CHAPTER 5

COLLABORATIVE SCENARIO BETWEEN REMOTE SITES

[image: image1.png][image: image35.wmf]Place

Transition

Token

T

Figure 5.1 Online collaboration

This is to illustrate the kinds of scenarios that can typically be encountered during the distributed, cooperative process, for both normal and exceptional sequences of actions by, and interactions between, the participants. As an example a mobile communication system organization which has three geographically remote branches in Texas, North Carolina and Ontario is used. By identifying the typical set of scenarios, we will investigate those essential concepts of Knowledge Network (hereafter, KN) that will enable people to work in virtual offices to discover problems, learn about them, formulate them, propose solutions, carry out trade-off analysis, etc. through collaboration.

The scenario set will provide enough context and patters of actions and interactions, including both KN-level concepts such as concurrency, synchronization, decision making and negotiation, and communication network-level concepts such as delayed transmission, minimal rollback, etc Also this scenario helps to illustrate "what can go wrong" lines of hypothetical reasoning that can be applied to the mostly normal scenario set for the distributed, cooperative process. This is also to take a deeper look at the mostly normal scenario set by raising "who, when and where" kinds of questions, in order to ensure that the set is satisfactorily complete, sound, consistent, and clear. Ultimately, then, we will have confidence in the completeness, soundness and clarity of our investigation into the problems of user-centered Knowledge Network (KN) and into potential solutions utilizing the underlying communication network.

1.1. Collaboration Cycle

(Preparatory collaboration

 (Prepare a preliminary schedule (initial, interim and final progresses and evaluations).

 (Determine who will participate, when, and any special arrangements. Draft a criteria to

 judge when the work can be said to be complete.

 (Make sure all participants expected are virtually present. Let the first session get started,

 with all participants as a whole or split in several groups.

(During collaboration

 (Work according to the preliminary schedule. Make sure expected participants do

 participate according to the schedule. Make sure all special arrangements are met.

 (Keep track of work progress. Find any deviation of the work from the expected quality,

 time, and cost.

 (Detect, record, negotiate and resolve any conflicts.

 (Detect, record, and maximally complement each other and utilize synergy.

(At the end of collaboration

 (Get a consensus that the work is completed

 (Ensure the work is readily evolvable with a proper version management.

 (Detect, record, negotiate and resolve any conflicts.

 (Detect, record, and maximally complement each other and utilize synergy.

[image: image36.wmf]Place

Transition

Token

T

Ontario: Hi, everyone. I'm starting to work on the project. Now I have two states and one transition, which I hope you also see on your screens. {#s=2, #t=1}

 S1 ------T1-----S2 : Ont

 (What if not everybody is around?

 (What if Ont and NC do not think it's appropriate for Ont to go first?

 (What if there is no consensus as to what needs to be achieved, by when, for whom and by

 who?

 (What if there should be 2 states and 2 transitions?

 (What if no communication takes place at all?

 (What if there is delay in transmission (e.g., info. about two states has successfully been transmitted, but not about the transition)

[image: image2.wmf]Public Window

S 1

S 1 2

T 1 1

T 1

T 1 3

S22

S 1 3

T 1 2

S 1 4

S 2 1

T 1 4

T 2 0

S 2 0

S 2

ON Window

S 1 2

T 1 1

S 1 3

T 1 2

S 1 4

Figure 5.2 Collaborative Processing (view from Ontario)

[image: image3.wmf]Texas: Yes, I see them. I have added another state. So, I see three states and one transition in total. {#s=3, #t=1}

 S1 ------T1-----S2 : Ont
 S11 : Tx

(What if Ontario's work is not agreeable? ask for explanation ?

(How can addition be done? virtually or physically?

[image: image4.wmf]Public Window

S 1

S 1 2

T 1 1

T 1

T 1 3

S22

S 1 3

T 1 2

S 1 4

S 2 1

T 1 4

T 2 0

S 2 0

S 2

TX Window

S 1

T 1

T 1 3

S22

T 1 4

S 2

Figure 5.3 Collaborative Processing (view from Texas)
[image: image5.wmf]North Carolina: Yes, I see them. I have added three other states and one transition. In total, I see five states and two transitions. {#s=5, #t=2}

 S1 ------T1-----S2 : Ont

 S11 has not arrived yet

 S20 -----t20----S21 s22 : NC

(What if the current model is disagreeable?

(How to tell which is created by whom, and who to tell?

(What if information about one transition should be communicated, but not about 3

 other states until higher level of confidence is obtained?

 - > tentative vs. permanent work spaces

(What if the spacing is now too narrow?

North Carolina: Pause... Wait a minute, now I also see another state (S11) defined by Texas. {#s=6, #t=2}

 S1 ------T1-----S2 : Ont
 S20 -----t20----S21 s22 : NC

 S11 : Tx

(What if the new state is also disagreeable, in addition to the work by Ontario?

(What if NC wants to make a suggestion for a discussion?

(What if the new state overlaps with some of NC's new creations?

 - > shift - > inform - > get agreement - > commit

[image: image6.wmf]Public Window

S 1

S 1 2

T 1 1

T 1

T 1 3

S22

S 1 3

T 1 2

S 1 4

S 2 1

T 1 4

T 2 0

S 2 0

S 2

NC Window

S 2 1

T 2 0

S 2 2

Figure 5.4 Collaborative Processing (view from North Carolina)
Texas: Oops, I was about to delete S11. Ok, now you, Ontario and North Carolina, shouldn't see S11.

(What if somebody else has just done some work on S11?

(What if the reason for deleting S11 is quite important for everybody else to know?

(What if it is a wrong decision to delete S11?

Texas: Ok, I see what North Carolina sees. Now, I have added three other states and four transitions. {#s=9, #t=6}

S1 ------T1-----S2 : Ont
S11 (deleted) : Tx
S20 -----t20----S21 s22 : NC

S12 -----T11----s13----t12----{s14, S22} : Tx

{S2, S12}-----T13----S22 : Tx

{S2, S12}-----T13----S22 : Tx

S22-----T14----S21 : Tx

(What if it takes a while before the new features are finalized?

(What if Texas now wants to sign off?

(What if the new features need approval from several parties?

(What if the positions of the new features are not agreeable by other
Ontario: I have added an arc. Please tell me if this is acceptable to you both.

S1 ------T1-----S2 : Ont

S11 (deleted) : Tx
S20 -----t20----S21 s22 : NC

S12 -----T11----s13----t12----{s14, S22} : Tx

{S2, S12}-----T13----S22 : Tx

{S2, S12}-----T13----S22 : Tx

S22-----T14----S21 : T

T12-----S20 : O
(What if the system goes down now, if not already down?

(What if a new branch has to start participating in the work?

Ontario: Pause... Looking at the whole thing, I feel one of the states defined by North Carolina is not quite right (S21). Can you look into this? In the meantime, we have a freeze on the potentially erroneous state. I'll work on another part of the project which does not seem very much related to the potential error

(Who is going to look into the potentially erroneous specification?

(By what time should the agreement be reached?

(What would be the mode of communication, broadcast or individual

(Who is going to coordinate the efforts?

Texas: Ok, I'll wait for North Carolina to respond. In the mean time, I'll also work on another part. By the way, please send me everything you have when done not just the changes.

(What if TX does not state her position? What would be a good method for handling “quietness”

(What if NC is not willing?

(When should the changes be communicated, anytime or only when both are active?

North Carolina: I need to think about it carefully, but I do not want to hold you for too long. So, I have divided the specification into two parts, one that is unlikely to be affected, and the other definitely affected. The first one likely to be affected is: {T14-S21<-T20}

(What if NC wants to divide the spec into more than two parts?

 E.g., definitely affected, likely to be affected, unlikely to be affected, definitely not affected.

(What if NC thinks that the whole thing is to be affected one way or another?

Texas: Good idea, North Carolina. By the way, I am about to go over what Ontario and North Carolina have done. Ontario, can you see more carefully then if my part suits the needs on your end?

(What if ONT and NC have different preferences?

(What if ONT has some other important work?

(What if ONT thinks that the current system is not adaptable?

(What if ONT uses a local tool for doing analysis and at this point its use at other sites will be helpful?

(What if ONT now brings up a part of an earlier specification developed for another project?

