntactic conflicts: can be caused between agents when naming the same object differently at other remote sites. To prevent the syntactic difference that can happen during group collaboration a clear definition must exist for objects that are used in the design space. Objects like arch, transition, place, etc., must be defined clearly so they can be parsed properly by the system to avoid syntactic conflicts.

 3
Semantic /context conflicts: can be caused between remote agents when interpreting the same object differently at remote sites. The semantic/conflict issues are crucial during group collaboration. For instance, for the user who joined collaboration in the middle of a session can be confused if the on going work is an architecture design or detailed design. Semantic issues like this need to be addressed carefully. Also firing conditions and constraints must be stated clearly to avoid any semantic/context conflict.

Negotiation
(Resolve inconsistencies through individual decisions and consensus. To resolve any inconsistencies during collaboration, a negotiation should take place. Depending on the situation an individual or a consensus decision can be reached by negotiations. A rule need to be established how to handle negotiations. For instance, giving an autonomous decision power to collaboration initiator or coordinator agent, or an adaptability method based on present situation should be defined clearly to resolve inconsistencies.

In order to provide the functionalities mentioned in the above requirement for the COBRA tool set, the following components are required.

Model Constructor = Place + Transition + Arc + Condition

GUI = Basic GUI + Utilities GUI

Basic GUI = + condition + loop + spline

Utilities GUI = Move+Drag+Scale(dynamic)+Rotate+

Compose/De-zoom+Customizer+Font(menu)+Color

Simulator = Scenario Driver + Event Gen. + Scheduler + Stat. Gen.

 Scenario Driver = UI Event Generator

Event Generator = Script Communicator + Temporal Trigger + UI + Other

Internal Event Generator

Scheduler = Queue Manager (Msg queue) + Transition Fire (currently,

Cyclic checking)

Statistics Generator:

­max/min/avg number of enabled, fireable and disabled transitions

during a time interval given.

­the most busy/idle states and transitions -> dynamic reachability

­max/min/avg delay time for transition firing (i.e., from enabled)

number of events per category (temporal, UI, Inter-system, Inter- Process,

Intra-system)

Given a scenario set, the Simulator constructs a simulation model through static

value assignment, which will be used as the initial state of the model and for

subsequent ones, and dynamic event generation, which will be used to reflect

the collaborative nature of inter-/intra- system interactions

Animator = Token flow + condition indicator + Mapper (Time+Scale)

The Animator visually displays the sequence of state transitions, which is

generated by the Simulator, in a most comprehensible and effective way.

This will involve mapping of the internal representation of event tables into

a conceptual, external representation. This will also involve visual

illustration of event generation and use (e.g., decrease in time delay, a

transition action and its triggering effect on transition conditions, message

transmission and reception).

Replay=Scenario + events

"replay": for both local and global actions (e.g., communication, group

discussions) Replay at the level of events: event (previous) mouse/key

movements/actions are replayed (hence minute-to-minute actions like a movie

replay) together with the following. This may, or may not, include replay of

even previous replay actions

­replay at the level of events excluding previous replays

­replay at the level of events including previous replays

­replay at the level of data: creation, deletion, movement, etc. of attributes of data

(e.g., token in a place, name of a place, name of a transition, etc)

­replay at the level of objects: only the result of the creation, deletion, movement,

 etc., hence a coarse-grained

­replay [modeling-process]←replay[modeling-process, at the level of events] OR

replay[modeling-process, at the level of data] OR

replay[modeling-process, at the level of objects]

replay[modeling-process, at the level of events] ←replay[modeling-

process, at the level of events, 1-level-only] OR

replay[modeling-process, at the level of events, nested-levels]

File Manager = File Save + Save as + File Load + File Print

The result of a session should be saved, loaded and printed. A file save

can be automatic at each time interval given and/or manual. This

module should deal with all the attributes of all the instances of all the

classes maintained at the time of File Save/Load. This concerns not

only the APN modeling aspects but collaborative aspects (e.g., status of

communication, coordination and negotiation) as well.

Configuration Manager = Version Controller (Undo, Time Stamp) + System composer

Version Controller

System Composer

A system model is the result of the composition of several

sub system models developed concurrently by the

participants.

Collaborator = Client-Server Communicator + Integrator + Negotiator

Client-Server Communicator = Initiator + Session Manager + Terminator

Integrator = Model Differentiator + Concurrency Controller + consistency

Manager

Negotiator = Proposal Tracker + Argumentation Supporter What and

how to display exchange of knowledge: E.g., one canvas for self, one for

each external source, and one for the integrated result, each with a

different color.

When and how to exchange knowledge: types of metadata, transmission

of metadata - one data at a time vs. a chunk at a time. E.g., merging a

state and a transition (color, radius, coordinate, length, thickness). The

whole model each time or only differentials. Message queue handler.

When and how to incorporate new knowledge: Compute model

differences, detect inconsistencies, merge compatible differences both

 internally and externally.

When and how to negotiate for coordination and conflict resolution:

Classify types of (potential) inconsistencies, protocols for negotiation and

resolution. Even process definitions. Classify modes of negotiation - e.g.,

broadcast, one- to- one. Allow for recording justifications leading to

consensus. Keep track of what has been resolved and what not.

Tutor = models + scenarios + Simulator + Animator

possibly uses pre-defined behavioral models and typical sequences of

interactions (user-system, system-system, process-process) to help learning,

uses Simulator to populate instances and event generations, and uses

Animator to illustrate system behavior.

Features of Tutor include:

"interactive": Tutor acts as a critique. for both local and global actions

"help": context-sensitive in-place display of simple menu description and

more complex explanation.

1.4.1. [image: image4.wmf]

Sockets

RPCS

Parameter

types

RMI

HTTP

S-HTTP

SSL

OLE/

DCOM

Number of

interfaces

ORBS

Number of

parameters

COBRAS

 Architecture for Interaction

Primitive

data

Events

Objects

 Unified modeling language diagrams

Figure 3.1 Usecase diagram for COBRAS

In the above UML (Unified Modeling Language) [4] usecase diagram figure 3.1, we attempt to present a scenario of COBRA system for three remote sites. A site 1 participant initiates a collaboration session by sending request to the coordinator site 2 participant. The coordinator in return sends out a collaboration invitation for required participants in site 3. After the coordinator

confirms the response of all the participant sites and all rules are agreed upon, it sends begin collaboration message to all participants. The coordinator is responsible for facilitating the collaboration by monitoring and resolving any issues that need decisions. As shown in the diagram, a site user can work on selected applications either Petri Net for simulating a behavior of a system or Pert Chart for project planning and management. Users work on the private window and send their work to other users by using the broadcast functionality which displays works on the public window or the automatic broadcasting mode which could be set at the beginning. Remote users can reload this broadcast work from public window to private window either to modify or simply view it. When the initiator wants to terminate the session, notification is sent to the coordinator who then terminates the collaboration session after confirming a work completion response from all participants.

The messages that pass between the collaboration initiator, coordinator are shown in the sequence diagram figure 3.2. Messages will be sent back and forth between remote sites and the coordinator. The initiator requests a collaboration session by sending a request message to the coordinator. This message may contain list of participants, rules of collaboration and any other necessary information. Based on the request, the coordinator announces a request for collaboration session. Meanwhile the coordinator prepares schedule and work criteria based on the initators request. When an acceptance response is received from remote sites by the coordinator, he or she will announce the starting of the collaboration session. If conflicts arise during collaboration, the coordinator will negotiate and resolve conflicts either from preset rules or by consensus using adaptive method. Upon the initiator sending a message for end of collaboration, the coordinator will request the consensus for work completion from participants, once a confirmation is received by the coordinator, he or she will terminate the collaboration session.

[image: image1.wmf] Site 1

initiator

Site 2

coordinator

Site 3

participant

1.1: Request collaboration session

1.2: Announce collaboration request

1.3: Prepare preliminary schedule & work criteria

2.1: Accept collaboration

3.2: Start collaboration

3.1: Start collaboration

Site 1 user send

a request for

collaboartion

session and to

end it to the

cordinator

4: Negotiate & resolve conflicts

5.1 Request end session

5.2 Get consensus on work completion

6: Work completed

7: End collaboration session

Site 2 user is a

participant and acts

also as a

coordinator

Sit 3 user is

a participant

Figure 3.2 Sequence diagram for COBRAS

A user’s activity in the COBRA’s system is shown in figure 3.3 an activity diagram. Activities that happen during three phases of collaboration are shown. At the beginning before collaboration phase, user chooses which application he or she wants to run. Either an APN or Pert Chart application can be selected. Then a user may wish to work individually or join collaboration session with other users. In the case where user chooses to work individually at the beginning and decide to join collaboration session, he or she may do so by making a request to join the collaboration session. During collaboration phase, a user may receive and send work from other remote site users. A user can request for termination of the collaboration session at any time.

[image: image5.wmf]Machine 1 Client/server

Machine 3 Client

Machine 3 Client/server

Communication Set-up option 1 -Distributed system set-up for Client/server direct point-to-point

communication

Machine 1 Client

Machine 2 Client

Communication Set-up option 2 -Centralized system set-up for Client/server communication

through central server

Machine 2 Client/

server

Machine 1 Client/server

Machine 3 Client/server

Communication Set-up option 4 - Distributed system set-up for Client/server with

Supervisor Machine to Monitor activities

Machine 2 Client/server

Supervisor

 Machine

Machine 1 Client/server

 Machine 3 Client/server

Communication Set-up option 3 - Hybrid system set-up for Client/server both direct point-to-point

and distributed communication through central server

Machine 2 Client/server

Central Server

Central

Server

Figure 3.3 Activity diagram for COBRAS

[image: image6.wmf]Type1[Topic1]

Type1[Topic2]

Type1[Topic3]

Type1[Topic2_1]

Type1[Topic2_2]

Type1[Topic3_1]

Type1[Topic3_2]

Figure 3.4 Class diagram for COBRAS

[image: image7.wmf]Type1[Topic1]

Type2[Topic1]

Type3[Topic1]

Type2_1[Topic1]

Type2_2[Topic1]

Type3_1[Topic1]

Type3_2[Topic1]

Figure 3.5 Class diagram for COBRAS

[image: image8.wmf] COBRAS Platform

COBRAS Application

COBRAS Panel

Communication

AddActionListner

AddActionListner

AddActionListner

AddActionListner

AddActionListner

File Menu

N

ew

O

pen

C

lose

S

ave

P

rint

E

xit

Insert Menu

P

lace

T

ransition

A

rch

T

oken

Edit Menu

E

dit

D

elete

C

lear

G

roup

R

egroup

Tool Menu

M

ove

D

rag

S

et delay

F

ire

R

eplay

S

imulate

C

onnect Menu

C

onnect

D

isconnect

Supervisor Server

Distributed Database server

Register

Database

connection

COBRA Site 2 Machine

Database

2

Database

connection

Register

Direct point-to-point

connection for

COBRA system sites

Database

1

COBRA Site 1 Machine

Note: The menus presented on this diagram are not complete menu for COBRA system, the menu

are shown to demonstrate the event based implicit invocation part of COBRAS architecture. For

complete menu listing, please see appendix B COBRA tool user guide.

Figure 3.6 Class diagram for COBRAS

In the three class diagrams Figures 3.4, 3.5 and 3.6 we attempt to represent the structural logical view of the COBRA system by defining main classes and methods. These diagrams define a class for GUI, communication, coordination, animation, simulation and for integration mechanism. Classes for manipulating GUI and classes Petei Net and Pert Chart objects Place, Arch, Transition, Node, Cycle are defined. Division of responsibilities between the objects is based on functionality. The CobraFrame and CobraPanel classes are responsible fro the GUI portions of the application. These two classes implement the appropriate event listeners so that the application responds to ensure interactions.

The individual objects that comprise a Petri Net diagram, Places, Archs, and Transitions are each implemented as and individual class. Each class keeps information about its position, size, current state and adjacent Petri Net objects. These classes also provide services that are relevant to each type of object. Example of such services include the ability to draw the object to determine if a point lies within and object. The ICommon interface provides a common interface for these classes.

The PetriNet class serves as a container class. It keeps track of all the objects (places, arcs, and transitions) that comprise the PetriNet diagram. But, they do not necessarily know about the existence of all the objects in the PetriNet diagram. In addition the PertiNet class maintains references to all the individual objects in the diagram. The PetriNet class also keeps track of the GUI events that were generated by the user. The PetriNet class also provides method relating to the modification, selection, grouping, drawing and animation of Petri Net diagram objects.

The communication related classes Connection, ComUti, CommMode, serverSetupMode, server will be used for implementing an efficient communication mechanism, as shown in figure 3.4 class diagram. Functionalities such as concurrency control, consistency checking negotiation for proposal will be addressed by Integrator and Negotiator classes. Also the class ConnectDb facilitates a database connection for both local and remote sessions.

[image: image9.wmf]

Interactions

Styles

 Constraints

Rationale

COBRAS Model of

Software

 Architecture

Components

Patterns

Figure 3.7 Object diagram for COBRAS

In the above object diagram figure 3.7, we attempt to present a structure of object for displaying simulation on the screen. After the user created Places with token that are connected with Arch that contains Transition , a simulation can be executed by moving a token from one Place to another Place on the Arch. The diagram shows an object structure for different classes that are involved for performing simulation. The CobraFrame will pass the menu selected from the user in this case “simulate” to PetriNet in return that invokes the necessary objects of Place, Arch and Transition.

[image: image10.wmf]

COBRAS

Hybrid Architecture for Rationale

Performance [COBRAS]

Replacebility

[COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Adaptability[COBRAS]

Comprehensibility

[COBRAS]

Testability

[COBRAS]

Maintainability[COBRAS]

Adaptability

[COBRAS]

Secuirty[COBRAS]

Security

[COBRAS]

Figure 3.8 Collaboration diagram for COBRAS

In the collaboration diagram figure 3.8, a collaboration model for inserting Arch is shown. When the user selects Insert then Arch, the activities shown in the collaboration diagram will take place. The CobrFrame will pass the selected action to insert an Arch to PetriNet. Then the PetriNet class will intereact with ICommon class and Arch classes to insert Arch on the design space clicked by the user.

[image: image11.wmf]

GUI

Integrator

 Client-server

communicator

Negotiator

Repository

Animator

Simulator

COBRAS

 Architectural Component

Replay

Objects

Data

Events

Static

generator

Scenario

Driver

Event

Generator

Utility

GUI

Mapper

Basic

GUI

Condition

indicator

Time

Scale

Single-

level

only

Nested

levels

Distrbu

ited

Center

alized

Concu

rency

control

erl

Consist

ancy

manage

r

Prop

osal

track

er

Argu

ment

ation

supp

orter

Session

manager

Initia

tor

Termi

nator

Figure 3.9 Component diagram for COBRAS

 In the component diagram figure 3.9, a component view of COBRA system with built in Java components are shown. Many of the COBRAS components take the advantage of built in Java classes and interfaces. For instance the GUI component is handled by built in Java GUI event handling interfaces. A user generates event by selecting menu options and using the mouse to interact with the panel. To accomplish the functionality, Java follows a delegation event model of event handling. A component registers to event handler object that it wants to use to process events of certain type. When the user interacts with the application, an even is generated.