1.2. Scenario Observation

Would we want to impose certain constraints on the way the different branches act, and interact with each other to overcome the concerning issues mentioned during the scenario analysis between the three branches? The answer seems to be yes, if we want a "good enough" specification to be developed in a reasonable amount of time and cost, and if such constraints are flexible. The following KN level observations are made

(The unit of communication is not always one primitive concept at a time, but a chunk of inter-related concepts:

· cursor movements, character input, entire screen

· use objects as a unit at least for the current project

· decompose concepts in terms of objects

 (Activities across the branches are not totally ordered, but only

 partially. E.g., (NC || (Ont – TX)) - > (NC - > {Ont, TX}) || (TX - > {NC, Ont}):
· categorize activities into ordered, unordered

· categorize ordered activities into total and partial

· maintain information about instances of categorized activities

· detect uncategorizable activities as exceptions

(Communication routes are not fixed, but varying. E.g., NC - > TX - ->Ont - >{NC, TX}:

· maintain information about fixed routes, concerning types of concepts

· maintain information about fixed routes which have been violated

(Communication is i) synchronous

 --- E.g., Tx is at a critical decision point and needs inputs from both NC and Ont before making any further progress; or ii) asynchronous --- E.g., NC is sleeping, while Ont as produced something. Ont (virtually) sends it to NC's mailbox:

 (synchronous collaboration:

 -> communicate the need for synchronization

 -> use teleconferencing (whiteboard) for discussion

 (asynchronous collaboration:

 -> maintain project-specific mailboxes

 -> separate answered from unanswered messages

(A wide variety of metadata is needed. E.g., shape, color, size, coordinate, semantics (agreed upon):

· mapping between syntax and semantics naming, vocabulary, ontology, and registry

(Merging requires both internal and external (i.e., visual) merging. This may involve change in properties, such as coordinate shifting and rotation, as well as computing differences (e.g., 3 states and 2 transitions are common to two different models):

· maintain a consistent context across networks

· knowledge of goals, changing and conflicting

· knowledge of visual display, coordination status, negotiation

· minimal perturbation, leave everything as is

· basic GUI

(Inconsistency propagates, both locally and across KN sites. Need classification of types of inconsistencies (e.g., explicit, implicit, instanceOf, attributeOf), and corresponding exception handling mechanisms e.g., A over ~A; weaken (A AND ~A); discard (A AND ~A).

(Inconsistency resolution may require negotiation, for example, who will handle inconsistency initially and subsequently - the originator or the discoverer or through a group effort, what items are being negotiated.

(Change control is needed, especially when some parts are shared by multiple parties and yet change needs to be made by a single party (perhaps, the originator) at a time policy. This would be like a black-board architecture:

· changes may require exploratory discussions, e.g., what if you change this, and you try something different the controller(s) has to be determined.

(Change control can be based on a white-board architecture too. This would give the illusion that all the participants share a virtual work space and every set of actions is shown in the white-board.

(Change may propagate, both locally and across KN sites.

(Coordination support is needed, perhaps through a work schedule, tracking the status. E.g., NC first by time tNC, Ont next unless otherwise by time tOnt, and Tx by time tTx. This would also involve who needs to know what. Perhaps based on a combination of white-board and black-board architecture, the coordination process should be dynamic and adaptive.

(No-coordination principle can be used too, a la stateless. communication of web-based client-server computing. This may be simpler than coordinated communication but mostly likely used infrequently as it defeats the paradigm of collaborative processing.

(Several different modes of knowledge sharing are needed. Some knowledge may be

 private, some may be open to a limited number of groups who have been involved

 directly in its creation, some may be completely public. Types of resources are: windows; knowledge of goals, plans and tasks; knowledge of reasoning strategies; persistent/ephemeral (locally or in transition) information; etc.

· sharing knowledge of outsourcing: a dynamic creation, participation, and withdrawal of a collaborator.

· sharing knowledge of who is in conversation with who, for how long, why, etc subgroup discussion, e.g., {ONT, NC, TX}, {ONT, NC}, {ONT, TX}, {TX, NC}

1.3. Scenario Summary

As seen in the initial and final scenario, collaboration in distributed system manifested to be difficult. The core problem can be summarized into two fundamental issues. The first difficulty seems to arise from deciding number of interactions during collaboration. The number of interactions between KN sites must be balanced and sufficient. Too many interactions consume long processing time and delay in decision. Too few interactions will result in poor design and defeats the purpose of collaboration concept. Thus, the challenge lies in determining the perfect number of interactions during collaboration for a particular project.

The second problem lies in determining the perfect design space. The design space must neither be too big to collaborate KN sites smoothly nor too small to cumbersome collaboration. Thus, the second challenge lies choosing the right design space for a particular project during collaboration.

The above two problems can be solved by using tools which are integrated in the COBRA tool set. The COBRA tool set will use the NFR Assistant and the Scenario Assistant tools as a base. The NFR Assistant tool will be used to analyze the quality of the behavioral description of a particular system. The Scenario Assistant tool will be used to analyze the behavioral description of a particular software system. Thus, the COBRA tool set by utilizing the NFR and SA tools will result in successful collaboration between KN sites. T

T

CHAPTER 6
COBRA TOOL IMPLEMENTATION

1.4. APN implementation

[image: image7.wmf]

Sequencin

g

T1

T2

T1

Concurrenc

y

T2

T3

Synchronizati

on

T1

T2

T3

Figure 6.2 Fundamental notions of APN

Figure 6.1 APN primitives

The above figure 6.1 shows the primitives for APN which is a form of FSMs, first proposed by C.A. Petri in 1962 [14]. It is notion for defining abstract concurrent processes. When all input places of a transition are enabled (i.e., with a token) and an external stimulus associated with the transition occurs, the token moves from the input places to output places. Any of the events shown in figure 6.2 sequencing, concurrency and synchronization behaviors can be created using APN principle. For

m of nation for

1.5. Pert Chart implementation

The COBRA tool set underlining framework APN can be used to simulate different software system applications. Software Systems’ internal behavior coincide with APN principle can use the COBRA tool to simulate their behavior dynamically. A project management tool Pert Chart is one of the software systems that can be simulated using the COBRA tool APN framework. Traditional PERT Chart representation lacks dynamic functionality to monitor project progress . By incorporating the COBRA APN simulation mechanism to existing Pert Chart, projects can be planned and monitored dynamically.

Why do we need PERT Chart

A project normally consists of sequence of events and activities and involves group of people working on it. In order to complete the project in the most efficient way and to ensure the production of high quality deliverables, project scheduling is a necessary step. One of the major purposes of project scheduling is the conversion of a project action plan into an operating timetable. It can also set a fundamental basis for monitoring and controlling project activity time. Project scheduling can help illustrate the inter-dependence of all tasks, work packages and work units; it determines an expected project completion date; it identifies the critical tasks from hundreds of small tasks required to accomplish a larger goal; it tracks their progress to ensure that delay is recognized; and it provides a road map for a project manager.

What is PERT Chart

A PERT chart is a project management tool used to schedule, organize, and coordinate tasks within a project. PERT stands for Program Evaluation Review Technique, a methodology developed by the U.S. Navy in the 1950s to manage the Polaris submarine missile program. A similar methodology, the Critical Path Method (CPM), which was developed for project management in the private sector at about the same time, has become synonymous with PERT, so that the technique is known by any variation on the names: PERT, CPM, or PERT/CPM.

A PERT chart presents a graphic illustration of a project as a network diagram consisting of numbered nodes (either circles or rectangles) representing events, or milestones in the project linked by labeled vectors (directional lines) representing tasks in the project. The direction of the arrows on the lines indicates the sequence of tasks. In the figure 6.2.3, for example, the tasks between nodes 1, 2, 4, 8, and 10 must be completed in sequence. These are called dependent or serial tasks. The tasks between nodes 1 and 2, and nodes 1 and 3 are not dependent on the completion of one to start the other and can be undertaken simultaneously. These tasks are called parallel or concurrent tasks. Tasks that must be completed in sequence but that don't require resources or completion time are considered to have event dependency. These are represented by dotted lines with arrows and are called dummy activities. For example, the dashed arrow linking nodes 6 and 9 indicates that the system files must be converted before the user test can take place, but that the resources and time required to prepare for the user test (writing the user manual and user training) are on another path. Numbers on the opposite sides of the vectors indicate the time allotted for the task.

The PERT Chart is sometimes preferred over the Gantt Chart, another popular project management charting method, because it clearly illustrates task dependencies. On the other hand, the PERT chart can be much more difficult to interpret, especially on complex projects. Frequently, project managers use both techniques. There are two different ways to construct a PERT/CPM chart. The first one is called AON PERT/CPM chart, in which AON stands for Activity on Node. In an AON PERT/CPM chart, each node represents an activity and for example, A -> B means activity A must be completed before activity B can start. The second one is called AOA (Activity on Arrow) PERT/CPM chart. In an AOA PERT/CPM chart, each node represents an event or milestone and the activity is represented by arrows that connect the nodes. The choice between AON and AOA is a matter of personal preference because it doesn’t influence the functionality of PERT chart. Generally speaking, users of PERT chart favor AOA and users of CPM favor AON.