 Figure 3.10 shows a deployment diagram for simple deployment of COBRA system for three remote sites. The three nodes shown as client/server machine 1, machine 2 and machine 3 represent a three remote site machines that run COBRA system. A communication setup between these three sites can be done in four different ways. Each site’s machine can act as a full client/server and make point-to-point connection, or they can act as clients only and use a centralized sever, or they can have both point-to-point and centralized setup, and finally they can choose to add a supervisor server which performs registration and monitoring functionality for efficient collaboration. Also the client/server machines can be connect to database server.

[image: image12.wmf]

or ++ Strongly Positive Satisficing

or + Positive Satisficing

or - Negative Satisficing

or -- Strongly Negative Satisficing

Symbols for different degrees of Satisficing.

Small normal shadow represents NFRs.

Small dotted shadow represents the NFR under consideration for

Rational.

Bolded shadow represents an Architecture or elements for Architecture alternatives.

!

Exclamation symbol shows priorities among NFR types that are considered in the SIG

graph. Prioirtiy decreasing in ascending order.

Indicates an AND decomposition.

Indicates an Exclusive OR decomposition unless otherwise indicated.

*

Min

 Abbreviation used for Minimize.

Max

 Abbreviation used for Maximize.

Figure 3.10 Deployment diagram for COBRAS

1.5 Non-Functional Requirements

The non-functional requirements are also an important aspect as the functional requirement for any software system. The tool set will use the NFR Assistant tool to define vital "-ilities" for realizing the new paradigm, to investigate methods for achieving them, to built them into the new process, and to validate during operation that they are indeed met. Using the NFR Assistant tool to analyze the quality of the general distributed, cooperative process model, improve it, and make it amenable to customization for the modeling of the particular types of processes.

Decomposition of "-Ilities"

 (Performance

 (Time

 (minimize processing time

 (minimize communication time

 (minimize data access time

 (minimize data update/storage time

 (Storage
 (minimize duplication

 (minimize extra information

 (Maintainability

 (Comprehensibility

 (maximize functional independence

 (maximize cohesion

 (minimize coupling

 (maximize the use of widely-known techniques

 (optimize the size of each component

 (Replaceability

 (minimize coupling

 (minimize data sharing

 (minimize control sharing

 (minimize domain assumptions

 (Testability

 (maximize validatability

 (maximize simulation support

 (maximize animation support

 (maximize consistency-checking

 (maximize integration testability

 (minimize nesting

 (maximize functional independence

 (Adaptability

 (maximize analyzability of impact from changes

 (maximize openness

 (offer several similar components (a la genetic evolution)

 (Security

 (minimize data sharing

 (minimize the number of parameters

 (minimize frequency of communication

 (minimize set-valued parameters and returns

Each architectural choice can make either positive or negative contributions towards the satisfying of non-functional requirements (NFRs). There are two cases:

1 Some architectural components are there specifically for the purpose of satisfying

 particular kinds of NFRs (e.g., an indexing scheme to improve time performance, an

 authorization scheme to improve security, a simulation component to held understand

 the requirements, a tutoring component to improve learnability, etc.); and

2 A functional mapping can be evaluated against NFRs.

For the NFRs outlined above, the NFR framework will be used to evaluate if a particular architecture or component satisfy the given NFR. As shown in softgoal-interdependency graph (hereafter, SIG) diagram in section 4.4, model of software architecture constituents such as components, interactions, constraints, patterns and styles are mapped to the NFR softgoal to be satisficed. These NFRs will be used as the selection criteria based on the degree of satisfying they offer for determining the best architecture.
ARCHITECTURE DESIGN

A well thought good software architecture design has always been a major factor in determining the success of software system. Determining the appropriate software architecture during the design phase can avoid disasters that can arise during the implementation or on later phase of the software system. A wrong architecture may result in producing inaccurate software product or prevail to be non-extensible during maintenance phase [3]. Especially a complex GroupWare software systems like COBRA, which is intended for, distributed cooperative processing, needs to have more emphasizes in the software architecture than a simple centralized processing systems. Choosing carefully the right architecture for distributed cooperative processing can be quite challenging due to the difficult issues involved. In this distributed system, a number of computers or workstations are distributed physically and connected through communications network to perform processing by sharing resources. Efficient communication methods, concurrency control, resource sharing, and other issues must be considered closely before an architecture decision is made.

Client/server architecture provides a framework for the design of loosely coupled network-based applications [6]. It becomes the ultimate medium for sharing resources and collaboration. Client/server GroupWare applications like Lotus Note are becoming more popular where it changes the way people communicate and do business collaborating effectively, thus maximizing profits for business. The web client/server is also playing a big role in the e-commerce technology for Business-to-Business application where businesses collaborate successfully to produce a good product and satisfy customers. The ideal client/server software is independent of hardware or operating system platform. Also the location of clients and servers are usually transparent to the user, server and client may interchange they roles. In addition a good client server system can be vertically and horizontally scalable, thus allowing adding or removing of client work stations with only a slight performance impact.

Indeed, the COBRA tool set can benefit greatly by using the client-server architecture. The COBRA tool set contains several components such as GUI , Simulator, Animator, Integrator, Negotiator, Client-Server Communicator and Repository components. In order to accommodate all the functionality of COBRA for these components, a hybrid client/server architecture approach is necessary. Therefore, for efficient communications, concurrent processing, repository , and user friendly graphical user interface, different kinds of client-server architectures will be used.

[image: image2.wmf]COBRA Client-Server

System

Integrator

Simulator

GUI

Animator

Replay

Negotiator

Repository

Client-sever

communicator

Symbols used:

- Shadow eclipse represents the COBRA system as a client-server.

- Cleared eclipse represents main components for COBRA system.

Figure 4.1 High level Client/Server architecture model for COBRAS

[image: image13.wmf]

Layered

Shared

 Data

Object

oriented

Blackboard

Implicit

Invocation

Pipe&

Filter

Control

loop

Shared

Information

Client/

Server

COBRAS

Hybrid Architecture for Styles

Batch

Sequential

Simple

repository

Hierarchica

l

layers

 Virtual

 repository

Client/

server

with file

servers

Client/

server

with

database

Client/

server

withTP

Client/

server

GroupWare

Client/

server

Web

Client/

server

distributed

objects

Whiteboard

Implicit

listening

Implicit

announcement

Implicit

registration

Implicit

de-

registration

Implicit

triggering

Implicit

event

declaration

Figure 4.2 Detail Client/Server architecture model for COBRAS

1.6 COBRA System components

4.1.1. GUI component

This component will provide a menu driven graphical user interface for the COBRA tool. It provides a workspace for drawing and simulating Petri Net and Pert Chart. It also offers a communication interface to collaborate with other users. The GUI can be implemented by using deferent methods such as object oriented, non-object oriented, passive and active methods. Implicit Invocation method is used to handle events preformed by the user.

4.1.1.1 Object oriented method

The object oriented is a very efficient method but not easy to implement. It allows for great extensibility but not overlapping objects to save response time is very essential.

OLE/COM

This object linking and embedding method is an object based framework. A container application displays components objects from multiple applications. The containers menu changes according to the user’s selection of a component object to allow the user to edit the object using the component application’s operations. But it is only restricted to a single user and machine.

4.1.1.2 Non-object oriented method

The non-object oriented method is easy to implement. But it is difficult to extend and can be

 complex as the system size grows. It also requires a high maintenance effort and luck of easy understandability compared to object oriented method.

Passive method

This method is easy to implement and doesn’t require any processing overhead.

Active method

This method can be implemented in different ways. Active method can be either event driven or monitor based.

Event driven active method

The event driven method is based on events that happen during user interaction. This Mechanism is a very efficient and widely used. An event listener is used to execute a command based on the users action. Since actions happen only if there is an event requested from the user it saves any processing overhead.

Monitor based active method

The monitor based method is based on constantly monitoring the system regardless of user interaction. This mechanism suffers from process overhead due to monitoring of the system all the time.

4.1.2. Client-Server communicator

Several kinds of communication mechanisms can be used in the client-server architecture depending in the system requirement. Communication mechanisms sockets, RPCs (remote procedure calls) MOM (message-oriented Middleware) and ORBS (object request broker) are few examples.

4.1.2.1 Client-Server communicator primitives

Sockets

Sockets are easy to implement and are useful for simple communication where no big amount of data transfer is required. Using sockets, data are transferred back and forth redundantly. But this can cause an easy bottleneck for COBRA tool set when an enormous amount of data is transferred between sites.

RPCS

A remote procedure calls communication mechanism offers a transparent mechanism to give the client procedure an illusion that it is making a direct call on the distant server procedure. Using several steps a message will be sent back and forth between a client and server to be packed and unpacked. RPC provide only synchronous services.

RMI

A remote procedure call communication mechanism offers similar functionality of RPCs. But unlike RPC, RMI provides both synchronous and asynchronous services
ORBS/MOM

Object request broker (ORB) middleware interface offers dynamic invocation interface. A message oriented middleware (MOM) communication system, uses many-to-many messaging mechanism via queues. Messages can arrive in any order or queue.

4.1.2.2 Client-Server communicator broadcast mode

There are different ways to send data from one site to another site. A data can be sent using batch or incremental mode.

Batch mode

The batch-processing mode is easy for implementation and can be used if the data need to be broadcast is very small amount. However, if the data need to be transfer is a large amount and it is transferred frequently, the batch mode is not efficient causing a communication bottleneck easily.

Incremental mode

The incremental mode of data transfer is not easy to implement but can be used to transfer any amount of data efficiently between sites. When data is transferred from one site to another only the changed part is transferred, thus making data transfer efficient and avoiding any communication bottle neck that could be caused by batch mode.
4.1.2.3 Client-server communication setup

The communication channels can be setup in different ways as it is shown in figure 4.3. It can be setup as centralized, distributed, hybrid both centralized and distributed or supervisor server. Each of these setup have different advantages and disadvantageous.

Centralized setup

The centralized setup is easy to setup, manage and maintain. It can be efficient for small number of networks. But it suffers from recovery point of view that if the main server is down communication can not take place between any node-connected networks. This centralized system is economically feasible if only small networks are needed to connect and the application running is not crucial.

Distributed setup

The distributed setup is not easy to setup, manage and maintain as the centralized system. nodes across the network are distributive connect, thus a failure of one system doesn’t affect the whole network as centralized system. Any number of nodes can be connected, however as the number of connection increases so is the task of maintaining the network. The distributed system is an ideal setup for systems that run crucial applications.

Hybrid- centralized and distributed

This setup allows for the sites to connect using both centralized and distributed mode thus giving the network more setup options, however it will be complex and difficult to maintain.

Supervisor server

This setup provides a supervisor server machine to monitor all client-server activities.
Figure 4.3 Client/Server Communication setup model for COBRAS [image: image14.wmf]

Parallel

Sequential

Manhattan

Ring

Star

COBRAS

 Architecture for Patterns

4.1.3 Negotiator component

A negotiation mechanism is essential for smooth and successful collaboration. The negotiator mechanism is used to solve issues like consistency and conflict during collaboration. The negotiator can use any of the two mechanism of adaptable or rule based.

Rule based

Rule based negotiation mechanism is straightforward and easy to implement. A set of rules can be defined before a collaboration session, these rules can be applied to resolve any conflict or consistency that may arise during collaboration. This method results in fast response of negotiation since all it has to do is act according to the predefined rules. However, this method suffers from flexibility, the predefined rules may not accommodate all the unforeseen problems causing the application to be too restrictive.

Adaptive method
An adaptive negotiation mechanism is not easy to implement and can cause processing overhead. The adaptive system should be intelligent enough to recognize any conflicts or consistency and based on the current situation it offers a solution by adapting the existing situation. This method can be complex and causes delay in decision, however it allows for high flexibility which is a very desirable feature for collaboration session.

4.1.4 Integrator component

An integrator mechanism is essential for works that can be done individually or collaboratively. The integrator mechanism must assure to integrate consistence parts and resolve any issues that can be caused during integration. Any of the two mechanisms either integrating incrementally or by batch at the end of work can be used.

Batch integration

The batch integration is easy and straightforward implementation. Jobs done at the end will be integrated to the previous jobs. This method suffers from loosing of work done in between. An essential part of project can be lost before it has a chance to be integrated with previous work.

Incremental integration

The incremental integration is not easy to implement and can cause processing overhead. Jobs done will be integrated periodically to the previous job. Every time an integration is done consistency checking also will be performed thus causing processing overhead. However, using this method will avoid any loose of jobs finished which waits to be integrated as a batch in the case of an unexpected application termination.

4.1 5. Repository component

This repository component provides repository functionality for the work done during collaboration as well as at the end of collaboration. A snapshot versioning mechanism needs to be provided to save work during collaboration for recovery purpose. Also version control mechanism will be implemented to record changes, to provide security and to enhance workflow. A regular client server database server offers a good functionality for serving highly structured data. However, for COBRA tool set data is unstructured and are in the form of objects. Therefore another database mechanism must be used for storing objects used in the COBRA tool. Metamodeling technology [16] where data represented in terms of a higher-level model than hard-coded schema will be used. The key benefit of the metamodeling approach is that allows different kinds of data models to be defined flexibly and dynamically in terms of metamodel, this metamodel architecture allows different kinds of concrete data models to be created dynamically. An ORP metamodel in which things in the repository are represented in terms of basic concepts as Objects, Relations and Properties will be used. Objects represent concepts and things in the problem domain COBRAS specific design diagram places, tokens, arcs, transitions and so on. Relations are named, bi-directional connections between objects that can represent various relationships between objects. Properties (attributes) hold further information about the object and relations. An object-oriented database repository, which uses metamodeling technology, will be used.

Centralized repository

The centralized repository method is easy to implement and maintain. However, it suffers from processing bottleneck and slow recovery system. In the case of a centralized database failure an activity might stop until a back up database is up and running.

Distributed repository

The distributed repository method is not is easy to implement and maintain. However, for a large complex system where applications are done in different remote sites, this system is an ideal method. The main challenge in this distributed repository system is to keep all databases updated consistently without performance degrade.

Virtual repository

The virtual repository method is not easy to implement and maintain. Heterogeneous databases are distributed and often transparent to the users. This method allows to combine multiple distributed different schemas. It communicates results across distributed systems and reconcile representation differences. During schema integration, if imported schema are consistent, simple merging is done. To the users the integrated schema acts as the virtual database. This is an ideal method for distributed systems where applications run in many remote sites.
1.7 The NFR framework for COBRA Architecture

For any software system, quality plays a significant role. Producing an efficient software system without compromising the quality remains to be a challenge for many application domains. In part, it is because the systems non-function requirements are not clearly understood. Often developers encounter significant instance of missing incorrect, or inconsistent requirements and the inability to trace requirements in to components of design and testing [1]. Also a current common practice to non-functional requirements (accuracy, performance, security, etc.) often considered late in the development process or pursued parallel by separately from functional design. These practices tend to result in system which can not be accredited, are more costly and less trustworthy.