Conversion from PERT to APN

The existing COBRA system provides mechanisms to plot Augmented Petri-Net (APN) and allows simulation of the behavior of a system represented by an APN. Similar functionality should be available on PERT chart. To incorporate the simulation and monitoring functionalities to PERT chart representation, a conversion from PERT to APN by the system is needed to facilitate the implementation of the functionalities.

In other words, after a user plots a PERT chart on the screen, the COBRA tool should be able to translate it to an APN and display the APN upon user’s request.

Several restrictions apply to the mapping between PERT and APN.

(1) In a PERT chart, concurrency can be represented simply by using diverging arrow directions. However, in a APN, diverging arrow indicates decision making, and at most one branch can be executed. The mapping can be done by creating dummy node in APN, as is shown below.

Figure 6.3 APN and PERT mapping differences

2) Synchronization notation is needed in APN when mapping one event resulted from two actitivies in PERT.

Figure 6.4 Synchronization mapping between APN and PERT

(3) In PERT chart, since each activity can either be finished ahead of time or delayed, the expected time does not need to be a condition to hold for a transition to be made when mapping a PERT to APN. Instead, The time constraint should be represented as a self-loop on each state of the APN in order for the system to monitor the project processing status against schedule.

[image: image8.wmf]1

2

3

4

5

6

7

8

9

10

11

Create

Schedule

Buy

Hardware

Programming

Installation

Test Code

Write Man

Conversion

Test System

Training

User Test

10

20

20

10

5

15

15

5

5

10

1

2

3

4

5

6

7

8

9

10

11

Create

Schedule

Buy

Hardware

Programming

Installation

Test Code

Write Man

Conversion

Test System

Training

User Test

10

20

20

10

5

15

15

5

5

10

Figure 6.5 PERT Chart

[image: image9.wmf]

1

1’

2

3

4

5

5’

6

7

8

9

10

11

Schedule

done

@now>=t0+9

?

~d

one /reminder

Hardware

bought

@now>=t0+4

?

~d

one /reminder

Progr

amming

done

@now>=t0+18

?

~d

one /reminder

@now>=t0+13

?

~d

one /reminder

Installation

done

@now>=t0+13

?

~d

one /reminder

man done

@now>=t0+4

?

~d

one /reminder

conversion

done

@now>=t0+4

?

~d

one /reminder

Tra

inin

g

do

n

e

@now>=t0+9

?

~d

one /reminder

User test done

@now>=t0+18

?

~d

one /reminder

Code test done

@now>=t0+9

?

~d

one /reminder

system test done

1

1’

2

3

4

5

5’

6

7

8

9

10

11

Schedule

done

@now>=t0+9

?

~d

one /reminde

r

Hardware

bought

@now>=t0+4

?

~d

one /reminder

Programming

done

@now>=t0+18

?

~d

one /reminder

@now>=t0+13

?

~d

one /reminder

Installation

done

@now>=t0+13

?

~d

one /reminder

man done

@now>=t0+4

?

~d

one /reminder

conve

rsion

done

@now>=t0+4

?

~d

one /reminder

Tra

inin

g

don

e

@now>=t0+9

?

~d

one /reminder

User test done

@now>=t0+18

?

~d

one /reminder

Code test done

@now>=t0+9

?

~d

one /reminder

system test done

Figure 6.6 PERT Chart implementation

1.6. COBRA tool concepts and features

The development of the COBRA tool set started in 1994 at the University of Texas at Dallas software engineering lab as a research prototype tool. The first version was implemented using c/c++ and tc/tlk languages. Since then the tool has gone through significant progress to the current stage where the highly desirable on-line collaboration between sites is partially achieved. Still the enhancement of the tool is on-going using the Java language and more focusing on the functionality of efficient communication between different sites during collaboration and to add more functionality for smooth collaboration environment. Also based on APN frame work a Pert Chart feature for project management and coordination is under implementation (see section 6.2 for detail on Pert Chart application).

We attempt to demonstrate a sample of COBRA tool functionality by presenting several screen captures along with explanation. The sequence of diagrams explain what a particular user experiences from start of collaboration, during collaboration and end of collaboration phases.

Beginning of collaboration.

Figure 6.7 shows a typical COBRA application display before start at any of the collaboration site. The user must choose which application to run from the Mode menu, APN or Pert Chart

[image: image10.png]
Figure 6.7 Choosing mode
 After choosing the application the user need to make a connection to remote site users by using the Link-Connect menu to collaborate with the remote sites as shown in figure 6.8.
 [image: image11.png]
Figure 6.8 Connecting to remotes sties
Then the dialog window prompts up asking user to enter the IP address of the remote host user like to connect as shown in the below figure 6.9 The user must know the IP address of remote host to communicate.

[image: image12.png]
Figure 6.9 Dialog window
 The user can use the Insert menu to insert Place, Transition, Arch, Token or condition

 to draw a diagram as shown in diagram 6.10 below.

[image: image13.png]
Figure 6.10 Inserting objects
 By using the Insert menu, the user can cerate APN diagram in the private window as shown below in diagram 6.11.
[image: image14.png]
Figure 6.11 Creating APN diagrams

[image: image15.png]
Figure 6.12 Broadcasting work to remote sites
Once the user draw the diagram in the private window and wishes to broadcast the work to other sites, he/she can do so by selecting Link-Broadcast menu to broadcast the diagram from private window to public window of all connected hosts as shown in the below diagram 6.12.

During collaboration

 When a user wants to collaborate with other hosts, he/she need to broadcast the work done in the private window by using the broadcast menu. The below diagram 6.13 window shows one of other remote hosts after local host broadcasting.

[image: image16.png]
Figure 6.13 Broadcasted work display on public window
[image: image17.png]
Figure 6.14 Broadcasted work displayed on remote sites public window
 Woks broadcasted from other host will appear in the public window as shown in the above window. A user who wants to work on this broadcasted work needs to load it to private window by using Link-Refresh menu as shown in diagram 6.15 below.
[image: image18.png]
Figure 6.15 Loading broadcasted work to public window
After executing the refresh menu, the public window work will appear in the private window. The user will continue working on this private window and can broadcast the modified version to other remote sites as shown below in diagram 6.16.
[image: image19.png]
Figure 6.16 Modifying broadcasted work from remote sites
Pert Chart application

The mechanism for using the Pert Chart application is similar to the APN application. A typical Pert Chart session is shown below in the diagram 6.17. Presenting a scenario caption like the APN descried above by several diagrams is not possible for Pert Chart at this time due to incomplete implementation. One of the future work will be to present a full scenario for Pert Chart application.

[image: image20.png]
Figure 6.17 Pert Chart diagram
Terminating the collaboration session

 A user who wants to disconnect from other users can select the Link-Disconnect menu. After disconnecting from other remote sites, a user may want to continue working independently or can terminate the application by executing File-Exit menu as shown below in the diagram 6.18

[image: image21.png]
Figure 6.18 Terminating collaboration session
CHAPTER 7

RELATED WORK

The COBRA system presented in this paper is related to various kinds of software systems and tools, ranging from software engineering environments, CASE tools, to groupware and virtual whiteboard technology. At general level COBRA system’s basic concept is similar to academic and commercial tools which are based on cooperative processing paradigm. However the COBRA system focuses in goal-oriented architecture approach to solve distributive cooperative processing issues and offering an online collaboration which allows multiple designers to work on the same project at the same time.

 At the academic level many research has been conducted in collaborative Web Based applications and collaborative educational applications. At M.I.T Artificial Intelligence Laboratory, the “Intelligent Information Infrastructure Project” [17] developed an extremely general system for distributing and retrieving information that will work over major Internet protocols. On this project a wide-area collaboration system was developed for collaborating a national meeting. At the University of North Carolina, the Colab group [18] has been engaged in similar research of distributed collaboration. This group involves different projects such as Collaboration Bus, software that makes it easy to compose collaborative systems, CAETI - investigating software infrastructure to support the development of multi-user K-12 educational applications. The National Science Foundation supported an ABC project that was developed by the Coalb group which includes a distributed, hypermedia file system and a distributed shared window system which supports efficient, multiple views of a shared window in X-and Java- based environments.