This initiates the need for systematic framework to evaluate and validate non-functional requirements efficiently well in advance during design phase. A quality process oriented approach which focuses on non-functional requirements will be used to derive the process of generating quality software. The NFR framework can be used as a media for communication and planning requirements to design implementation. Also it provides a semi-formal representation and systematic development process, with additional benefits of deciding rational [10].

A particular NFR for example, Performance can be analyzed using the NFR framework for the system to be built. Performance can be further decomposed in to its constituent NFRs such as Time, Space and so on. After decomposing a particular NFRs to the lowest level , their impact can be easily identified and prioritized by mapping them to the system components to be built. This also provides a means for mapping an architecture alternative for each architectural element to specific softgoal of NFRs in the softgoal-interdependency graph. Different kinds of decomposition methods can be used to address the NFRs. Vertical as well as horizontal decomposing methods can be done in many levels to satisfy the system to be built. Below we present different possibility of decomposition for expressing NFRs for a particular system to be built. The convention Topic[Type] is used as the main level. Topic refers to NFRs (eg. Performance) and Type refers to some part of the system to be built for example COBRA system presented in this thesis.

 Ex. Type[Topic]== Performance[COBRAS]

There are different ways of decomposition either for NFR Types or for system to be built under Topics. The decomposition will be applied iteratively in both Type and Topic until both are satisfied. Below we attempt to state different methods of decomposition.

 Type1[Topic1](Type1[Topic1, Topic2]

Figure 4.4 Horizontal Topic decomposition

In the above first possibility of decomposition figure 4.4, a particular NFR Type can apply to many Topics of a system further even considering subsystem and components. For instance an NFR like Performance applies to COBRA system at the highest level for the whole system. In more detailed level this Performance can also apply to different components of COBRAS such as GUI, Repository etc. with different priority levels.

[image: image15.wmf]

Batch

Incremental

Centralized

Distributed

Concurrent

Sequential

COBRAS

 Architecture for Constraint

Hybrid-

Centeralized

& Distributed

Distribute

d with

superviso

r

Constraint

on

components

Constraint

 on

Interactions

Constraint

on

Patterns

Constraint

on

Styles

Figure 4.5 Type decomposition

 Figure 4.5 shows Type decomposition. At higher level a general Type can be applied to particular Topic. For instance a high level NFR Type Performance can be applied to COBRA system. In more detailed level the Performance NFR then can be decomposed to more detail subtypes of NFRs for the system shown as Topic. Decomposition of Performance to more detail level yields to subtype NFRs such as Time, Space and etc. This decomposition of NFRs subtype can be done as many levels as needed.

[image: image16.wmf]

Performance [COBRAS]

Min processing

time

[COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Coordination]

Min extra

information

[COBRAS]

Min

coupling

[COBRAS]

Min extra

information

[Integration]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[Coordination]

Min processing

time

[Negotiation]

Min processing

time

[Integration]

Min communication

time

[Communication]

Min

coupling

[Coordination]

Min

coupling

[Negotiation]

Min processing

time

[Visual conflicts]

Min processing

time

[Syntactic

conflicts]

Min processing

time

[Semantic/ context

conflicts]

!

!!

!!

!!

!!

!

Layered

Shared

 Data

Object

oriented

Blackboard

Implicit

Invocation

Pipe&

Filter

Control

loop

Shared

Information

Client/

Server

COBRAS

 Architecture for Styles

Batch

Sequential

Simple

repository

Hierarchical

layers

 Virtual

 repository

Client/

server

with file

servers

Client/

server

with

database

Client/

server

withTP

Client/

server

GroupWare

Client/

server

Web

Client/

server

distributed

objects

Whiteboard

!!

!!

!!

!!

!!

!!

!!

Note: In this diagram, Batch sequential, Simple repository, Virtual repositry and Hieracrchical layers architecture styles are

considered as decision points.

*1

*2

++

++

+

--

+

-

Figure 4.6 Topic decomposition

In the above diagram figure 4.6, we decompose the Topic for a particular NFRs. An NFR Performance can be applied to COBRA system at the highest level. On more detailed level Performance applies to COBRA system components like GUI, Repository and etc. This component can be decomposed further to subcomponents. This allow us to see how a particular NFR like Performance can apply to all part of the system by addressing the desired components for NFRs. The decomposition of Topic can be done as many levels as needed.

By applying any of the three or combination of the above three methods of NFR framework, an NFR can be decomposed to any level. Also a Topic can be decomposed to lowest level to address the NFR in question, thus providing a clear mapping of which Type NFR is needed to satisfy a component and subcomponent of a system. After clearly defining the NFRs component relationship, an architecture alternatives to select the best architecture based on the rational that will be generated from these relationships [5].

1.8 Softgoal Interdependency Graph

[image: image17.wmf]

Performance [COBRAS]

Min processing

time

[COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Coordination]

Min extra

information

[COBRAS]

Min

coupling

[COBRAS]

Min extra

information

[Integration]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[Coordination]

Min processing

time

[Negotiation]

Min processing

time

[Integration]

Min communication

time

[Communication]

Min

coupling

[Coordination]

Min

coupling

[Negotiation]

Min

duplication

[Visual

conflicts]

Min

duplication

[Syntactic

conflicts

]

Min

duplication

[Semantic/

context

conflicts]

!!

!

!!

!!

!!

Layered

Shared

 Data

Object

oriented

Blackboard

Implicit

Invocation

Pipe&

Filter

Control

loop

Shared

Information

Client/

Server

COBRAS

 Architecture for Styles

Batch

Sequential

Simple

repository

Hierarchical

layers

 Virtual

 repository

Client/

server

with file

servers

Client/

server

with

database

Client/

server

withTP

Client/

server

GroupWare

Client/

server

Web

Client/

server

distributed

objects

Whiteboard

!!

Note: In this diagram, Client/server with file servers, Client/server with database, Client/server with TP, Client/server GroupWare, Client/server

Web and Client/server distributed objects styles are considered as decision points.

!!!

!!!

!!!

!!!

!!!

!!

!!

*1

*2

*3

*5

*6

*4

++

++

++

+

+

--

+

+

+

-

-

-

Figure 4.7 Legend for SIG

[image: image18.wmf]

Performance [COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Negotiaton]

Min

coupling

[COBRAS]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[User intereaction]

Min processing

time

[Simulation]

Min communication

time

[client -server

Communicator]

Min

coupling

[Coordination]

Min

coupling

[Negotiation]

!

!

!

!

!!

!!

!!

!

!

!

Min processing

time

[COBRAS]

Min extra

information

[COBRAS]

Min extra

information

[Integration]

Min processing

time

[Animation]

GUI

Integrator

 Client-server

communicator

Negotiator

Repository

Animator

Simulator

COBRAS

 Architectural Component

Replay

Objects

Data

Events

Static

generator

Scenario

Driver

Event

Generator

Utility

GUI

Mapper

Basic

GUI

Condition

indicator

Time

Scale

Single-

level only

Nested

levels

Distrbui

ted

Center

alized

Concu

rency

control

erl

Consist

ancy

manage

r

Prop

osal

track

er

Argu

ment

ation

supp

orter

Session

manager

Initia

tor

Termi

nator

++

++

++

++

++

++

++

++

Figure 4.8 High Level Model of Software Architecture

Figure 4.8 shows an AND decomposition of high level model of software architecture. Each of the constituents components, styles, interactions, constraints, patterns and rational will have different impact on the architecture. Styles refer to architectural styles such as object-oriented, client-server etc. Components address the components of a system to be built such as GUI, repository and so on for COBRA system. Interactions refers to connections and relationships in the system. Constraints is a constraint imposed one way another on the system due to functionality. Patterns is the kind of setup that can be used for COBRAS client/server network. Rational is a tradeoff analysis for choosing a particular architecture by mapping the NFRs to the above decomposed constituents for design alternative. A detailed level decomposition for each of the decomposed constituents of high level model for COBRA system is provided in subsequent diagrams.

Figure 4.9 COBRAS Architectural Style Alternatives

[image: image19.wmf]

Sockets

RPCS

Parameter

types

RMI

HTTP

S-HTTP

SSL

OLE/

DCOM

Number of

interfaces

ORBS

Number of

parameters

COBRAS

 Architecture for Interaction

Primitive

data

Events

Objects

Performance [COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Coordination]

Min

coupling

[COBRAS]

Min extra

information

[Integration]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[Negotation]

Min processing

time

[Integration]

Min communication

time

[Communication]

Min

coupling

[Coordination]

Min

coupling

[Negotation]

Min

duplication

[Visual

conflicts]

Min

duplication

[Syntactic

conflicts

]

Min

duplication

[Semantic/

context

conflicts]

!!

!

!!

!!

!!

Min extra

information

[COBRAS]

Min processing

time

[COBRAS]

!!

!!

!!

!!

!!

!!

Min processing

time

[Coordination]

!!

*1

*2

*3

++

++

+

-

--

+

-

-

[image: image20.wmf]

Batch

Incremental

Centralized

Distributed

Concurrent

Sequential

COBRAS

 Architecture for Constraint

Hybrid-

Centeralized

& Distributed

Distributed

with

supervisor

Constraint

on

components

Constraint

 on

Interactions

Constraint

on

Patterns

Constraint

on

Styles

Performance [COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Communication]

Min

coupling

[COBRAS]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[Negotation]

Min processing

time

[Integration]

Min communication

time

[Communication

setup]

Min

coupling

[Coordination]

Min

coupling

[Negotation]

!!

!

!

!!

!!

!!

!

Min processing

time

[COBRAS]

Min extra

information

[COBRAS]

Min extra

information

[Integration]

Min processing

time

[Coordination]

!!

!!

!!

*1

*2

*5

*3

*4

--

++

++

++

-

-

+

+

-

-

+

+

-

Figure 4.10 COBRAS Architectural Components

Figure 4.11 COBRAS Architectural Interaction Alternatives

[image: image21.wmf]

Parallel

Sequential

Manhattan

Ring

Star

COBRAS

Architecture for Patterns

Performance [COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Coordination]

Min

coupling

[COBRAS]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[Negotiation]

Min processing

time

[Integration]

Min communication

time

[Communication]

Min

coupling

[Coordination]

Min

coupling

[Client nodes]

!!

!!

!

!!

Min processing

time

[COBRAS]

Min processing

time

[Coordination]

Min extra

information

[Integration]

!!

!!

!!

!!

!!

!!

*2

*1

Min extra

information

[COBRAS]

++

++

+

-

--

-

+

[image: image22.wmf]

Performance [COBRAS]

Min processing

time

[COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Coordination]

Min extra

information

[COBRAS]

Min

coupling

[COBRAS]

Min extra

information

[Integration]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[Coordination]

Min processing

time

[Negotiation]

Min processing

time

[Integration]

Min communication

time

[Communication]

Min

coupling

[Coordination]

Min

coupling

[Negotiation]

Min processing

time

[Visual conflicts]

Min processing

time

[Syntactic

conflicts]

Min processing

time

[Semantic/ context

conflicts]

Min

duplication

[Visual

conflicts]

Min

duplication

[Syntactic

conflicts

]

Min

duplication

[Semantic/

context

conflicts]

!

!!

!!

!!

!!

!

Note: In this diagram, Shared data, Object oriented, Implicit invocation, Pipe& filter, Layerd and Control loop architecture

styles are considered as decision points.

Layered

Shared

 Data

Object

oriented

Blackboard

Implicit

Invocation

Pipe&

Filter

Control

loop

Shared

Information

Client/

Server

COBRAS

 Architecture for Styles

Batch

Sequential

Simple

repository

Hierarchical

layers

 Virtual

 repository

Client/

server

with file

servers

Client/

server

with

database

Client/

server

withTP

Client/

server

GroupWare

Client/

server

Web

Client/

server

distributed

objects

Whiteboard

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

*2

*3

*1

++

+

--

--

-

-

+

+

-

Figure 4.12 COBRAS Architectural Constraint Alternatives

[image: image23.wmf]

Sockets

RPCS

Parameter

types

RMI

HTTP

S-HTTP

SSL

OLE/

DCOM

Number of

interfaces

ORBS

Number of

parameters

COBRAS

 Architecture for Interaction

Primitive

data

Events

Objects

[image: image24.wmf]Machine 1 Client/server

Machine 3 Client

Machine 3 Client/server

Communication Set-up option 1 -Distributed system set-up for Client/server direct point-to-point

communication

Machine 1 Client

Machine 2 Client

Communication Set-up option 2 -Centralized system set-up for Client/server communication

through central server

Machine 2 Client/

server

Machine 1 Client/server

Machine 3 Client/server

Communication Set-up option 4 - Distributed system set-up for Client/server with

Supervisor Machine to Monitor activities

Machine 2 Client/server

Supervisor

 Machine

Machine 1 Client/server

 Machine 3 Client/server

Communication Set-up option 3 - Hybrid system set-up for Client/server both direct point-to-point

and distributed communication through central server

Machine 2 Client/server

Central Server

Central

Server

Figure 4.13 COBRAS Architectural Pattern Alternatives

Figure 4.14 COBRAS NFRS for Rational

Figure 4.14 shows a decomposition of main NFRs for COBRA system. These NFRs performance, maintainability, adaptability and security will be used as a softgoals for choosing design alternatives for COBRAS architecture using softgoal interdependency graph (hereafter SIG). In the subsequent SIG diagrams we attempt to address a Performance NFR as an example to map architectural alternatives for COBRA system.

[image: image25.emf]Connection

Connection()

getvector()

ComUtil

duplicate_clean()

send()

ObjectList

ObjectList()

getpetriList()

geteventVector()

getgroupList()

ObjectPosition

iself1 : int

jself1 : int

ObjectPosition()

getx()

gety()

geteventVector()

CommonObject

CommonObject()

geteventVector()

gettemp()

CommMode

asynchrous : char

simple : char

synchrous : char

complex : char

CommMode()

getCommType()

setCommType()

1..*

1

1..*

1

select communcation mode

ServerSetupMode

centeralized : char

distrbuited : char

hybrid : char

supervisor : char

ServerSetupMode()

getServerMode()

setServerMode()

Server1

Server1()

getLocalIP()

proces_client()

main()

Send object list to client

Send Object position to client

Send Common objects to client

select communication mode

1

1

1

1

select server mode

Save file and session

CobraPanel

paintComponent()

during collaboration

FileManager

accept()

getDescription()

FileManager()

saveSession()

Integrator

Integrator()

controlConcurency()

controlConsistency()

ConnectDb

ConnectDb()

OpenDatabase()

CloseDatabase()

CobraFrame

pubPanel : DrawPanel

menuSelect : int = 0

drag : boolean = false

dragGroup : boolean = false

debug : boolean = true

$ MAX_XWIDTH : int = 800

$ MAX_YHEIGHT : int = 800

processdata()

CobraFrame()

start()

run()

actionPerformed()

itemStateChanged()

main()

estabilish connection

1

1

1

1

Send object to users

1

1

1

1

Creat server socket

Database connection

Negotiator

Negotiator()

processProposal()

trackProposal()

acceptProposal()

rejectProposal()

 pocess collaboration proposals

Figure 4.15 SIG for COBRAS Architectural style Alternatives (see note)

	Satisficed softgoal
	Degree of satisficing
	Satisficing softgaol
	Rational

	Min processing time

[Semantic/context

conflicts]

	-
	Shared Data
	Change in data storage form affect almost all of the modules thus causing processing overhead.

	Min processing time

[Semantic/context

conflicts]

	++
	Object Oriented
	Changes in modules can be easily without affecting other modules.

	Min processing time

[Semantic/context

conflicts]

	+
	Implicit Invocation
	Computations are invoked implicitly when data is modified.

	Min processing time

[Semantic/context

conflicts]

	--
	Pipe and Filter
	Not suitable for interactive system, inefficient use of space.

	Min processing time

[Semantic/context

conflicts]

	--
	Control loop
	Too restrictive, doesn’t allow cooperating components.

	Min processing time

[Semantic/context

conflicts]

	-
	Layered
	Enforces knowledge of adjacent components

Table 4‑1 Softgoal satisficing by Architecture styles SIG figure 4.15

	*1: Provides efficient data representation.

*2: Difficult to control the processing order of the implicitly invoked modules.

*3: Maintains intuitive flow of processing.

Table 4‑2 Claims for SIG figure 4.15

[image: image26.emf]Place

token : boolean

x : int

y : int

$ r : int

count : int

Place()

inPositition()

highlight()

draw()

getRadius()

getX()

getY()

setToken()

hasToken()

ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

PetriNet

gX : int

gY : int

dragX : int

dragY : int

distanceX : int

distanceY : int

group : boolean

drawPub : boolean

PetriNet()

addListener()

start()

run()

stop()

replay()

simulation()

processEvent()

insEvent()

selected()

inICommon()

setGroup()

setPointPosition()

deGroup()

draw()

dragGroup()

CobraFrame

processdata()

CobraFrame()

start()

run()

actionPerformed()

itemStateChanged()

main()

CobraPanel

paintComponent()

Arch

startX : int

startY : int

endX : int

endY : int

$ delta : int

Arch()

setTriangle()

inPositition()

highlight()

draw()

getStartX()

getStartY()

getEndX()

getEndY()

setStartEnd()

animation()

animationFinished()

setPosition()

setStartXY()

setStartXY()

setEndXY()

setEndXY()

Transition

x : int

y : int

upperX : int

lowerX : int

upperY : int

lowerY : int

delayFire : long

delay : int = 50

counts : int

Transition()

inPositition()

highlight()

draw()

setUpperLowerXY()

deleteReference()

getX()

getY()

getRadius()

setXY()

getCount()

getDelayFire()

setDelayFire()

firable()

Fire()

running()

draw a place

draw an arch

 draw a transition

 user selects an item from menu

prefrorm operation for selected item

Figure 4.16 SIG for COBRAS Architectural style Alternatives (see note)

	Satisficed softgoal
	Degree of satisficing
	Satisficing softgaol
	Rational

	Min duplication time

[integration]

	-
	Batch sequential
	Not suitable for interactive collaborative systems.

	Min duplication time

[integration]

	+
	Simple repository
	Database stores persistent data shared among transactions.

	Min duplication time

[integration]

	++
	Virtual repository
	Conceptual distributed heterogeneous database.

	Min duplication time

[integration]

	++
	Hierarchical layers
	Provides consistency for distributed heterogeneous database in client-server environment.

Table 4‑3 Softgoal satisficing by Architecture styles SIG figure 4.16

	*1: Not location transparent, difficult for distributed applications.

*2: Location transparent, ideal for distributed client/server applications.

Table 4‑4 Claims for SIG figure 4.16

[image: image27.emf]PetriNet

gX : int

gY : int

dragX : int

dragY : int

distanceX : int

distanceY : int

group : boolean

drawPub : boolean

PetriNet()

addListener()

start()

run()

stop()

replay()

simulation()

processEvent()

insEvent()

selected()

inICommon()

setGroup()

setPointPosition()

deGroup()

draw()

dragGroup()

CobraFrame

processdata()

CobraFrame()

start()

run()

actionPerformed()

itemStateChanged()

main()

CobraPanel

paintComponent()

draw an arrow

draw an node draw a cycle

 user selects an item from menu

prefrorm operation for selected item

Arrow

startX : int

startY : int

endX : int

endY : int

deltaX : double

deltaY : double

Arrow()

setTriangle()

inPositition()

highlight()

draw()

getStartX()

getStartY()

getEndX()

getEndY()

setStartEnd()

setStart()

setEnd()

setStartXY()

setEndXY()

projectX()

Node

x : int

y : int

$ r : int

count : int

duration : double

days : int

Node()

inPositition()

highlight()

draw()

getRadius()

getX()

getY()

setXY()

ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

Cycle

centerX : int

centerY : int

cornerX : int

cornerY : int

endX : int

endY : int

$ Height : int

Cycle()

getEndX()

getEndY()

setTriangle()

draw()

highlight()

inPositition()

Figure 4.17 SIG for COBRAS Architectural style Alternatives (see note)

	Satisficed softgoal
	Degree of satisficing
	Satisficing softgaol
	Rational

	Min communication time [Coordination]
	--
	Client/server with files server
	Primitive form of data service necessitates many messages exchange over the network to find the requested data.

	Min communication time [Coordination]
	+
	Client/server with database

	Database sever has the processing to find the requested data instead of passing all the records back to a client then letting it find its own data.

	Min communication time [Coordination]
	+
	Client/server with TP monitor
	Offers transaction atomicity, persistence, consistency and concurrency.

	Min communication time [Coordination]
	++
	Client/server with Groupware
	Allows to represent complex process that center around collaboration. It builds on five foundation of technology; multimedia, document management, work flow, email, conferencing and scheduling.

	Min communication time [Coordination]
	++
	Client/server web
	Interactive client/server technology can be used to created very portable solutions. Processing is done mostly at server side.

	Min communication time [Coordination]
	++
	Client/server with distributed objects
	Provides a mechanism for clients to invoke method on remote object, common object request broker architecture (CORBA-ORB).

Table 4‑5 Softgoal satisficing by Architecture styles SIG figure 4.17

	*1: Good for storing documents, images, drawings and etc.

*2: Transaction oriented, no partial rollbacks, all–or–nothing principle.

*3: High security overhead, stateless collaboration.

*4: CORBA for web infrastructure avoids the CGI bottleneck, provides a scalable server to

 server infrastructure and extends Java with distributed object infrastructure.

*5: System under development is critical, transaction integrity is important.

*6: Two phase commit protocol causes performance overhead. Even messages is generated for

 read only transactions.

Table 4‑6 Claims for SIG figure 4.17

[image: image28.wmf]

or ++ Strongly Positive Satisficing

or + Positive Satisficing

or - Negative Satisficing

or -- Strongly Negative Satisficing

Symbols for different degrees of Satisficing.

Small normal shadow represents NFRs.

Small dotted shadow represents the NFR under consideration for

Rational.

Bolded shadow represents an Architecture or elements for Architecture alternatives.

!

Exclamation symbol shows priorities among NFR types that are considered in the SIG

graph. Prioirtiy decreasing in ascending order.

Indicates an AND decomposition.

Indicates an Exclusive OR decomposition unless otherwise indicated.

*

Min

 Abbreviation used for Minimize.

Max

 Abbreviation used for Maximize.

Figure 4.18 SIG for COBRAS Architectural Components decision point

	Satisficed softgoal
	Degree of satisficing
	Satisficing softgaol
	Rational

	Min processing time [Animation]
	++
	Animator
	Provides efficient mechanism for animation.

	Min processing time [Simulation]
	++
	Simulator
	Provides efficient mechanism for simulation.

	Min processing time [Simulation]
	++
	Replay
	Provides replay mechanism for scenario event, object and data.

	Min processing time [User interface]
	++
	GUI
	Provides efficient graphical user interface.

	Min communication time [Negotiation]
	++
	Negotiator
	Provides an efficient negotiation mechanism during coordination.

	Min communication time [Communication]
	++
	Client-server communicator
	Provides an efficient means of communication between clients and servers.

	Min duplication [Integration]
	++
	Integrator
	Provides an efficient mechanism for integrating works done in distributive manner.

	Min extra information [Integration]
	++
	Repository
	Provides an efficient database system for storing necessary information.

Table 4‑7 Softgoal satisficing by components SIG figure 4.18

Figure 4.19 [image: image29.emf]Graphics

(from awt)

ActionListener

(from Awt::event)

JPanel

(from javax::swing

PetriNet

Cycle

Transition

Arch

Arrow

ComUtil

Server1

ICommon

ICommon

CobraPanel

event

CobraFrame

The event package

is a java built in

component

ActionListenet is a java built in

component for manipulation actions

from the user

The ICommon interface is an

interface built for cobras

objects manipulation such as

to draw place, arch, transition,

node and cycle.

SIG for COBRAS Architectural Interaction decision point

	Satisficed softgoal
	Degree of satisficing
	Satisficing softgaol
	Rational

	Min communication time[communication]
	++
	ORBs
	Offers dynamic invocation interfaces.

	Min communication time[communication]
	-
	Sockets
	Not suitable transferring big amount of data to remote sites.

	Min communication time[communication]
	+
	RPCs
	Doesn’t offer Asynchronous communication mechanism.

	Min communication time[communication]
	++
	RMI
	Offers Asynchronous communication mechanism.

	Min communication time[communication]
	+
	HTTP
	Offers a stateless RPC functionality.

Table 4‑8 Softgoal satisficing by Architecture styles SIG figure 4.19

	*1: Not easy to implement.

*2: Easy to implement.

*3: Security overhead.

Table 4‑9 Claims for SIG figure 4.19

[image: image30.emf]:site 1 machine

<<client/server>>

s:server

<<central>>

:site 3 machine

<<client/server>>

:supervisor

<<server>>

cobra application

will be deployed in

different sites

which can act

both as client and

server.

Deploys

cobra.exe

Deploys

cobra.exe

Deploys

cobra.exe

Deploys

Deploys

monitor.exe

D:DataBase

<<server>>

Deploys

dbadmin.exe

config.exe

:site 2 machine

<<client/server>>

client/server machines

may connect to the

database server

client/server machines may

connect to supervisor sever

for monitoring activity

client/server machines

may choose to use

central server by

assuming a client role

TCP/IP

TCP/IP

The connection

between the nodes

are TCP/IP

Figure 4.20 SIG for COBRAS Architectural Constraint decision point

	Satisficed softgoal
	Degree of satisficing
	Satisficing softgaol
	Rational

	Min communication time [Communication]
	-
	Batch
	No suitable for distributed systems causes communication bottleneck in case of large data transfer.

	Min communication time [Communication]
	++
	Incremental

	Provides efficient data transfer incrementally.

	Min communication time [Communication setup]
	--
	Centralized
	Not suitable for distributed groupware systems specially for remote sites.

	Min communication time [Communication setup]
	++
	Distributed
	Provides an efficient distributed groupware mechanism.

	Min communication time [Communication setup]
	++
	Hybrid centralized & distributed
	Very efficient for distributed system both accommodating locally and remotely.

	Min communication time [Coordination]
	++
	Distributed with supervisor
	Provides a monitoring mechanism for overseeing coordination between client/servers.

	Min processing time [Coordination]
	--
	Sequential
	Causes processing delay.

	Min processing time [Coordination]
	++
	Concurrent
	Provides faster coordination processing.

Table 4‑10 Softgoal satisficing by Architecture styles SIG figure 4.20

	*1: Efficient for transferring small amount of data.

*2: Efficient for short processing time.

*3: Efficient for small number of clients connected locally.

*4: Complex to setup and maintain.

*5: Implementation complexity could be high.

Table 4‑11 Claims for SIG figure 4.20

[image: image31.wmf]Type1[Topic1]

Type1[Topic2]

Type1[Topic3]

Type1[Topic2_1]

Type1[Topic2_2]

Type1[Topic3_1]

Type1[Topic3_2]

 Figure 4.21 SIG for COBRAS Architectural Patterns decision point

	Satisficed softgoal
	Degree of satisficing
	Satisficing sotfgaol
	Rational

	Min coupling

[client node]

	++
	Star
	Allows communication between client/severs even if one node fails out from the network.

	Min coupling

[client node]

	--
	Ring
	Failure of one client/server node will affect the whole network.

	Min coupling

[client node]

	-
	Sequential
	Failure of one client/server node may affect part of network.

	Min coupling

[client node]

	+
	Parallel
	Failure of a node can affect some of the network part.

	Min coupling

[client node]

	++
	Manhattan
	Allows communication in different setups, if one node fails our from the network, the rest can continue.

Table 4‑12 Softgoal satisficing by Architecture styles SIG figure 4.21

	*1: Complex to implement and maintain specially if the number of client/servers are high.

*2: Easy to implement and maintain.

Table 4‑13 Claims for SIG figure 4.21

1.9 Existing COBRA Architecture

The current COBRAS client-server architecture is suitable for some of the components. However, the architecture used for some components has compromised some fundamental functionality of the COBRA tool set. It becomes vital to investigate the current problems in order to enhance the current architecture of COBRAS to achieve it’s full functionality.

Reverse engineering is a technique used to study existing software architecture by interpreting the source code to design architecture [4]. To resolve existing implementation issues as well as to ensure future extensibility for COBRA tool, a reverse engineering method is sought. Current architecture for COBRAS will be studied and solutions will be recommended to enhance the COBRA tool set. For COBRAS application the current detail and overall design are presented by using the Rational Rose reverse engineering tool. The UML class diagrams [4] presented are generated by running the COBRA Java source code in the Rational Rose tool.

An overall view of the COBRA application is presented eliding the attribute and operation details. The focus of the overall view is on the associations between the classes from the COBRAS source code. Trivial associations will not be shown on the overall view for clarity purpose, however these relationships can be found from detailed individual class diagrams.

Each class view focuses on single class and will present the attributes and methods for that class. Also any associations, generalizations and implementation related to the class will be presented.

Component Design

Division of responsibilities between the objects is based on functionality. The CobraFrame and CobraPanel classes are responsible for the GUI portions of the application. These two classes implement the appropriate event listeners so that the application respond to ensure interactions. The individual objects that comprise a Petri Net diagram, Places, Archs, and Transitions are each implemented as and individual class. Each class keeps information about its position, size, current state and adjacent Petri Net objects. These classes also provide services that are relevant to each type of object. Example of such services include the ability to draw the object to determine if a point lies within and object. The ICommon interface provides a common interface for these classes.

The PetriNet class serves as a container class. It keeps track of all the objects (places, archs, and transitions) that comprise the PetriNet diagram. But they do not necessarily know about the existence of all the objects in the PetriNet diagram. In addition the PertiNet class maintains references to all the individual objects in the diagram. The petriNet class also keeps track of the GUI events that were generated by the user. The PetriNet class also provides method relating to the modification, selection, grouping, drawing and animation of Petri Net diagram objects.

Event Handling

The COBRAS application provides a Graphical User Interface for the user. As the application must be able to intercept events from the user and execute the appropriate action. The elements of Java GUI event handling that apply to the system architecture are discussed in this section. Java follows a delegation event model for event handling. The processing of an event is delegated to a particular class. User interaction cause event to be sent to the program by the Java environment. In order to process events of a particular type, a class must implement the

appropriate event listener interface. The following figure gives the class and event listener interfaces that are used by this program.