The concept of COBRA is closely related to existing tool TDE--telecom design environment [16] aimed as team collaboration tool for Nokia engineers. Using these tool Nokia engineers can collaborate with their colleagues across the continent to design systems collaboratively and share works. However, the system’s highly desired real time collaboration feature is not attainable, communication draw backs across continents as well as the speed of storing and retrieving information during collaboration has become cumbersome for users. Similarly, Sun Microsystems Laboratories' Interactive Collaborative Systems group is working on investigating the feasibility and usability issues of a network-based virtual space [24]. This project focuses on two parts, the Kansas project which is a computing environment that enables real time collaboration between participating users and Distance Learning, using Distributed Tutored Video Instruction.

 The recent emerging Web technology has opened another window for increasing the demand of collaborative systems. Several web-based collaboration systems has been developed and commercially available. The GMPP project [15] describes a Web Flow an environment that supports distributed coordination services on the World Wide Web. Web Flow leverages the HTTP Web transport protocols and consists of a number tools for the development of applications that require the coordination of multiple, distributed servers. Typical applications of Web Flow include distributed document workspace, inter/intra-enterprise workflow, and electronic commerce.

 More and more internet based collaboration commercial products are appearing everyday. Specially the new business paradigm e-commerce solution for Business-to-Business (hereafter, B2B) lies in the heart of cooperative processing. TradeMatrix, a product by I2 technologies, Inc. [20] is one example that targets business groups, individuals for business and management. This system provides decision support solution for critical process and collaborative decision support across multiple partners. It also offers product design collaboratively between product and marketing mangers to produce a good quality product. Production processes can be monitored in real time so crucial decision can be made to meet customers demand. Another similar product Grove is offered by Groove Software Ltd. [21] This product uses Internet communications software that allows people with interests to make direct connection for real – time interaction with their colleagues or business partners. BEA Systems [22] also unlashed it’s WebLogic Collaborate in E-business platform to provide companies a real time collaborated B2B application. This product enables companies to customize their e-market needs and manage complex B2B interactions to meet real business requirements.

COBRA verses other collaboration tools comparison

 A summary of collaboration tools is illustrated in the below tables to compare the common functionality of randomly taken academic and commercial tools. As it can be seen from below listed tables 7.1, 7.2 and 7.3, different collaborative tools have different features but all targeted collaboration either between people or businesses. The web based collaboration is currently dominant in most collaboration tools, and the web based feature is one of the main future work for COBRA system.

	Tool Back ground
	Key Objective
	Intended users
	Tool Features

	University of

Texas at Dallas
Tool Name: COBRA: Distributed, Collaborative processing.

Started in 1994 as a research project.
	Targeting advanced software engineering methodology for developing requirement and architecture collaboratively.
	Software designers, requirement engineers, system engineers and project managers.
	See table 7-2

	Nokia Inc.

Tool Name: TDE:

Telecom software Design environment

Started in 1996 as a collaborating tool for Nokia
	To support geographically distributed, location-transparent collaboration of software designers by providing the virtual workspaces.

	Software designers, system engineers.
	See table 7-2

	Sun Microsystems

Tool Name: Kansas

Used as a study tool for investigating the feasibility and usability issues of Network-based virtual space.
	For computing environment that enables real time collaboration between participating users
	Intended for group collaboration, currently focused on distance learning.
	See table 7-2

	Grove software Ltd.

Tool Name: Grove
	Internet communications software that allows people with interests to make direct connections for real-time interaction
	Business groups, individuals for business ,pleasure and management
	See table 7-2

	I2 technologies,

Tool name: TradeMatrix

	Decision support solution for critical process and decisions inside the company and in collaboration with business partners and customers.
	Business groups, for business and management
	See table 7-2

	BEA Systems,

Tool name: WebLogic Collaborate
	Manage complex B2B interactions to meet real business requirements.
	Business groups, i for business and management
	See table 7-2

Table 7‑1 Collaboration tool comparison

	Tool Name
	Tool Architecture
	Collaboration method
	Tool features

	COBRA
	Client-server
	TCP/IP network
	See table 7-3

	TDE
	Client-server
	TCP/IP network, Intranet
	See table 7-3

	Kansas
	Client-server
	TCP/IP network, Intranet
	See table 7-3

	Groove
	Client-server web
	Web-based
	See table 7-3

	TradeMatrix
	Client-server web
	Web-based
	See table 7-3

	WebLogic Collaborate
	Client-server web
	Web-based
	See table 7-3

Table 7‑2 Collaboration tool comparison for tool architecture

	Tool Name
	Security
	Graphic Design tool
	Text based feature
	Video capability
	Audio Capability

	COBRA
	Under implementation
	Yes
	Under implementation
	Future implementation
	Future implementation

	TDE
	Yes
	Yes
	Yes
	No
	No

	Kansas
	Yes
	Not known
	Yes
	Yes
	Yes

	Groove
	Yes
	Not known
	Yes
	Not known
	Yes

	TradeMatrix
	Yes
	Yes
	Yes
	Not Known
	Yes

	WebLogic Collaborate
	Yes
	Not Known
	Yes
	Yes
	Yes

Table 7‑3 Collaboration tool comparison for tool features

CHAPTER 8
COBRA TOOL DEVELOPMENT PROCESS OBSERVATION

Final meeting minutes Dec 12, 2000

1. Communication group:

Current status: Two windows, private and public windows are available.

The architecture is based on distributed server who uses blind broadcast method. The number of sites that can communicate at one time is limited by the memory of the machine since the implementation uses link list. The current implementation is that when a user at site 1 draws on private window, when the user wants to send his work to other site he uses the broadcast menu, which displays the work on other users public window. Also the new work broadcasted from the other’s appear on the users 1 public window, if the user wants this broadcasted work to appear on his private window he/she can do so by pressing refresh/reload menu.

Open items: The implementation of the friend window, which shows specific group’s work is not implemented due to time constraint.

Discussion: Sending data back and forth by appending to the original data is unacceptable due to communication bottleneck. Thus, the current architecture of socket method used for communication is not suitable. To overcome the above deficiency a new architecture should be used. Thus, an architecture similar to file management scheme where add, delete, and modify the three basic operations must be considered. Though the underlined mechanism for this collaboration tool should be similar to file management, which uses file stream method, this can’t be implemented directly for communication application. Therefore, the solution ventured by Dr. Chung is to select another method of communication. In fact some semesters ago one of the groups used CORBA–ORB architecture to use selective broadcasting which unfortunately the work is lost to poor documentation. The key lies on keeping consistence object id, which is assigned by the compiler. Object id can not sent back and forth because it is not visible to developers. The feasible solution is to use RMI method not sockets which are lower level implemented in the current version.

Observation: It seems the requirement is not fully understood by the team, perhaps the requirement is high level and does not give a good insight developers how to construct the system. The following issues are worth considering for the next versions.

Do other users actually have a knowledge when one user is doing a work? What is the difference between broadcasting either blindly or selectively to other users ? working on the private area versus doing collaboration interactively in real system where all users can see activity of others all the time perhaps in public window?. Is not, the idea behind collaboration is to design things freely and interactively on white board methods? Or perhaps it is good to keep the two features to have fully interactive and periodically broadcasting ?. A labeling mechanism identifying the users must be implemented to identify participants work, this can be extended for video and audio features too. A saving mechanism “work capture” of the user work as well as the collaboration instant must be defined. A form of textual communication will be useful in order for users to send comments or suggestions. This can be broadcasted with a work done or simply as a message. There should be a mechanism where document attachments and links to the documents can be inserted during broadcasting.

Action points:

Change the communication architecture from socket to RMI or other methods to achieve more efficient communication of collaboration. Define the role of three windows more precisely

Add a friend window.

Points to consider:

 1.Make sure the team actual understand the requirement, existing running system, and

 issues that are required to be done before starting the job. Perhaps doing interactive demo

 by the previous group to the new group before starting the project would be a good start.

 2 It is preferable someone with file management programs experience assigned to this

 part of project to change the socket implementation to RMI.

2 Pert Chart Goup:

Current status: The drawing of Pert Chart simply as a drawing tool works, but it has no dynamic

intelligence. A menu is added to use the Pert Chart application separately from the Petri Net.

Open items: Simulation of Pert Chart in Petri net environment, conversion of Pert Chart to Petri net is not implemented.