[image: image3.wmf]java.lang.Object

java.util.EventObject

java.awt.AWTEvent

ComponenetEvent

ActionEvent

MouseEvent

ActionListener

MouseListener

MouseMotionListener

java.util.EventListener

Class name

Interface name

KEY

Figure 4.22 Java event classes and event listener interfaces used by the application

An event handler object is a class that implements one of the interfaces . A component must register to the event handler object that it wants to use to process events of certain type. Each component maintains a list of all registered listeners. When the user interacts with the application, an event is generated. The Java environment passes a unique event ID to the component specifying the type of even that occurred. The GUI component dispatches the event to the appropriate event handling object. The type of event will determine which method on the event handling object will be called.

The two classes in this application that listen to the user events are the CobraFrame and CobraPanel classes. The CobraFrame calls implements the ActionListener interface. When menu item is selected, the actionPerformed method is executed and various instance variables for the CobraFrame class are set, so that the frame can keep track of which menu option was selected. Certain functionality in the application require the user to select a menu option, then interact with panel to perform some action.

Interactions and Constraints

One of the main associations in the application between the CobraPanel class and the CobraFrame class. All user-generated events come into the application through one these classes. The Java environment will send event information to either class.. The two classes will then invoke the appropriate event handling methods(s). All of the system functionality begins with the generation of user event, which is routed to the appropriate methods on the CobraFrame or CobraPanel class.

Components in the system have references to object that utilize. The CobraFrame class has reference to the CobraPanel. For some options in the application, the user must select a menu option from CobrFrame before interacting with CobraPanel. This constitutes a constraint on the relationship between the CobraFrame call and the CobraPanel. The behavioir of the CobraPanel calls varies depending on previous user interactions with the CobraFrame class. For instance, clicking on the CobraPanel without selecting a menu option first will not produce any meaningful action. However, selecting the Insert Place menu option , then clicking on the panel will cause a place to be inserted into the display area. Selecting different menu options from the frame will produce different results in the panel area. Inserting a Transition or Arch, is different from inserting Place. The move function works differently from the drag function, and so forth.

The CobraFrame and CobraPanel classes listen to different types of events. The CobraFrame class listens to action events while the CobrPanel class listens to mouse events. However, when the CobraPanel call receive mouse events, it must know which action events were first received by CobraFrame. When processing the action event, the CobraFrame class will set instance variables to store information about the event, such as which menu selection was chosen by the user. When processing a mouse event, the CobraPanel call can get information from CobraFrame to dtermine how it should continue. Thus, the behavior of the CobraPanel class is governed by the state of the CobraFrame class.

Once the CobraFrame class or CobraPanel calls receives a user event, they will invoke methods on the appropriate classes. The main class used by CobraFrame and CobrPanel is the PetriNet calls. The CobraFrame calls has a reference to the PetriNet class, which is also accessible to the CobraPanel calls. The PetriNet calls offers service for adding, removing, selecting, deleting, grouping, drawing, and animating objects for the PetriNet diagram. It also stores and processes user events for the replay feature. When the CobraFrame or Cobra classes need these features, they will call the appropriate method on the PteriNet call.

The PetriNet class stores references to all the objects that compromise the diagram. It maintains a list of all the Places, Transitions and Arches the exist in the diagram. Each Place, Transition, and Arch object in turn has its own set of methods. Since these classes implement the same Icommon interface, they share some of the same common methods. This allows for polymorphism in the system. A method can be invoked through an ICommon reference and the actual method executed will depend on the type of the object that the ICommon reference points to. This is used by the PetriNet calls to invoke methods on the Place, Transition, or Arch classes.

Interactions among the components generally follow this pattern:

1. User event is generated

2. Event handling method on CobraFrame or CobraPanel is invoked

3. CobraFrame or CobaPanel invokes appropriate methods on the PetriNet class

4. The PetriNet class will invoke appropriate method on the Place, Arch, or Transition class.

For example, a call to the repaint method on the CobraPanel will cause the paint method on the CobraPanel to be invoked. This method calls the draw method on the PetriNet class, which will loop through the objects in its list an call the appropriate draw methods fro an ICommon object (Place, Arch or Transition). The CobrFrame class also has references to other objects that it utilizes. For the File Save and File Open functions, the application uses Input and Output Stream native, FileChooser and File Java classes.

Similar to Java event handling, some method are not invoked with an explicit method call through an object reference. The Java environment will manage the invocation of certain methods. For example, when the CobraPanel’s repaint method is explicitly invoked, the Java environment will invoked the paintComponnet method for the CobraPanel as soon as the environment is ready tit update the panel.

 The Java environment also manages execution of the thread for the animation and replay features. The environment’s scheduler manages thread sates and execution. When the start method is executed for a thread, that thread is placed in a ready state. Execution of the thread does not being immediately. The Java threads of equal or higher priority, the scheduler will execute a thread, which is already in the ready state. When this happens, the Java scheduler will execute the run method of a thread or runnable calls. Likewise, the scheduler will manage the execution of a thread that has been put of sleep. When the sleep period for a thread expires, the Java environment will pale the thread in already state and execute it accordingly.

Overall Architecture for COBRAS

[image: image32.wmf]Type1[Topic1]

Type2[Topic1]

Type3[Topic1]

Type2_1[Topic1]

Type2_2[Topic1]

Type3_1[Topic1]

Type3_2[Topic1]

Figure 4.23 Overall architecture for COBRAS

[image: image33.wmf]

Performance [COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Negotiaton]

Min

coupling

[COBRAS]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[User intereaction]

Min processing

time

[Simulation]

Min communication

time

[client -server

Communicator]

Min

coupling

[Coordination]

Min

coupling

[Negotiation]

!

!

!

!

!!

!!

!!

!

!

!

Min processing

time

[COBRAS]

Min extra

information

[COBRAS]

Min extra

information

[Integration]

Min processing

time

[Animation]

GUI

Integrator

 Client-server

communicator

Negotiator

Repository

Animator

Simulator

COBRAS

 Architectural Component

Replay

Objects

Data

Events

Static

generator

Scenario

Driver

Event

Generator

Utility

GUI

Mapper

Basic

GUI

Condition

indicator

Time

Scale

Single-

level only

Nested

levels

Distrbui

ted

Center

alized

Concu

rency

control

erl

Consist

ancy

manage

r

Prop

osal

track

er

Argu

ment

ation

supp

orter

Session

manager

Initia

tor

Termi

nator

++

++

++

++

++

++

++

++

[image: image34.wmf]

Performance [COBRAS]

Min processing

time

[COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Coordination]

Min extra

information

[COBRAS]

Min

coupling

[COBRAS]

Min extra

information

[Integration]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[Coordination]

Min processing

time

[Negotiation]

Min processing

time

[Integration]

Min communication

time

[Communication]

Min

coupling

[Coordination]

Min

coupling

[Negotiation]

Min processing

time

[Visual conflicts]

Min processing

time

[Syntactic

conflicts]

Min processing

time

[Semantic/ context

conflicts]

!

!!

!!

!!

!!

!

Layered

Shared

 Data

Object

oriented

Blackboard

Implicit

Invocation

Pipe&

Filter

Control

loop

Shared

Information

Client/

Server

COBRAS

 Architecture for Styles

Batch

Sequential

Simple

repository

Hierarchical

layers

 Virtual

 repository

Client/

server

with file

servers

Client/

server

with

database

Client/

server

withTP

Client/

server

GroupWare

Client/

server

Web

Client/

server

distributed

objects

Whiteboard

!!

!!

!!

!!

!!

!!

!!

Note: In this diagram, Batch sequential, Simple repository, Virtual repositry and Hieracrchical layers architecture styles are

considered as decision points.

*1

*2

++

++

+

--

+

-

[image: image35.wmf]

Interactions

Styles

 Constraints

Rationale

COBRAS Model of

Software

 Architecture

Components

Patterns

[image: image36.wmf]

Performance [COBRAS]

Min processing

time

[COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Coordination]

Min extra

information

[COBRAS]

Min

coupling

[COBRAS]

Min extra

information

[Integration]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[Coordination]

Min processing

time

[Negotiation]

Min processing

time

[Integration]

Min communication

time

[Communication]

Min

coupling

[Coordination]

Min

coupling

[Negotiation]

Min

duplication

[Visual

conflicts]

Min

duplication

[Syntactic

conflicts

]

Min

duplication

[Semantic/

context

conflicts]

!!

!

!!

!!

!!

Layered

Shared

 Data

Object

oriented

Blackboard

Implicit

Invocation

Pipe&

Filter

Control

loop

Shared

Information

Client/

Server

COBRAS

 Architecture for Styles

Batch

Sequential

Simple

repository

Hierarchical

layers

 Virtual

 repository

Client/

server

with file

servers

Client/

server

with

database

Client/

server

withTP

Client/

server

GroupWare

Client/

server

Web

Client/

server

distributed

objects

Whiteboard

!!

Note: In this diagram, Client/server with file servers, Client/server with database, Client/server with TP, Client/server GroupWare, Client/server

Web and Client/server distributed objects styles are considered as decision points.

!!!

!!!

!!!

!!!

!!!

!!

!!

*1

*2

*3

*5

*6

*4

++

++

++

+

+

--

+

+

+

-

-

-

Figure 4.24 Class diagram for PetriNet class

[image: image37.wmf]

GUI

Integrator

 Client-server

communicator

Negotiator

Repository

Animator

Simulator

COBRAS

 Architectural Component

Replay

Objects

Data

Events

Static

generator

Scenario

Driver

Event

Generator

Utility

GUI

Mapper

Basic

GUI

Condition

indicator

Time

Scale

Single-

level

only

Nested

levels

Distrbu

ited

Center

alized

Concu

rency

control

erl

Consist

ancy

manage

r

Prop

osal

track

er

Argu

ment

ation

supp

orter

Session

manager

Initia

tor

Termi

nator

[image: image38.wmf]

Layered

Shared

 Data

Object

oriented

Blackboard

Implicit

Invocation

Pipe&

Filter

Control

loop

Shared

Information

Client/

Server

COBRAS

Hybrid Architecture for Styles

Batch

Sequential

Simple

repository

Hierarchica

l

layers

 Virtual

 repository

Client/

server

with file

servers

Client/

server

with

database

Client/

server

withTP

Client/

server

GroupWare

Client/

server

Web

Client/

server

distributed

objects

Whiteboard

Implicit

listening

Implicit

announcement

Implicit

registration

Implicit

de-

registration

Implicit

triggering

Implicit

event

declaration

[image: image39.wmf]

Parallel

Sequential

Manhattan

Ring

Star

COBRAS

Architecture for Patterns

Performance [COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Coordination]

Min

coupling

[COBRAS]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[Negotiation]

Min processing

time

[Integration]

Min communication

time

[Communication]

Min

coupling

[Coordination]

Min

coupling

[Client nodes]

!!

!!

!

!!

Min processing

time

[COBRAS]

Min processing

time

[Coordination]

Min extra

information

[Integration]

!!

!!

!!

!!

!!

!!

*2

*1

Min extra

information

[COBRAS]

++

++

+

-

--

-

+

[image: image40.wmf]

Batch

Incremental

Centralized

Distributed

Concurrent

Sequential

COBRAS

 Architecture for Constraint

Hybrid-

Centeralized

& Distributed

Distributed

with

supervisor

Constraint

on

components

Constraint

 on

Interactions

Constraint

on

Patterns

Constraint

on

Styles

Performance [COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Communication]

Min

coupling

[COBRAS]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[Negotation]

Min processing

time

[Integration]

Min communication

time

[Communication

setup]

Min

coupling

[Coordination]

Min

coupling

[Negotation]

!!

!

!

!!

!!

!!

!

Min processing

time

[COBRAS]

Min extra

information

[COBRAS]

Min extra

information

[Integration]

Min processing

time

[Coordination]

!!

!!

!!

*1

*2

*5

*3

*4

--

++

++

++

-

-

+

+

-

-

+

+

-

[image: image41.wmf]

Batch

Incremental

Centralized

Distributed

Concurrent

Sequential

COBRAS

 Architecture for Constraint

Hybrid-

Centeralized

& Distributed

Distribute

d with

superviso

r

Constraint

on

components

Constraint

 on

Interactions

Constraint

on

Patterns

Constraint

on

Styles

[image: image42.wmf]

Parallel

Sequential

Manhattan

Ring

Star

COBRAS

 Architecture for Patterns

Transition

[image: image43.emf]Cycle

centerX : int

centerY : int

cornerX : int

cornerY : int

endX : int

endY : int

deltaX : double = 5.0

deltaY : double = 5.0

$ Height : int = 35

Cycle()

getEndX()

getEndY()

setTriangle()

draw()

highlight()

inPositition()

ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

Serializable

(from io)

Object

(from lang)

Point

(from awt)

APNArrow

startX : int

startY : int

endX : int

endY : int

$ delta : int = 10

tokenX : double

tokenY : double

deltaX : double

deltaY : double

APNArrow()

projectX()

setTriangle()

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

getRefIn()

getRefOut()

getStartX()

getStartY()

getEndX()

getEndY()

setStartEnd()

animation()

animationFinished()

setPosition()

setStartXY()

setStartXY()

setEndXY()

setEndXY()

pointInGroup()

inGroup()

#in

#out

#$arrowPoint

[image: image44.emf]ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

Serializable

(from io)

LinkedList

(from util)

APNNode

token : boolean

x : int

y : int

$ r : int = 20

count : int

duration : double

days : int

APNNode()

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

getRadius()

getX()

getY()

setToken()

hasToken()

setXY()

dragAttached()

inGroup()

-inList

-outList

[image: image45.emf]ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

Serializable

(from io)

String

(from lang)

LinkedList

(from util)

Thread

(from lang)

Graphics

(from awt)

APNTransition

x : int

y : int

upperX : int

lowerX : int

upperY : int

lowerY : int

count : int

$ r : int = 20

delayFire : long

delay : int = 50

counts : int

panel : CobraFrame.CobraPanel

debug : boolean = true

APNTransition()

inPositition()

highlight()

draw()

suicide()

collide()

setUpperLowerXY()

deleteReference()

insRefIn()

insRefOut()

getX()

getY()

getRadius()

setXY()

getCount()

getDelayFire()

setDelayFire()

firable()

Fire()

running()

dragAttached()

inGroup()

condition

-inList

-outList

-runner

-graph

[image: image46.emf]ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

Serializable

(from io)

Object

(from lang)

Point

(from awt)

Arch

startX : int

startY : int

endX : int

endY : int

$ delta : int = 10

tokenX : double

tokenY : double

deltaX : double

deltaY : double

Arch()

projectX()

setTriangle()

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

getRefIn()

getRefOut()

getStartX()

getStartY()

getEndX()

getEndY()

setStartEnd()

animation()

animationFinished()

setPosition()

setStartXY()

setStartXY()

setEndXY()

setEndXY()

pointInGroup()

inGroup()

-in

-out

-$archPoint

[image: image47.emf]ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

Serializable

(from io)

Object

(from lang)

Point

(from awt)

Arrow

startX : int

startY : int

endX : int

endY : int

$ delta : int = 10

$ r : int = 20

deltaX : double

deltaY : double

Arrow()

projectX()

setTriangle()

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

getRefIn()

getRefOut()

getStartX()

getStartY()

getEndX()

getEndY()

setStartEnd()

setStart()

setEnd()

setStartXY()

setEndXY()

pointInGroup()

inGroup()

-in

-out

-$start

-$end

[image: image48.emf]ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

Serializable

(from io)

LinkedList

(from util)

Place

token : boolean

x : int

y : int

$ r : int = 15

count : int

Place()

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

getRadius()

getX()

getY()

setToken()

hasToken()

setXY()

dragAttached()

inGroup()

-inList

-outList

[image: image49.emf]ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

Serializable

(from io)

LinkedList

(from util)

Thread

(from lang)

Graphics

(from awt)

Transition

x : int

y : int

upperX : int

lowerX : int

upperY : int

lowerY : int

count : int

$ r : int = 26

delayFire : long

delay : int = 50

counts : int

panel : CobraFrame.CobraPanel

debug : boolean = true

Transition()

inPositition()

highlight()

draw()

suicide()

collide()

setUpperLowerXY()

deleteReference()

insRefIn()

insRefOut()

getX()

getY()

getRadius()

setXY()

getCount()

getDelayFire()

setDelayFire()

firable()

Fire()

running()

dragAttached()

inGroup()

-inList

-outList

-runner

-graph

[image: image50.emf]APNArrow

startX : int

startY : int

endX : int

endY : int

$ delta : int = 10

tokenX : double

tokenY : double

deltaX : double

deltaY : double

APNNode

token : boolean

x : int

y : int

$ r : int = 20

count : int

duration : double

days : int

APNTransition

x : int

y : int

upperX : int

lowerX : int

upperY : int

lowerY : int

count : int

$ r : int = 20

delayFire : long

delay : int = 50

counts : int

panel : CobraFrame.CobraPanel

debug : boolean = true

Arch

startX : int

startY : int

endX : int

endY : int

$ delta : int = 10

tokenX : double

tokenY : double

deltaX : double

deltaY : double

Arrow

startX : int

startY : int

endX : int

endY : int

$ delta : int = 10

$ r : int = 20

deltaX : double

deltaY : double

Transition

x : int

y : int

upperX : int

lowerX : int

upperY : int

lowerY : int

count : int

$ r : int = 26

delayFire : long

delay : int = 50

counts : int

panel : CobraFrame.CobraPanel

debug : boolean = true

Node

x : int

y : int

$ r : int = 20

count : int

duration : double

Place

token : boolean

x : int

y : int

$ r : int = 15

count : int

PetriNet

gX : int

gY : int

gW : int

gH : int

dragX : int

dragY : int

distanceX : int

distanceY : int

group : boolean

pCount : int

tCount : int

debug : boolean = true

drawPub : boolean

ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

-selectedObj

CobraFrame

pubPanel : DrawPanel

menuSelect : int = 0

drag : boolean = false

dragGroup : boolean = false

debug : boolean = true

$ MAX_XWIDTH : int = 800

$ MAX_YHEIGHT : int = 800

[image: image51.emf]Serializable

(from io)

Runnable

(from lang)

ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

LinkedList

(from util)

Vector

(from util)

Thread

(from lang)

String

(from lang)

PetriNet

gX : int

gY : int

gW : int

gH : int

dragX : int

dragY : int

distanceX : int

distanceY : int

group : boolean

pCount : int

tCount : int

debug : boolean = true

drawPub : boolean

PetriNet()

addListener()

start()

run()

stop()

replay()

simulation()

processEvent()

insEvent()

addICommon()

removeICommon()

removeSelected()

selected()

getSelected()

inICommon()

setGroup()

setGroupList()

pointInGroup()

setPointPosition()

deGroup()

draw()

trueDrawPub()

falseDrawPub()

hasCollision()

hasCollisionWithSel()

dragPT()

dragPT()

dragGroup()

movePT()

emptyPetriList()

emptyEventVector()

getPCount()

getTCount()

incPCount()

incTCount()

hasGroup()

-selectedObj

+$petriList

+$groupList

-listener

+$pubPetriList

+$pubGrpList

+$eventVector

-usedVector

+$pubEvents

-runner

+from_ip_address

 Place

[image: image52.emf]JFrame

ActionListen

er

(from event)

Serializable

(from io)

Runnable

(from lang)

ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

Object

(from lang)

File

(from io)

Thread

(from lang)

PetriNet

PetriNet()

addListener()

start()

run()

stop()

replay()

simulation()

processEvent()

insEvent()

addICommon()

removeICommon()

removeSelected()

selected()

getSelected()

inICommon()

setGroup()

setGroupList()

pointInGroup()

setPointPosition()

deGroup()

draw()

trueDrawPub()

falseDrawPub()

hasCollision()

hasCollisionWithSel()

dragPT()

dragPT()

dragGroup()

movePT()

emptyPetriList()

emptyEventVector()

getPCount()

getTCount()

incPCount()

incTCount()

hasGroup()

CobraFrame

pubPanel : DrawPanel

menuSelect : int = 0

drag : boolean = false

dragGroup : boolean = false

debug : boolean = true

$ MAX_XWIDTH : int = 800

$ MAX_YHEIGHT : int = 800

processdata()

CobraFrame()

start()

run()

actionPerformed()

itemStateChanged()

main()

-currentSelection

dragObj

moveObj

-cobraFile

-runner

-petriNet

[image: image53.emf]CobraPanel

paintComponent()

JPanel

(from swing)

PetriNet

PetriNet()

addListener()

start()

run()

stop()

replay()

simulation()

processEvent()

insEvent()

addICommon()

removeICommon()

removeSelected()

selected()

getSelected()

inICommon()

setGroup()

setGroupList()

pointInGroup()

setPointPosition()

deGroup()

draw()

trueDrawPub()

falseDrawPub()

hasCollision()

hasCollisionWithSel()

dragPT()

dragPT()

dragGroup()

movePT()

emptyPetriList()

emptyEventVector()

getPCount()

getTCount()

incPCount()

incTCount()

hasGroup()

-petriNet

[image: image54.emf]CobraFilter

accept()

getDescription()

FileFilter

(from filechooser)

[image: image55.emf]ComUtil

$ connectionFlag : boolean

duplicate_clean()

send()

send()

Serializable

(from io)

[image: image56.emf]Serializable

(from io)

Vector

(from util)

Connection

Connection()

getvector()

-vcon

[image: image57.emf]Serializable

(from io)

Vector

(from util)

Server1

Server1()

getLocalIP()

proces_client()

main()

+$v

[image: image58.emf]Serializable

(from io)

Vector

(from util)

Vectors

Vectors()

getvector()

-vcon1

[image: image59.emf]Self

Self()

getobjectList()

geteventVector()

getgroupList()

Serializable

(from io)

Vector

(from util)

LinkedList

(from util)

-vcon

-llist1

-llist2

[image: image60.emf]Serializable

(from io)

Vector

(from util)

Self1

iself1 : int

jself1 : int

Self1()

getx()

gety()

geteventVector()

-vcon

[image: image61.emf]ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

Serializable

(from io)

Vector

(from util)

Self2

Self2()

geteventVector()

gettemp()

-vcon

-itemp

[image: image62.emf]Serializable

(from io)

Vector

(from util)

LinkedList

(from util)

Self3

isPrivate : boolean

Self3()

getobjectList()

geteventVector()

getgroupList()

-vcon

-llist1

-llist2

[image: image63.emf]Transition

Transition()

inPositition()

highlight()

draw()

suicide()

collide()

setUpperLowerXY()

deleteReference()

insRefIn()

insRefOut()

getX()

getY()

getRadius()

setXY()

getCount()

getDelayFire()

setDelayFire()

firable()

Fire()

running()

dragAttached()

inGroup()

JDialog

(from swing)

ActionListen

er

(from event)

JTextField

(from swing)

DelayDialog

DelayDialog()

actionPerformed()

-tr

-tField

[image: image64.emf]Serializable

(from io)

Runnable

(from lang)

ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

LinkedList

(from util)

Vector

(from util)

Thread

(from lang)

PertChart

gX : int

gY : int

gW : int

gH : int

dragX : int

dragY : int

distanceX : int

distanceY : int

group : boolean

nCount : int

debug : boolean = true

PertChart()

addListener()

start()

run()

stop()

replay()

simulation()

processEvent()

insEvent()

addICommon()

removeICommon()

removeSelected()

selected()

getSelected()

inICommon()

setGroup()

setGroupList()

pointInGroup()

setPointPosition()

deGroup()

draw()

hasCollision()

hasCollisionWithSel()

dragPT()

dragPT()

dragGroup()

movePT()

emptyPertList()

emptyEventVector()

getNCount()

incNCount()

hasGroup()

-selectedObj

+$pertList

+$groupList

-listener

+$eventVector

-usedVector

-runner

[image: image65.emf]ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

Serializable

(from io)

LinkedList

(from util)

Node

x : int

y : int

$ r : int = 20

count : int

duration : double

Node()

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

getRadius()

getX()

getY()

setXY()

dragAttached()

inGroup()

-inList

-outList

[image: image66.emf]Cycle

centerX : int

centerY : int

cornerX : int

cornerY : int

endX : int

endY : int

deltaX : double = 5.0

deltaY : double = 5.0

$ Height : int = 35

Cycle()

getEndX()

getEndY()

setTriangle()

draw()

highlight()

inPositition()

APNArrow

APNArrow()

projectX()

setTriangle()

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

getRefIn()

getRefOut()

getStartX()

getStartY()

getEndX()

getEndY()

setStartEnd()

animation()

animationFinished()

setPosition()

setStartXY()

setStartXY()

setEndXY()

setEndXY()

pointInGroup()

inGroup()

[image: image67.emf]Serializable

(from io)

Runnable

(from lang)

ICommon

inPositition()

highlight()

draw()

suicide()

collide()

deleteReference()

insRefIn()

insRefOut()

inGroup()

LinkedList

(from util)

Vector

(from util)

Thread

(from lang)

APNPertChart

dragX : int

dragY : int

distanceX : int

distanceY : int

group : boolean

nCount : int

tCount : int

debug : boolean = true

APNPertChart()

addListener()

start()

run()

stop()

replay()

simulation()

processEvent()

insEvent()

addICommon()

removeICommon()

removeSelected()

selected()

getSelected()

inICommon()

setGroup()

setGroupList()

pointInGroup()

setPointPosition()

deGroup()

draw()

trueDrawPub()

falseDrawPub()

hasCollision()

hasCollisionWithSel()

dragPT()

dragPT()

dragGroup()

movePT()

emptyPertList()

emptyEventVector()

getNCount()

getTCount()

incNCount()

incTCount()

hasGroup()

-selectedObj

+$pertList

+$groupList

-listener

+$eventVector

+$pubEvents

-usedVector

-runner

[image: image68.wmf]

Performance [COBRAS]

Min processing

time

[COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Coordination]

Min extra

information

[COBRAS]

Min

coupling

[COBRAS]

Min extra

information

[Integration]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[Coordination]

Min processing

time

[Negotiation]

Min processing

time

[Integration]

Min communication

time

[Communication]

Min

coupling

[Coordination]

Min

coupling

[Negotiation]

Min processing

time

[Visual conflicts]

Min processing

time

[Syntactic

conflicts]

Min processing

time

[Semantic/ context

conflicts]

Min

duplication

[Visual

conflicts]

Min

duplication

[Syntactic

conflicts

]

Min

duplication

[Semantic/

context

conflicts]

!

!!

!!

!!

!!

!

Note: In this diagram, Shared data, Object oriented, Implicit invocation, Pipe& filter, Layerd and Control loop architecture

styles are considered as decision points.

Layered

Shared

 Data

Object

oriented

Blackboard

Implicit

Invocation

Pipe&

Filter

Control

loop

Shared

Information

Client/

Server

COBRAS

 Architecture for Styles

Batch

Sequential

Simple

repository

Hierarchical

layers

 Virtual

 repository

Client/

server

with file

servers

Client/

server

with

database

Client/

server

withTP

Client/

server

GroupWare

Client/

server

Web

Client/

server

distributed

objects

Whiteboard

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

*2

*3

*1

++

+

--

--

-

-

+

+

-

[image: image69.emf]COBRA System

Site 1 user,

intiator

Site 2 user,

coordinator

The initator requests

ttthe collaobrater site

for collaboration

The coordinator participant

when recieves request for

coordination, will faicicilate

the collaboration session

Site 3 user,

participant

Collaboration

<<COBRA subsystem>>

Track work progress

Start collaboration

Terminate collaboration

Recieve/Send collaboration

messages

Monitor

Get consensus work completion

Integrate work Negotiate and resolve conflicts

Application

<<COBRA sybsystem>>

Run Applications

Private window

Petri Net Application

Pert Chart Application

Public window

Simulate Petri net

Simulate Pert ChartDisplay work brodcasted

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Display group work

Friend window

<<uses>>

<<uses>>

brodcast work

<<extends>>

<<uses>>

brodcast work

<<extends>>

brodcast work

<<extends>>

Participant

accepts

invitation for

collaboration

[image: image70.wmf] COBRAS Platform

COBRAS Application

COBRAS Panel

Communication

AddActionListner

AddActionListner

AddActionListner

AddActionListner

AddActionListner

File Menu

N

ew

O

pen

C

lose

S

ave

P

rint

E

xit

Insert Menu

P

lace

T

ransition

A

rch

T

oken

Edit Menu

E

dit

D

elete

C

lear

G

roup

R

egroup

Tool Menu

M

ove

D

rag

S

et delay

F

ire

R

eplay

S

imulate

C

onnect Menu

C

onnect

D

isconnect

Supervisor Server

Distributed Database server

Register

Database

connection

COBRA Site 2 Machine

Database

2

Database

connection

Register

Direct point-to-point

connection for

COBRA system sites

Database

1

COBRA Site 1 Machine

Note: The menus presented on this diagram are not complete menu for COBRA system, the menu

are shown to demonstrate the event based implicit invocation part of COBRAS architecture. For

complete menu listing, please see appendix B COBRA tool user guide.