Discussion: I believe this is the most misunderstood part of the system. Perhaps due to the lack of clear requirement. At least from my point view the objective of this project was to demonstrate the underlying concept of Petri net where applications that can use Petri net as a base concept can be simulated using the existing application. Since a nice commercial Pert Chart is available for scheduling that can be used by project managers, just redrawing the Pert Chart again using COBRA tool wouldn’t contribute anything new to the commercially existing Pert Chart idea. As explained by Dr Chung in one of the meetings, the idea behind the Pert Chart is, that given a Pert Chart , we can convert it to Petri net thus allowing a mapping from static Pert Chart to dynamic Petri net based Pert Chart. So by doing this the existing static Pert Chart will be converted to dynamic model by using the underlying Petri net intelligence. Then simulation can be done to predicate schedules, find out current project status dynamically at any point at different sites and also do monitor project progress and send reminder notification to different site project managers upon request. Also the current implementation of Petri net where it doesn’t allow for delay firing to actual simulate delay schedule in Pert Chart. The challenge lies in mapping the Pert Chart entities to Petri net where some of the instance does not exist, for instance how to handle two inputs exist in Pert Chart is not known (see Peart Chart section 6.2 for details). Also how to handle day inputs to the simulation reveal to be difficult. There is a consensus with in the group the idea has to be refined and redefined to be reconciled with the Petri net idea to overcome the current requirement conflict.

Observation: A good requirement must be defined detailing the necessity of the Pert Chart. Also the relationship between the Petri net and Pert Chart must be studied carefully to achieve the needed functionality.

3 Simulation Group

Current status: Simulation on private window works.

Open items: Move function has a problem, when one place moves the transition gets disconnected. This correction is not completed due to time constraints.

Discussion: The discussion seems fairly straightforward. Most of the issues that have existed before seem to be resolved.

Observation: The drag functions and the current move functionality seems to be fuzzy Drag function should be implemented as the concept of any standard window drag function where pointing to the object and dragging will accomplish the same task.
Action point: Change the drag functionality as standard window implementation, here simply clicking the object and dragging should do the task Remove the vertex when drawing place.

General Conclusion: As any typical software development process, generally there is lack of sufficient communication between the functionality of each development group’s responsibility. Especially the simulation part and the Pert Chart implementation were not working well. The inter working of each parts the simulation, communication, and Pert Chart are not clearly defined. Thus making the integration of the parts at the end difficult. For future implementation it is vital that each group understand it’s responsibility and must consider the relative effect to other part of the system for later integration before introducing changes to the existing system. Since most of the work is done semester by semester, an incremental integration approach should be used during each semester’s development groups in order to overcome any late integration pitiful at the end of the semester. Therefore, substantial communication as well as good interaction between groups is needed to smooth integration and produce a working system.

Also coordination and monitoring features during the on-line collaboration is not present in the current system. Functionalities such as who must initiate and establish the collaboration, how issues are resolved when they arise in the middle of the collaboration is not considered. This important feature which helps to achieve a full and successful collaboration is missing from the current implementation. Without having solid methods to establish, perform and terminate collaboration session, true and reliable collaboration can not be achieved.

Report on Fall 2000 Architecture class reverse engineering project for COBRA tool

The fall 2000 Software architecture class students at University of Texas at Dallas was given the opportunity to work with the COBRA tool set without the communication functionality. The class composed in 20 groups was asked to come up with the software architecture for COBRA tool set by using reverse engineering process. The groups was given access to both the COBRA tool as well as to the source code to help them in their reverse engineering process. Aside from producing the software architecture the groups were also asked to give critique to the current architecture and suggest any recommendations they might have to improve the existing architecture.

One of the difficult issues lies in this project is, there is no original software architecture and good documentation for the COBRA tool set. Since it was intended as a research prototype tool and different students has been working in each semester, each subsequent groups could have shaped the architecture during enhancement. Also due to poor documentation passed from group to group each semester, the new group could have been reworking a functionality that has been done previously or simply change things around based on personal preference without any rational.

Most of the architecture groups has come up with many but similar software architectures during their reverse engineering process. Specially some of the groups has used a reverse engineering tool Rational Rose to convert the source code to class and component hierarchy so the relationships between components can be seen easily. Most of the groups has discussed issues that are presented in the current version as well as provided a recommendation for future development. The points brought up by groups can be summarized as follows.

 Almost all of the groups have concluded that the COBRA tool is based on hybrid architecture type which composed different types of architecture due to the characteristics of the project. The type of architecture identified by many groups are, client-server, object oriented, ADT- abstract data type, and implicit invocation [2]. Even though most of the group expressed that using the hybrid model architecture for this project suitable, they also pointed out short comings that are presented when using a particular architecture. For instance one group commenting about implicit invocation method, pointed out that using the even listener mechanism when announcing events can lead to heavy load and high network traffic generation because each machine has to act as event listener as well as event announcer at the same time. This group suggested creating a separate control process that can run above the machines to control interaction between event listener and event announcer thus lifting the load from the actual machines.

The object oriented architecture of the project has received many critiques and recommendations. One of the common comments is that each classes responsibility is not well defined, class names are not meaningful and the relation between classes can not be seen easily without tracking the inheritance. Some of the classes are overloaded with responsibility while some of the classes have very small and similar responsibility that it can be combined with other classes. One group has mentioned that the classes in the code are highly cohesive that some of the classes like PetriNet having too many responsibilities. Also some classes like Place and Transition are loosely coupled thus lacking knowledge of each other.

The client-server architecture also has received some critique and recommendation from several groups. One highlight from one group was the system lucking the redundancy mechanism when using sockets for communication. Instead of trying the same socket until successful or get an exception error, it is suggested that a mechanism to try another port connection instead of try the same port to make a socket successful. While most of the groups consider an advantageous to use client and servers interchangeably for loading sharing and security, some of the groups suggested a client and server must be designated specifically to allow faster communication.

In regard to the application, most of the groups pointed out the non-functional menus such as Save and so on. Also the Drag menu is highly criticized and many suggested that a common GUI drag functionality where grabbing the object and moving around to the user’s desired position should be implemented. One other interesting issue discussed by a group was the system’s lack of coordinator to facilitate the collaboration session. The group suggested a rule should be defined as who need to be invited, accept, reject a session and as well as which object is visible to which participant and who the authority on the final version of the design product.

Generally all the groups tend to agree the current architecture is good which allows easily extensibility and maintenance. Considering the poor documentation and no user manual on how to run the system, the architecture groups have done an excellent job to describe the architecture and gave an insight where the current COBRA tool stands not only from the users point of view but also from technical point of view. Their useful recommendation will be a great input to feature COBRA tool set development.

CHAPTER 9

SUMMARY

1.7. Conclusion

This thesis has outlined the necessity of a paradigm shift from centralized to distributed collaborative system. The thesis also has attempted to propose a systematic approach to making a smooth transition from the traditional GroupWare technology, which enforces more of fixed routes, rules and roles, to other enabling technologies for the new distributed, cooperative processing paradigm, which should allow for more flexibility for the planning of routes, rules and roles, for the tracking of work progress, and for the adjustment of the old plan. Our approach is intended to help organizations and developers benefit by using distributed, cooperative processing system, in quicker adaptation of the project to changes, more accurate modeling of the system behavior by reducing duplications, decreased cost of travel between geographically remote places, more flexible scheduling of deadlines and task durations, reduction in project cycle and cost, more creative productivity while enjoying in exotic places with more time and money available, etc.

 In particular, the COBRA (Collaborative Behavioral Requirements and Architecture) project attempts to help potential collaborators develop their behavioral requirements and architecture. Both functional and non-functional requirements are probed in some detail by using Software Engineering methodologies. Rational Rose is used to capture the functional requirements, and the NFR Framework to capture the non-functional requirements. Development of a system architecture is done in terms of the constituents of a model of software architecture – components, interactions, constraints, patterns and styles. This thesis has presented a number of alternatives for each type of such constituents in meeting the functional requirements. Here, the NFR Framework is used to rationalize the development process by considering (functional) architectural alternatives in the constituents and selecting among them where non-functional requirements are used as the selection criteria.

Through the COBRA tool set, this thesis has provided an initial understanding of how to support a large-scale software development project in a geographically distributed setting, where designers need to collaborate not only with their immediate peers, but also with colleagues located in other departments, cities or even countries. Considering that, this way of collaborative working is becoming more and more common place, and yet supported poorly by the current software engineering tools and environments, it can be anticipated that prototype systems like COBRA might lend some insights to the way large-scale software systems are designed and built.

To this end, implementing some of concepts for supporting the distributed collaborative computing paradigm as a prototype COBRA tool set has been a major milestone. Many of the concepts presented in this thesis have already been implemented. However, development of the COBRA tool set has it’s share of pitfalls as just about any other software systems. In part it is because the complexity of the development of the COBRA prototype tool set was significantly underestimated initially. The complexity has become more apparent, and prevailed, as we made more progress through the different project phases. Understanding the concepts clearly, communicating them among the COBRA project participants, coordinating the various tasks have been quite time-consuming, sometimes even as frustrating as it is of a great challenge.

Another related, but somewhat distinct, reason might be that the COBRA system is very broad in scope and highly exploratory, with moving targets and incorporating more concepts in new(er) areas. During the implementation, some of the concepts was misunderstood and some critical parts of the system was overlooked. The immense amount of communication required between different groups during the development process has prevented us from making progresses as initially planned.

Even though producing the COBRA prototype tool which supports full on-line collaboration seem to be quite challenging, the results gained so far is very encouraging and promising The COBRA tool set is implemented incrementally, hence the availability of a running system anytime. This would make it possible for both members of the COBRA project and non-member practitioners in industry to play with the tool and debug deficiencies in both the problem statement and its solution. Hence, we believe the COBRA tool set could serve as a starting point for developing a full on-line collaboration system.

In general, we see online collaboration as one of the central areas in going towards location-transparent, collaborative software design. However, there are still many open issues pertaining to online collaboration. Most of these issues stem from the fact the mere collaborative editing of graphical design is not enough. There is a clear need to have audio and video connection available in order to make communication more efficient. Therefore, one of the important aspects of future work is to deal with the integration of multi-media capabilities and offer a web-based on-line collaboration feature by expanding the COBRA tool set. The result we trust would be the provision of more satisfactory distributed collaborative system which would support location-transparent cost effective teamwork environment.

1.8. Future Research

The current COBRA tool is started as a research prototype to demonstrate distributed collaborative processing concept. However, by no means we are confident to say the requirement and architecture for the COBRA tool is complete. Since collaborative system is a vast complex system, the refinement process of the requirement and architecture will continue parallel with the current tool development process. Findings during reverse engineering will be addressed with additional requirements and architectures. Additional mapping of NFRs like maintainability, adaptability and security (see appendix A for skeleton SIG diagrams) will be studied to further enhance existing architecture by providing more architecture alternatives.

The forward and reverse engineering methods used in the COBRAS projects have benefited the research project significantly. Requirement incompleteness and errors found during the reverse engineering has helped to enhance the present COBRA tool architecture. As systems become more complex, using reverse engineering techniques is indispensable for tackling problems and enhancing the system, therefore in the future development phase of COBRAS, reverse engineering technique will applied to advance the COBRA project.

 Software development is a highly dynamic process where process activity, uncertainty, informal communication and incremental modification plays an important role. In order to accommodate this, a wide area of research in advanced network communication, metamodeling for object oriented database, hypertext, advance graphical user interface and etc. need to be explored in COBRA project. The next challenging phase for COBRA tool is to support web-based online collaboration with audio and video capabilities.

SIG DIAGRAMS

 In this Appendix A, SIG diagrams are shown for Maintainability, Adaptability and Security NFRs. Their impact for alternative architecture for COBRA system will be studied in the future. The same NFR framework method described in Chapter 4 section 4.3 for probing NFR Performance will be used for the NFRs shown in this appendix.

[image: image22.wmf]

Replaceability

[COBRAS]

Min data

sharing

[COBRAS]

Min control

sharing

 [COBRAS]

Min Coupling

[COBRAS]

Maintainability

[COBRAS]

Min domain

assumption

[COBRAS]

Max functional

Independence

[COBRAS]

Max use of widely-

use techniques

[COBRAS]

Comprehensibility

 [COBRAS]

Testability

[COBRAS]

Min

coupling

[COBRAS]

Optimize size

of each

component

[COBRAS

]

Max simulation

support

[COBRAS]

Max

validatability

[COBRAS]

Max

Integration

testability

[COBRAS]

Min nesting

[COBRAS]

Max

consistency

checking

 [COBRAS]

Max functional

Independence

[COBRAS]

Max animation

support

[COBRAS]

COBRAS NFRS

Max

Cohesion

[COBRAS]

GUI

Integrator

 Client-server

communicator

Negotiator

Repository

Animator

Simulator

COBRAS

 Architectural Component

Replay

Objects

Data

Events

Static

generator

Scenario

Driver

Event

Generator

Utility

GUI

Mapper

Basic

GUI

Condition

indicator

Time

Scale

Single-

level

only

Nested

levels

Distrbu

ited

Center

alized

Concu

rency

control

erl

Consist

ancy

manage

r

Prop

osal

track

er

Argu

ment

ation

supp

orter

Session

manager

Initia

tor

Termi

nator

Figure A 1 Skeleton SIG for COBRAS Architectural components

[image: image23.wmf]

Security [COBRAS]

Min data

sharing

[COBRAS]

Min number of

Parameters

 [COBRAS]

Min Set

valued

parameters

and returns

[COBRAS]

Min frequency of

communication

 [COBRAS]

Adaptability [COBRAS]

Max analyzability

of impact from

Changes

[COBRAS]

Max

openness

[COBRAS]

Offer several

similar

components

[COBRAS]

COBRAS NFRS

GUI

Integrator

 Client-server

communicator

Negotiator

Repository

Animator

Simulator

COBRAS

 Architectural Component

Replay

Objects

Data

Events

Static

generator

Scenario

Driver

Event

Generator

Utility

GUI

Mapper

Basic

GUI

Condition

indicator

Time

Scale

Single-

level

only

Nested

levels

Distrbu

ited

Center

alized

Concu

rency

control

erl

Consist

ancy

manage

r

Prop

osal

track

er

Argu

ment

ation

supp

orter

Session

manager

Initia

tor

Termi

nator

Figure A 2 Skeleton SIG for COBRAS Architectural components

[image: image24.wmf]

Layered

Shared

 Data

Object

oriented

Blackboard

Implicit

Invocation

Pipe&

Filter

Control

loop

Shared

Information

Client/

Server

COBRAS

 Architecture for Styles

Batch

Sequential

Simple

repository

Hierarchical

layers

 Virtual

 repository

Client/

server

with file

servers

Client/

server

with

database

Client/

server

withTP

Client/

server

GroupWare

Client/

server

Web

Client/

server

distributed

objects

Whiteboard

Replaceability

[COBRAS]

Min data

sharing

[COBRAS]

Min control

sharing

 [COBRAS]

Min Coupling

[COBRAS]

Maintainability

[COBRAS]

Min domain

assumption

[COBRAS]

Max functional

Independence

[COBRAS]

Max use of widely-

use techniques

[COBRAS]

Comprehensibility

 [COBRAS]

Testability

[COBRAS]

Min

coupling

[COBRAS]

Optimize size

of each

component

[COBRAS

]

Max simulation

support

[COBRAS]

Max

validatability

[COBRAS]

Max

Integration

testability

[COBRAS]

Min nesting

[COBRAS]

Max

consistency

checking

 [COBRAS]

Max functional

Independence

[COBRAS]

Max animation

support

[COBRAS]

COBRAS NFRS

Max

Cohesion

[COBRAS]

Figure A 3 Skeleton SIG for COBRAS Architectural styles

[image: image25.wmf]

Security [COBRAS]

Min data

sharing

[COBRAS]

Min number of

Parameters

 [COBRAS]

Min Set

valued

parameters

and returns

[COBRAS]

Min frequency of

communication

 [COBRAS]

Adaptability [COBRAS]

Max analyzability

of impact from

Changes

[COBRAS]

Max

openness

[COBRAS]

Offer several

similar

components

[COBRAS]

COBRAS NFRS

Layered

Shared

 Data

Object

oriented

Blackboard

Implicit

Invocation

Pipe&

Filter

Control

loop

Shared

Information

Client/

Server

COBRAS

 Architecture for Styles

Batch

Sequential

Simple

repository

Hierarchical

layers

 Virtual

 repository

Client/

server

with file

servers

Client/

server

with

database

Client/

server

withTP

Client/

server

GroupWare

Client/

server

Web

Client/

server

distributed

objects

Whiteboard

Figure A 4 Skeleton SIG for COBRAS Architectural Styles

[image: image26.wmf]

Replaceability

[COBRAS]

Min data

sharing

[COBRAS]

Min control

sharing

 [COBRAS]

Min Coupling

[COBRAS]

Maintainability

[COBRAS]

Min domain

assumption

[COBRAS]

Max functional

Independence

[COBRAS]

Max use of widely-

use techniques

[COBRAS]

Comprehensibility

 [COBRAS]

Testability

[COBRAS]

Min

coupling

[COBRAS]

Optimize size

of each

component

[COBRAS

]

Max simulation

support

[COBRAS]

Max

validatability

[COBRAS]

Max

Integration

testability

[COBRAS]

Min nesting

[COBRAS]

Max

consistency

checking

 [COBRAS]

Max functional

Independence

[COBRAS]

Max animation

support

[COBRAS]

COBRAS NFRS

Max

Cohesion

[COBRAS]

Sockets

RPCS

Parameter

types

RMI

HTTP

S-HTTP

SSL

OLE/

DCOM

Number of

interfaces

ORBS

Number of

parameters

COBRAS

 Architecture for Interaction

Primitive

data

Events

Objects

Figure A 5 Skeleton SIG for COBRAS Architectural Interactions

[image: image27.wmf]

Sockets

RPCS

Parameter

types

RMI

HTTP

S-HTTP

SSL

OLE/

DCOM

Number of

interfaces

ORBS

Number of

parameters

COBRAS

 Architecture for Interaction

Primitive

data

Events

Objects

Security [COBRAS]

Min data

sharing

[COBRAS]

Min number of

Parameters

 [COBRAS]

Min Set

valued

parameters

and returns

[COBRAS]

Min frequency of

communication

 [COBRAS]

Adaptability [COBRAS]

Max analyzability

of impact from

Changes

[COBRAS]

Max

openness

[COBRAS]

Offer several

similar

components

[COBRAS]

COBRAS NFRS

Figure A 6 Skeleton SIG for COBRAS Architectural Interactions

[image: image28.wmf]

Replaceability

[COBRAS]

Min data

sharing

[COBRAS]

Min control

sharing

 [COBRAS]

Min Coupling

[COBRAS]

Maintainability

[COBRAS]

Min domain

assumption

[COBRAS]

Max functional

Independence

[COBRAS]

Max use of widely-

use techniques

[COBRAS]

Comprehensibility

 [COBRAS]

Testability

[COBRAS]

Min

coupling

[COBRAS]

Optimize size

of each

component

[COBRAS

]

Max simulation

support

[COBRAS]

Max

validatability

[COBRAS]

Max

Integration

testability

[COBRAS]

Min nesting

[COBRAS]

Max

consistency

checking

 [COBRAS]

Max functional

Independence

[COBRAS]

Max animation

support

[COBRAS]

COBRAS NFRS

Max

Cohesion

[COBRAS]

Batch

Incremental

Centralized

Distributed

Concurrent

Sequential

COBRAS

 Architecture for Constraint

Hybrid-

Centeralized

& Distributed

Distributed

with

supervisor

Constraint

on

components

Constraint

 on

Interactions

Constraint

on

Patterns

Constraint

on

Styles

Figure A 7 Skeleton SIG for COBRAS Architectural Constraints

.

[image: image29.wmf]

Batch

Incremental

Centralized

Distributed

Concurrent

Sequential

COBRAS

 Architecture for Constraint

Hybrid-

Centeralized

& Distributed

Distribute

d with

superviso

r

Constraint

on

components

Constraint

 on

Interactions

Constraint

on

Patterns

Constraint

on

Styles

Security [COBRAS]

Min data

sharing

[COBRAS]

Min number of

Parameters

 [COBRAS]

Min Set

valued

parameters

and returns

[COBRAS]

Min frequency of

communication

 [COBRAS]

Adaptability [COBRAS]

Max analyzability

of impact from

Changes

[COBRAS]

Max

openness

[COBRAS]

Offer several

similar

components

[COBRAS]

COBRAS NFRS

Figure A 8 Skeleton SIG for COBRAS Architectural Constraints

[image: image30.wmf]

Replaceability

[COBRAS]

Min data

sharing

[COBRAS]

Min control

sharing

 [COBRAS]

Min Coupling

[COBRAS]

Maintainability

[COBRAS]

Min domain

assumption

[COBRAS]

Max functional

Independence

[COBRAS]

Max use of widely-

use techniques

[COBRAS]

Comprehensibility

 [COBRAS]

Testability

[COBRAS]

Min

coupling

[COBRAS]

Optimize size

of each

component

[COBRAS

]

Max simulation

support

[COBRAS]

Max

validatability

[COBRAS]

Max

Integration

testability

[COBRAS]

Min nesting

[COBRAS]

Max

consistency

checking

 [COBRAS]

Max functional

Independence

[COBRAS]

Max animation

support

[COBRAS]

COBRAS NFRS

Max

Cohesion

[COBRAS]

Parallel

Sequential

Manhattan

Ring

Star

COBRAS

Architecture for Patterns

Figure A 9 Skeleton SIG for COBRAS Architectural patterns

[image: image31.wmf]

Security [COBRAS]

Min data

sharing

[COBRAS]

Min number of

Parameters

 [COBRAS]

Min Set

valued

parameters

and returns

[COBRAS]

Min frequency of

communication

 [COBRAS]

Adaptability [COBRAS]

Max analyzability

of impact from

Changes

[COBRAS]

Max

openness

[COBRAS]

Offer several

similar

components

[COBRAS]

COBRAS NFRS

Parallel

Sequential

Manhattan

Ring

Star

COBRAS

Architecture for Patterns

Figure A 10 Skeleton SIG for COBRAS Architectural patterns

COBRA TOOL SET USER GUIDE
Purpose

The purpose of this document to is to give a step by step approach on how to run the COBRA tool set for users. The current COBRA tool set is written using JDK 1.3 version. The COBRA tool set offers two features for users. A user can run the stand alone COBRA tool set feature just for drawing and simulating a Petri net and just to draw a Pert Chart application. A user also can run the collaboration feature of the COBRA tool set to communicate with other users for sending and receiving works between remote sietes. A user needs to have the JDK 1.3 Java environment is required in the machine that runs the COBRA tool set.

Getting started

The COBRA tool source code must be compiled first from java environment.

1. To compile the source code from DOS prompt, execute the command : Javac CobraFrame.java [image: image32.png]
Figure B 1 Dos prompt in Java environment

2. To bring the COBRA tool application up from DOS prompt,
[image: image33.png]
Figure B 2 Bringing up COBRAS environment
 execute the command: Java CobraFrame
[image: image34.png]
Figure B 3 COBRAS user interface screen
 after the above command execution, the Java application window prompts up:

 now you are ready to run the application you desire, either Petri net or Pert Chart

 choosing from the Mode menu.

Interface controls

 Menu items

 Menu name: Mode

 Purpose: Allows user to select the application they want to run

 either Petri net or Pert Chart application.

 Menu choice: APN
 Allows user to run the Petri net application.

 Menu choice: Pert Chart
 Allows user to run the pert chart application.

 Menu name: File

 Purpose: Allows user to open , close. print and save files. Also it

 allows user to exit application.

 Menu choice: New

 Allows user to create a new file.

 Menu choice: Open

 Allows user to open existing file.

 Menu choice: Clos

 Allows user to close currently opened file.

 Menu choice: Save

 Allows user to save open work to file.

 Menu choice: Save as

 Allows user to save as open work to file with given file name.

 Menu choice: Print

 Allows user to print displayed work to printer.

 Menu choice: Exit

 Allows user to exit the application.

 Menu name: Edit

 Purpose: Allows the user to edit objects displayed on the screen.

 Menu choice: Delete

 Allows user to delete from the screen an object selected

 Menu choice: Clear

 Allows user to clear objects from the screen.

 Menu choice: Group

 Allows user to group selected objects on the screen.

 Menu choice: Degroup

 Allows user to Degroup already grouped objects.

 Menu choice: Preference

 Allows user to set a preference.

 Menu name: Insert

 Purpose: Allows the user to insert place, transition, arc and token in

 the private window.

 Menu choice: Place

 Allows user to insert a place on the current cursor position.

 Menu choice: Transition

 Allows user to insert transition on the current cursor position.

 Menu choice: Arch

 Allows user to insert an arch on the current cursor position.

 Menu choice: Token

 Allows user to insert token on the current cursor position.

 Menu choice: Condition

 Allows user to insert condition on the current cursor position.

 Menu name: Format

 Purpose: Allows the users to format objects displayed on the screen.

 Menu choice: Font

 Allows user to manipulate the font of text displayed.

 Menu choice: Scale

 Allows user to manipulate scale on currently displayed objects.

Menu name: Tool

 Purpose: Allows the user to manipulate objects displayed on the screen.

 Menu choice: Move

 Allows user to move selected object.

 Menu choice: Drag

 Allows user to drag selected object.

 Menu choice: Set Delay

 Allows user to set delay for APN simulation.

 Menu choice: Fire

 Allows user to fire a token for simulation.

 Menu choice: Replay

 Allows user to replay a simulation scenario.

 Menu choice: Simulate

 Allows user to simulate a Petri net or Pert Chart.

 Menu name: Link

 Allows user to connect or disconnect from other user’s remote machine. It also

 allows to broadcast work done to other user’s site as well as refresh the

 work broadcasted from other user’s window to appear from public window to

 private window.

 Menu choice: Connect

 Allows user to connect to other user’s machine for on-line collaboration

 selecting this menu pops up a dialogue box asking to enter the IP address off

 the machine the user wants to connect. When the user types the IP address

 and clicks ok, the user will be connected.

 Menu choices: Disconnect

 Allows user to disconnect from the machines connected for collaboration.

 Menu choices: Broadcast

 Allows user to broadcast works done in the private window to other site’s and

 User’s public window.

Menu choices: Refresh

 Allows user to transfer broadcasted works displayed on the public window

 to be transferred to private window.

Menu name: PERT
 Purpose: Allows user to draw node, insert arrow, token, transition and

 add a cyclic checking for pert Chart manupletation

 Menu choices: Convert/APNNode
 Allows user to draw a node in the private window. to draw a node in the panel,

 select PERT/Convert/APNNode menu item, then click mouse in the private

 window the position you want to insert the node. A dialog box will appear

 in the window for you to input the time duration of the task. Enter an integer

 representing the duration of the task and click

 Menu choices: Convert/Cycle
 Allows user to add cyclic checking on a node. To add cyclic checking on a

 node, select PERT/Convert/Cycle, and then place cursor inside the node

 and click mouse. A dialog box will appear for you to input the condition of

 cyclic checking. Input the condition and press OK.

 Menu choices: Convert/APNArrow

 Allows user to insert an arrow. To insert an arrow, select PERT

 Convert/APNArrow, and place the cursor inside the node from where the

 Arrow starts, then press down mouse left button. Dragging the mouse to the

 node at where the arrow finishes and release the mouse. A dialog window will

 appear on screen for you to input the condition of making the transition. Input the

 condition and press OK.

Menu choices: Convert/APNTransition
 Allows user to insert a transition. To insert a transition, select

 Convert/APNTransition and left click mouse inside private window the position

 where you want to insert the transition. A dialog window will appear on screen

 for you to input the condition of making the transition. Input the condition and

 press OK.

 Menu choices: Convert/Token

 Allows user to insert a token.To insert a token, select PERT/Convert/Token and left

 click mouse inside the node which you want to add a token in.

Menu name: Help

 Purpose: Allows the user to get explanation for the selected subject.

 Menu choices: About

 Displays an about window which contains information about he

 COBRA tool.

APPENDIX A
COBRA PROJECT DEVELOPMENT GROUPS REPORT

COBRA project development Groups report

Fall 2000

Report by group 1 --- simulation

Group members : Xiaohong Fu, Wenping Sun

(What parts of the old system need improvement?

1. Simulation part

The old system does have simulation function and it works sometime. But it is not stable and robust. When you first enter system, everything works nice. However, after several operation on your PetriNet, you will find it doesn’t work or doesn’t work correctly now.

2. Communication part

In old system, there are two processes running on each machine. One for GUI part, another for server. The communication between these two processes is as same as communication between this machine and other machine. The cost is heavy and the speed is slow.

3. Architecture of communication

The architecture of communication for old system is not defined well. The

The server of each machine can interact with GUI part of other machine directly as it does with server of other machine.

4. Inner class in MyFrame class

There is a huge inner class in MyFrame class. This inner class has 9 pages. It is a bad design to include a huge inner class. And actually it is not necessary to have so many methods in this inner class.

5. GUI set up in MyFrame class

There are three-page codes to do GUI set up in MyFrame class. It’s tedious.

(How to improve them and what we have done?

1. Simulation part

There are some bugs in this part of old system. We are trying to find them and correct them. Since it’s easy to bring new bugs when you change a large system, we have to fix our own bugs when changing their codes. Now we fix several bugs and we hope we can test the new system and hope it works.

2. Communication part

We want to use multi-thread to do GUI and server in one process. Since thread is light-weighted, hope the performance will be improved by this approach.

3. Architecture of communication

We plan to use a layered approach to do communication. Server takes care of communication with other machines. GUI part takes care of user interaction. GUI part only talks with server of same machine, not server from other machine.

4. Inner class in MyFrame class

Since what we really need is just a draw panel, we can shorten this huge inner class to a simple one with only one method paintComponents. This is enough for our needs. Other functions in old inner class can move into MyFrame class. Our group tried this, and it works very well.

5. GUI set up in MyFrame class

We tried the new GUI set up with only less than one page of code. It’s neat and simple. The moving of functions from inner class to MyFrame class will not mess this class.

New features in the new system

1. PERT chart

Besides the PetriNet, user can choose to draw PERT chart using our system. This part is taking care by Xiang Yan and Xiaotang Liu.

2. Private window
There will be three windows on screen in our new system. The private window will show the work of residing machine. The other window shows work of other machines.

This part will be done by Xin Liu and Jun Liu.
Report by group 2 --- GUI

 Group Members: Jun Chen, Xin Liu
1. Introduction

The objective of our group is to design and implement a subsystem to support distributed real-time interactive communication functions for COBRA tool set. There will be three kinds of windows available in the system, public window, private window and friend window, which are described as following.

2. Definitions

 Host: The end system computer which runs the application program of COBRA

Host user: The person who uses a host to run the application program of COBRA and communicates with other host users over Internet to work on the same project.

Artifact: The recent result of the project that all host users work on.

Public window: The GUI that displays the whole integrated artifact done so far by all host users.

Private window: The GUI that displays only the local host user's artifact that is being worked on.

Friend window: The GUI that displays individually other host users' artifact (except the local user's own) that has been shown in public window.

3. Functional Requirements and Assumptions

1 The number of users and the identity (IP address) of each user are fixed during the whole process of communication. Each user knows well about the other users and he/she will establish the connection with every other user before he/she starts the collaborative project. Therefore, after each user finishes establishment of connection, the virtual network formed is a complete network.

2 Each connection of two users employs TCP stream socket to establish a client-server point-to-point connection.

3 The artifact shown in the private window does not affect the artifact shown in the public window unless the local host user decides to broadcast his/her artifact to all other users. In that case, all artifacts shown in all other users' public windows will be updated to the most recent version. The one-to-all broadcast used here actually exploits all the point-to-point TCP socket connections from one local host to all other remote hosts.

4 The artifact shown in the private window does not affect the artifact shown in the public window unless the local host user decides to broadcast his/her artifact to all other users. In that case, all artifacts shown in all other users' public windows will be updated to the most recent version. The one-to-all broadcast used here actually exploits all the point-to-point TCP socket connections from one local host to all other remote hosts.

5 The artifact shown in the private window does not affect the artifact shown in the public window unless the local host user decides to broadcast his/her artifact to all other users. In that case, all artifacts shown in all other users' public windows

 will be updated to the most recent version. The one-to-all broadcast

 used here actually exploits all the point-to-point TCP socket

 connections from one local host to all other remote hosts.

6 The artifact shown in the public window does not affect the artifact shown in the private window as well. However the private window shall have a reflush or reload function that updates its content with the most recent version of artifact

 shown in the public window. The private window shall also have a save

 function that can save the draft which has not been integrated into the

 artifact shown in the public window, in case of that the reflush or

 reload function erases the draft the user want to use later.

7 Friend window is a passive display window that has no editing functions. It is used to decompose the whole artifact shown in public window into individual host user's contribution. Hence each update occurred in the public window may affect the contents shown in the friend window.

1. Strategy Design

1 Architecture of Three-window Communication Subsystem

2 One process is run for one application program on each host. And each process has three kinds of threads, the GUI thread, the client thread and the server thread.

3 Before any threads start working, the application process displays the main window that contains three sub-windows, public window, private window and friend window.

4 If the host user works individually and no communication happens at all, only private window works and GUI thread takes care of it. There will only be one thread in the whole process.

5 If communication is requested, the process will spawn two threads, GUI thread and server thread. GUI thread is still in charge of private window, creating objects for a new artifact. Whereas the server thread creates a TCP socket to listen to the channel for any broadcast message.

6 When a host user wants to update the collaborative integrated artifact through broadcast, a new thread, a client thread is spawned. It establishes a transient TCP connection with every other remote host server thread and sends the updated artifact to them. Then every server thread on the other end will updates the public window and friend window with this most recently received artifact.

7 Tentative Algorithm for Keeping Consistent Distributed File System. The file here represents the artifact for public window. Because every host application has to show it on its public window, we have to keep it consistent. The algorithm we plan to use