[image: image71.emf] : CobraFrame : CobraPanel

 : PetriNet

 : Arch

 : ICommon

mousePressed(mouseEvent) actionPerfromed(ActionEvent)

 mousePressed(mouseEvent) and

mouseReleased(mouseEvent)are

generated when user clicks a position

on the panel to insert an object

actionPerfromed(ActionEvent)

is generated when user

selects an option from menu

mouseReleased(MouseEvent)

5: paintComponent(Graphics)

1: insEvent(AwrEvent)

4: setPosition(Place, Transition)

2: inIcommon(int, int)

3: inPosition(int, int)

6: draw(Graphics)

[image: image72.emf]CobraFilter

JFrame

(from swing)

ItemListener

(from event)

ActionListen

er

(from event)

JDialog

(from swing)

JTextField

(from swing)

Arch

JPanel

(from swing)

FileFilter

(from filechooser)

ComUtil

Place

Connection Vectors

Self2

Self1

Self3

Self

CobraFrame

Thread

(from lang)

CobraPanel

ICommon

PetriNet

1

-runner

1

1

1 -petriNet

1

1

DelayDialog

1

1

-tField

1

1

Thread

(from lang)

Transition

-tr

1

1

-runner

1

1

Server1 CobraFrame

Thread

(from lang)

APNPertChart

ICommon

Vector

(from util)

1

1

-vcon

1

1

1

1

-vcon1

1

1

1

1

+$eventVector

1

1

-usedVector

Vector

(from util)

+$v

-vcon

-vcon

-vcon

-vcon

PertChart

-runner

Thread

(from lang)

-runner

ICommon

-itemp

-selectedObj

-selectedObj

Vector

(from util)

-usedVector

Cycle APNArrow

APNNode

LinkedList

(from util)

1

+$groupList

1

1

1

-listener

1

1

1

1

+$petriList

1

1

Graphics

(from awt)

1

1

-graph

1

1

APNTransition

-graph

Thread

(from lang)

-runner

LinkedList

(from util)

1

1

-outList

1

1

1

1

-inList

1

1

LinkedList

(from util)

-llist1

-llist1

-llist2

-outList

-inList

Serializable

(from io)

LinkedList

(from util)

-inList

-outList

Node

LinkedList

(from util)

+$groupList

-listener

+$pertList

+$eventVector

+$pertList

-listener

-outList

-inList

-outList

Arrow

Runnable

(from lang)

[image: image73.wmf]

Sockets

RPCS

Parameter

types

RMI

HTTP

S-HTTP

SSL

OLE/

DCOM

Number of

interfaces

ORBS

Number of

parameters

COBRAS

 Architecture for Interaction

Primitive

data

Events

Objects

Performance [COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Min communication

time

[Coordination]

Min

coupling

[COBRAS]

Min extra

information

[Integration]

Min

duplication

[Integration]

Min

duplication

[COBRAS]

Min

coupling

[Integration]

Min communication

time[COBRAS]

Min processing

time

[Negotation]

Min processing

time

[Integration]

Min communication

time

[Communication]

Min

coupling

[Coordination]

Min

coupling

[Negotation]

Min

duplication

[Visual

conflicts]

Min

duplication

[Syntactic

conflicts

]

Min

duplication

[Semantic/

context

conflicts]

!!

!

!!

!!

!!

Min extra

information

[COBRAS]

Min processing

time

[COBRAS]

!!

!!

!!

!!

!!

!!

Min processing

time

[Coordination]

!!

*1

*2

*3

++

++

+

-

--

+

-

-

[image: image74.wmf]

COBRAS

Hybrid Architecture for Rationale

Performance [COBRAS]

Replacebility

[COBRAS]

Time

[COBRAS]

Storage

[COBRAS

]

Adaptability[COBRAS]

Comprehensibility

[COBRAS]

Testability

[COBRAS]

Maintainability[COBRAS]

Adaptability

[COBRAS]

Secuirty[COBRAS]

Security

[COBRAS]

[image: image75.emf]RunCOBRA

Application

Start

Select APN/PERT

Application

Work

individually

Terminate

application

End

Request

Collaboration

At this point a collaobration session is by

other users are active. This diagram only

shows a one user's activity. For more than

one users scenario, please see the

usecase diagram.

Work

Collaboratively

Request guranted

Modify broadcasted

 work

 Check Work

status

Broadcast

work

End

Collaboration

[Work individualy]

[Working collaboratively]

[Work not finished]

<<continue collaboration>>

<<End Collaboration >>

[Work finished]

Work finished

Join Collaboration session

[Recieve work from other users]

[Send work to other users]

End of Collaboration During Collaboration Before collaboration

[image: image76.emf]A1: Arch T1: Transition

:CobraFrame :CobraPanel

:PetriNet :ICommon

P1: Place

P2: Place

User selects Simulation menu

Simulation is done for the scenario drawn

on the screen provided it meet the

conditions for simulation. Otherwise an

error message will be generated.

Server1

Self

Self2

DelayDialog

PertChart

Node

Cycle

Reverse engineering summary

The reverse engineering process has given an insight to COBRAS existing system. The poor documentation, and use of unclear class name circumstances made the reverse engineering process difficult. However the following key points can be commented on the existing architecture.

1. The Pert Chart application which was added as extended feature for COBRAS is misunderstood greatly. The Pert Chart application should be able to use the underling working mechanism of Petri Net with some additional functionalities like cyclic checking and so on. However, the architecture shows, the developers are trying to implement the Pert Chart application like Petri Net which is reinventing the wheel. This can be seen from redundant classes functionality as presented in the reverse engineered class diagrams. For instance, classes PetriNet, APNPertChart are almost the same. Instead of adding a new APNPertChart class, the PetriNet class should be extended to accommodate the needed functionality of Pert Chart. Also classes like Transition and APNTransition are almost the same the later added for the Pert Chart application. In the existing architecture there are several redundant classes , non-accessed classes and methods. This shows that the existing architecture is not taking an advantage of object oriented approach efficiently for manipulating classes.

2. Class names like self, slef1, etc. are not meaningful. The classes used for the communication part of the system are not structured and intuitive.

3. Several fundamental features of COBRA system such as negotiation, coordination, integration, etc. are not implemented.

4. The concept of the communication from one client to the other is not clear in client/server architecture. It only allows for point-to-point communication setup. It doesn’t well address the distribution of clients and servers.

5. The socket communication method used in the system is not suitable for collaborative

 system where frequent communication and huge data transfer are required.

However, the current hybrid architecture of the COBRAS application is fairly good one. Issues discovered during reverse engineering can be applied positively to improve the existing COBRA architecture. The system is benefiting highly by using the Java programming language for events and other built in Java features.

PetriNet: Represents managing of objects and events for the PetriNet graph. PetriNet maintains two vectors, one of events and one for used items. PetriNet also maintains three linked lists. One for the number of attached listeners, one for groups, and one is the PetriList. PetriNet maintains a reference to the ICommon interface and the Thread class.

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

Note: In this diagram insignificant relationships and the Serializable class have been removed for clarity purpose. Please see subsequent detailed design diagrams of individual classes for the

implementation of the Serializable class.

Figure 4.� SEQ Figure * ARABIC \s 1 �32� Class diagram for Connection class

Figure � STYLEREF 1 \s �0�.� SEQ Figure * ARABIC \s 1 �34� Class diagram for CobraFilter class

Figure 4.� SEQ Figure * ARABIC \s 1 �35� Class diagram for Server1 class

Figure 4.� SEQ Figure * ARABIC \s 1 �31� Class diagram for CobraPanel class

Figure 4.� SEQ Figure * ARABIC \s 1 �30� Class diagram for Arch class

Figure 4.� SEQ Figure * ARABIC \s 1 �29� Class diagram for Arrow class

Figure 4.� SEQ Figure * ARABIC \s 1 �28� Class diagram for Place class

Figure 4.� SEQ Figure * ARABIC \s 1 �27� Class diagram for CobraFrame class

Figure 4.� SEQ Figure * ARABIC \s 1 �25� Class diagram for ICommon interface

Figure 4.� SEQ Figure * ARABIC \s 1 �26� Class diagram for Transition class

PetriNet

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

Figure 4.� SEQ Figure * ARABIC \s 1 �33� Class diagram for ComUtil class

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

PetriNet: Represents managing of objects and events for the PetriNet graph. PetriNet maintains two vectors, one of events and one for used items. PetriNet also maintains three linked lists. One for the number of attached listeners, one for groups, and one is the PetriList. PetriNet maintains a reference to the ICommon interface and the Thread class.

ICommon: Is an interface that defines common operations for the Arch, Place, Transition, APNTransition, Arrow, APNArrow, Node and APNNode classes. Theses specific operation are implemented within the classes. PetriNet maintains a reference to ICommon that represents the selected Object. CobrFrame maintains a reference to the ICommon class that

represents the current selection.

ICommon

Transition: Represents the Transition object between two Places. Transition implements the

ICommon and Serializable interface. Transition maintains two Linked Lists, one for in items and one for out items. It also maintains a reference to Graphic objects as well as a Thread called runner.

CobraFrame

CobraFrame: Represents the frame of the application. CobraFrame implements Runnable, Serializable, ActionListner, and ItemListner interfaces. CobraFrame is an extension of the Jframe class. CobraFrame maintains a reference to PetriNet, ICommon, and Thread classes.

Place: Represents the Place object that is connected by Arches and Transitions. Place implements the ICommon interface and the Serializable interface. Place maintains two linked Lists, one for the items connected into it and one for items connected out.

Arrow: Represents the arrow object from one point to another. Arrow implements the ICommon and Serilizable interface. It also keeps a reference to Point objects.

Arrow

Arch: Represents the Arch object that connects two Places. Arch implements the ICommon and Serilizable interface. It also keeps a reference to Point objects.

Arch

CobraPanel

CobraPanel: Represents panel of the application. CobraPanel is an extension of JPanel class. It also maintains a reference to the PetriNet class.

CobraFilter: It is an extension of the standard Java FileFilter class and used for file manipulations.

ComUtil

Connection: Represents the connections between clients. Connection implements the Serializable interface. Connection maintains a vector that represents all of the available connections.

Connection

ComUtil: A communication utility that handles the sending of objects and the cleaning of duplicated IP address and connections. ComUtil implements the Serializable interface.

Vectors: Manages the vectors that compromise the system.Vectors maintains a reference to Vector class and implements the Serializable interface.

Server1: Handles communication between the various clients that are connected to the PetriNet. It manages the connection between various clients and the processing of the

Incoming and outgoing requests. Server maintains a reference to Vector class and implements the Serializable interface.

Vectors

Self1: Represents event vector that is processed locally and sent to clients for processing. Self1 maintains a reference to Vector class. It also implements the Serializable interface.

Self: Represents event vector that is processed locally and sent to clients for processing. Self maintains a reference to Vector class. It also implements the Serializable interface. Self maintains two linked Lists llist1 and llist2.

Self1

Self3: Represents event vector that is processed locally and sent to clients for processing. Self3 maintains a reference to Vector class. It also implements the Serializable interface. Self3 maintains two linked Lists llist1 and llist2.

Self3

Self2: Represents event vector that is processed locally and sent to clients for processing. Self2 maintains a reference to Vector class. It also implements the Serializable and ICommon interfaces.

DelayDialog: DelayDialog is an extension of JDialog class. DelayDialog implements the ActioinListner interface. It also maintains a reference to the Transition and JtextField classes.

PertChart: Represents the simulation functionality for Pert Chart application. PertChart maintains two vectors, one for events and one for used items. It also maintains three linked lists. One for the number of attached listeners, one for groups, and one is the Pertlist. PertChart maintains a reference to the ICommon interface and the Thread class.

Node: Represents a Node object. Node implements the ICommon and Serilizable interface. It also maintains two linked lists, one for in items and one for out items.

Cycle: Represents a cycle for Pert Chart application. Cycle maintains a reference to APNArrow class.

APNTransition

APNTransition: Represents the Transition object between two places for Pert Chart application. APNTransition implements the ICommon and Serializable interface interfaces. It also maintains two linked lists, one for in items and one for out itmes. APNTransition maintains for a reference to Grphics objects as well as a Thread called runner.

APNArrow

APNArrow: Represents an arrow for APN Pert Chart application. APNArrow implements the ICommon and Serializable interfaces.

APNNode: Represents a node for APN Pert Chart application. APNNode implements the ICommon and Serializable interfaces. APNNode maintains two linked Lists, one for the items connected into it and one for items connected out.

APNNode

APNPertChart: Represents the simulation functionality for Pert Chart application. APNPertChart maintains two vectors, one for events and one for used items. It also maintains three linked lists. One for the number of attached listeners, one for groups, and one is the Pertlist. APNPertChart maintains a reference to the ICommon interface and the Thread class.

APNPertChart

Note: In this diagram insignificant relationships and the Serializable class have been removed for clarity purpose. Please see subsequent detailed design diagrams of individual classes for the

implementation of the Serializable class.

CobraFilter

Figure 4.� SEQ Figure * ARABIC \s 1 �36� Class diagram for Vectors class

Figure 4.� SEQ Figure * ARABIC \s 1 �37� Class diagram for self class

Figure 4.� SEQ Figure * ARABIC \s 1 �38� Class diagram for self1 class

Figure 4.� SEQ Figure * ARABIC \s 1 �39� Class diagram for Self2 class

Figure 4.� SEQ Figure * ARABIC \s 1 �40� Class diagram for Self3 class

Figure 4.� SEQ Figure * ARABIC \s 1 �41� Class diagram for DelayDialog class

Figure 4.� SEQ Figure * ARABIC \s 1 �42� Class diagram for PertChart class

Figure 4.� SEQ Figure * ARABIC \s 1 �43� Class diagram for Node class

Figure 4.� SEQ Figure * ARABIC \s 1 �44� Class diagram for Cycle class

Figure 4.� SEQ Figure * ARABIC \s 1 �45� Class diagram for APNTransition class

Figure 4.� SEQ Figure * ARABIC \s 1 �46� Class diagram for APNArrow class

Figure 4.� SEQ Figure * ARABIC \s 1 �47� Class diagram for APNNode class

Figure 4.� SEQ Figure * ARABIC \s 1 �48� Class diagram for APNPertChart class

� EMBED Visio.Drawing.5 ���

ix

PAGE

_1048598884.vsd
Type1[Topic1]�

Type1[Topic2]�

Type1[Topic3]�

Type1[Topic2_1]�

Type1[Topic2_2]�

Type1[Topic3_1]�

Type1[Topic3_2]�

_1049996798.vsd
COBRAS
 Architecture for Constraint�

Hybrid- Centeralized & Distributed�

Distributed with supervisor�

Constraint on components�

Constraint
 on Interactions�

Constraint on
Patterns�

Constraint on
Styles�

Performance [COBRAS]�

Time
[COBRAS]
�

Storage
[COBRAS]
�

Batch�

 Incremental�

Centralized�

Distributed �

Concurrent�

Sequential�

Min communication
time
[Communication]�

Min
coupling
[COBRAS]
 �

Min
duplication
[Integration]
�

Min
duplication
[COBRAS]
 �

Min
coupling
[Integration]
 �

Min communication
time[COBRAS]

�

Min processing time
[Negotation]

�

Min processing time
[Integration]

�

Min communication
time
[Communication
setup]�

Min
coupling
[Coordination]
 �

Min
coupling
[Negotation]
 �

!!�

!!�

!�

!�

!!�

!!�

!!�

!!�

!�

Min processing time
[COBRAS]
�

Min extra
information
[COBRAS]
�

Min extra
information
[Integration]
�

--�

Min processing time
[Coordination]

�

*5�

*3�

*4�

++�

!!�

++�

++�

-�

-�

+�

+�

*1�

*2�

-�

-�

+�

+�

-�

_1049997499.vsd
Performance [COBRAS]�

Min processing time
[COBRAS]
�

Time
[COBRAS]
�

Storage
[COBRAS]
�

Min communication
time
[Coordination]�

Min extra
information
[COBRAS]
�

Min
coupling
[COBRAS]
 �

Min extra
information
[Integration]
�

Min
duplication
[Integration]
�

Min
duplication
[COBRAS]
 �

Min
coupling
[Integration]
 �

Min communication
time[COBRAS]

�

Min processing time
[Coordination]

�

Min processing time
[Negotiation]

�

Min processing time
[Integration]

�

Min communication
time
[Communication]�

Min
coupling
[Coordination]
 �

Min
coupling
[Negotiation]
 �

�

Layered�

Shared
 Data�

Object
oriented�

Blackboard�

Implicit
Invocation�

Pipe&
Filter�

Control loop�

Shared
Information�

Client/
Server�

COBRAS
 Architecture for Styles�

Batch
Sequential�

Simple repository�

Hierarchical
layers�

 Virtual
 repository�

Client/server with file servers�

Client/
server
with
database�

Client/
server
withTP �

Client/
server
GroupWare �

Client/
server
Web
 �

Client/
server
distributed objects
 �

Min processing time
[Visual conflicts]

�

*1�

*2�

++�

Note: In this diagram, Batch sequential, Simple repository, Virtual repositry and Hieracrchical layers architecture styles are considered as decision points.�

Min processing time
[Syntactic conflicts]

�

Min processing time
[Semantic/ context
conflicts]

�

++�

+�

--�

Whiteboard�

+�

!!�

-�

!�

!!�

!!�

!!�

!!�

!!�

!!�

!!�

!!�

!!�

!!�

!�

_1049998434.vsd
COBRAS
 Architecture for Interaction�

Events�

Primitive
data �

Objects�

++�

HTTP �

S-HTTP �

*1�

Performance [COBRAS]�

Time
[COBRAS]
�

SSL �

OLE/DCOM�

Sockets�

RPCS�

 Parameter
types�

RMI �

Storage
[COBRAS]
�

Number of interfaces�

ORBS�

Number of parameters�

Min communication
time
[Coordination]�

Min
coupling
[COBRAS]
 �

Min extra
information
[Integration]
�

Min
duplication
[Integration]
�

Min
duplication
[COBRAS]
 �

Min
coupling
[Integration]
 �

Min communication
time[COBRAS]

�

Min processing time
[Negotation]

�

Min processing time
[Integration]

�

Min communication
time
[Communication]�

Min
coupling
[Coordination]
 �

Min
coupling
[Negotation]
 �

Min
duplication
[Visual conflicts]
�

Min
duplication
[Syntactic conflicts]
�

Min
duplication
[Semantic/ context
conflicts]
�

!!�

!!�

!�

!!�

!!�

!!�

Min extra
information
[COBRAS]
�

Min processing time
[COBRAS]
�

!!�

!!�

!!�

!!�

!!�

!!�

Min processing time
[Coordination]

�

*2�

*3�

++�

+�

-�

--�

+�

-�

-�

_1050063126.vsd
 COBRAS Platform�

COBRAS Application�

COBRAS Panel�

Communication�

AddActionListner�

AddActionListner�

AddActionListner�

AddActionListner�

AddActionListner�

Register�

File Menu
New
Open
Close
Save
Print
Exit

�

Insert Menu
Place
Transition
Arch
Token

�

Edit Menu
Edit
Delete
Clear
Group Regroup

�

Tool Menu
Move
Drag
Set delay
Fire
Replay
Simulate

�

Connect Menu
Connect
Disconnect

�

Database connection�

COBRA Site 2 Machine�

Database 2�

Supervisor Server�

Distributed Database server�

Database 1�

Database connection�

Register�

Direct point-to-point connection for COBRA system sites�

COBRA Site 1 Machine�

Note: The menus presented on this diagram are not complete menu for COBRA system, the menu are shown to demonstrate the event based implicit invocation part of COBRAS architecture. For complete menu listing, please see appendix B COBRA tool user guide. �

_1049997933.vsd
Performance [COBRAS]�

Min processing time
[COBRAS]
�

Time
[COBRAS]
�

Storage
[COBRAS]
�

Min communication
time
[Coordination]�

Min extra
information
[COBRAS]
�

Min
coupling
[COBRAS]
 �

Min extra
information
[Integration]
�

Min
duplication
[Integration]
�

Min
duplication
[COBRAS]
 �

Min
coupling
[Integration]
 �

Min communication
time[COBRAS]

�

Min processing time
[Coordination]

�

Min processing time
[Negotiation]

�

Min processing time
[Integration]

�

Min communication
time
[Communication]�

Min
coupling
[Coordination]
 �

Min
coupling
[Negotiation]
 �

�

Layered�

Shared
 Data�

Object
oriented�

Blackboard�

Implicit
Invocation�

Pipe&
Filter�

Control loop�

Shared
Information�

Client/
Server�

COBRAS
 Architecture for Styles�

Batch
Sequential�

Simple repository�

Hierarchical
layers�

 Virtual
 repository�

Client/server with file servers�

Client/
server
with
database�

Client/
server
withTP �

Client/
server
GroupWare �

Client/
server
Web
 �

Client/
server
distributed objects
 �

Min processing time
[Visual conflicts]

�

*2�

Min processing time
[Syntactic conflicts]

�

Min processing time
[Semantic/ context
conflicts]

�

Min
duplication
[Visual conflicts]
�

Min
duplication
[Syntactic conflicts]
�

Min
duplication
[Semantic/ context
conflicts]
�

Whiteboard�

!!�

!�

!!�

!!�

!!�

!!�

!!�

!!�

!!�

!!�

!!�

!!�

!!�

!!�

!!�

++�

+�

*3�

!�

*1�

-- �

-- �

- �

- �

+�

+�

- �

Note: In this diagram, Shared data, Object oriented, Implicit invocation, Pipe& filter, Layerd and Control loop architecture styles are considered as decision points.�

_1049997377.vsd
Performance [COBRAS]�

Min processing time
[COBRAS]
�

Time
[COBRAS]
�

Storage
[COBRAS]
�

Min communication
time
[Coordination]�

Min extra
information
[COBRAS]
�

Min
coupling
[COBRAS]
 �

Min extra
information
[Integration]
�

Min
duplication
[Integration]
�

Min
duplication
[COBRAS]
 �

Min
coupling
[Integration]
 �

Min communication
time[COBRAS]

�

Min processing time
[Coordination]

�

Min processing time
[Negotiation]

�

Min processing time
[Integration]

�

Min communication
time
[Communication]�

Min
coupling
[Coordination]
 �

Min
coupling
[Negotiation]
 �

�

Layered�

Shared
 Data�

Object
oriented�

Blackboard�

Implicit
Invocation�

Pipe&
Filter�

Control loop�

Shared
Information�

Client/
Server�

COBRAS
 Architecture for Styles�

Batch
Sequential�

Simple repository�

Hierarchical
layers�

 Virtual
 repository�

Client/server with file servers�

Client/
server
with
database�

Client/
server
withTP �

Client/
server
GroupWare �

Client/
server
Web
 �

Client/
server
distributed objects
 �

*2�

*3�

*1�

Min
duplication
[Visual conflicts]
�

Min
duplication
[Syntactic conflicts]
�

Min
duplication
[Semantic/ context
conflicts]
�

Whiteboard�

++�

!!!�

*5�

Note: In this diagram, Client/server with file servers, Client/server with database, Client/server with TP, Client/server GroupWare, Client/server Web and Client/server distributed objects styles are considered as decision points.�

!!�

!!�

!�

!!�

!!�

!!�

!!!�

!!!�

!!�

*6�

!!!�

!!!�

!!�

*4�

++�

++�

+�

+�

--�

+�

+�

+�

-�

-�

-�

_1049997128.vsd
COBRAS
Architecture for Patterns�

Performance [COBRAS]�

Time
[COBRAS]
�

Storage
[COBRAS]
�

Min communication
time
[Coordination]�

Min
coupling
[COBRAS]
 �

*2�

Min
duplication
[Integration]
�

Min
duplication
[COBRAS]
 �

Min
coupling
[Integration]
 �

Ring�

Min communication
time[COBRAS]

�

Parallel�

Sequential�

Manhattan �

Star�

Min processing time
[Negotiation]

�

Min processing time
[Integration]

�

Min communication
time
[Communication]�

Min
coupling
[Coordination]
 �

Min
coupling
[Client nodes]
 �

Min extra
information
[Integration]
�

!!�

!!�

!!�

!!�

!!�

*1�

Min extra
information
[COBRAS]
�

!!�

!!�

!�

!!�

++�

++�

+�

!!�

Min processing time
[COBRAS]
�

-�

Min processing time
[Coordination]

�

--�

-�

+�

_1048631566.vsd
Type1[Topic1]�

Type2[Topic1]�

Type3[Topic1]�

Type2_1[Topic1]�

Type2_2[Topic1]�

Type3_1[Topic1]�

Type3_2[Topic1]�

_1049996537.vsd
Performance [COBRAS]�

Time
[COBRAS]
�

Storage
[COBRAS]
�

Min communication
time
[Negotiaton]�

Min
coupling
[COBRAS]
 �

GUI�

Integrator�

 Client-server
communicator�

Negotiator �

Repository �

Min
duplication
[Integration]
�

Min
duplication
[COBRAS]
 �

Min
coupling
[Integration]
 �

Animator�

Min communication
time[COBRAS]

�

Simulator�

COBRAS
 Architectural Component�

Min processing time
[User intereaction]

�

Min processing time
[Simulation]

�

Min communication
time
[client -server
Communicator]�

Min
coupling
[Coordination]
 �

Min
coupling
[Negotiation]
 �

Replay �

!�

!�

!�

!�

!!�

!!�

!!�

Objects�

!�

!�

!�

Min processing time
[COBRAS]
�

Min extra
information
[COBRAS]
�

Min extra
information
[Integration]
�

Min processing time
[Animation]

�

Data�

Events�

Static generator�

Scenario Driver�

++�

Event Generator�

Utility
GUI�

Mapper�

Basic GUI�

Condition
indicator�

Time�

Scale�

Single-level only�

Nested levels �

Distrbuited�

Centeralized�

Concurency controlerl�

Consistancy manager�

Proposal tracker�

Argumentation supporter�

Session manager�

Initiator�

Terminator�

++�

++�

++�

++�

++�

++�

++�

_1048631049.vsd
Machine 1 Client/server�

Machine 3 Client�

Machine 3 Client/server�

Communication Set-up option 1 -Distributed system set-up for Client/server direct point-to-point communication�

Machine 1 Client�

Machine 2 Client�

Communication Set-up option 2 -Centralized system set-up for Client/server communication through central server�

�

Machine 2 Client/server�

Central�

Machine 1 Client/server�

 Machine 3 Client/server �

Communication Set-up option 3 - Hybrid system set-up for Client/server both direct point-to-point and distributed communication through central server�

Machine 2 Client/server�

Machine 1 Client/server�

Machine 3 Client/server�

Communication Set-up option 4 - Distributed system set-up for Client/server with Supervisor Machine to Monitor activities�

Machine 2 Client/server�

�

Supervisor Machine�

�

Central Server�

Server�

_1048551017.vsd
COBRAS
 Architecture for Interaction�

Events�

Primitive
data �

Objects�

HTTP �

S-HTTP �

SSL �

OLE/DCOM�

Sockets�

RPCS�

 Parameter
types�

RMI �

Number of interfaces�

ORBS�

Number of parameters�

_1048568378.vsd
COBRA Client-Server
System�

Replay�

GUI�

Animator�

Negotiator�

Repository�

Client-sever
communicator�

Integrator�

Simulator�

Symbols used:
- Shadow eclipse represents the COBRA system as a client-server.
- Cleared eclipse represents main components for COBRA system.�

_1048587719.vsd
or ++ Strongly Positive Satisficing�

or + Positive Satisficing�

or - Negative Satisficing�

or -- Strongly Negative Satisficing�

Symbols for different degrees of Satisficing. �

Small normal shadow represents NFRs.�

Small dotted shadow represents the NFR under consideration for Rational.�

Bolded shadow represents an Architecture or elements for Architecture alternatives.�

!�

Exclamation symbol shows priorities among NFR types that are considered in the SIG graph. Prioirtiy decreasing in ascending order.�

Indicates an Exclusive OR decomposition unless otherwise indicated.�

Min �

Indicates an AND decomposition.�

*�

 Abbreviation used for Minimize.�

Max �

 Abbreviation used for Maximize.�

_1048551175.vsd
COBRAS
 Architecture for Patterns�

Ring�

Parallel�

Sequential�

Manhattan �

Star�

_1048551106.vsd
COBRAS
 Architecture for Constraint�

Hybrid- Centeralized & Distributed�

Distributed with supervisor�

Constraint on components�

Constraint
 on Interactions�

Constraint on
Patterns�

Constraint on
Styles�

Batch�

 Incremental�

Centralized�

Distributed �

Concurrent�

Sequential�

_1048493500.vsd
java.lang.Object�

java.util.EventObject�

java.awt.AWTEvent�

ComponenetEvent�

ActionEvent�

MouseEvent�

java.util.EventListener�

ActionListener�

MouseListener�

MouseMotionListener�

�

�

Class name�

Interface name�

KEY�

_1048550561.vsd
COBRAS
 Architectural Component�

Replay �

Objects�

Distrbuited�

Data�

Events�

Repository �

Static generator�

Scenario Driver�

Animator�

Event Generator�

GUI�

Integrator�

 Client-server
communicator�

Utility
GUI�

Negotiator �

Mapper�

Basic GUI�

Simulator�

Condition
indicator�

Time�

Scale�

Single-level only�

Nested levels �

Centeralized�

Concurency controlerl�

Consistancy manager�

Proposal tracker�

Argumentation supporter�

Session manager�

Initiator�

Terminator�

_1048550804.vsd
Whiteboard�

Implicit listening �

Implicit
announcement �

Implicit registration �

Implicit
de-registration
�

Implicit triggering
�

Implicit event declaration �

�

Layered�

Shared
 Data�

Object
oriented�

Blackboard�

Implicit
Invocation�

Pipe&
Filter�

Control loop�

Shared
Information�

Client/
Server�

COBRAS
Hybrid Architecture for Styles�

Batch
Sequential�

Simple repository�

Hierarchical
layers�

 Virtual
 repository�

Client/server with file servers�

Client/
server
with
database�

Client/
server
withTP �

Client/
server
GroupWare �

Client/
server
Web
 �

Client/
server
distributed objects
 �

_1048546027.vsd

�

Interactions�

Styles�

 Constraints�

Rationale�

COBRAS Model of Software Architecture�

Components �

Patterns�

 �

_1048489408.vsd
COBRAS
Hybrid Architecture for Rationale�

Performance [COBRAS]�

Replacebility
[COBRAS]
�

Time
[COBRAS]
�

Storage
[COBRAS]
�

Adaptability[COBRAS]
�

Comprehensibility
[COBRAS]
 �

Testability
[COBRAS]
 �

Maintainability[COBRAS]

�

Adaptability
[COBRAS]
�

Secuirty[COBRAS]
�

Security
[COBRAS]
�

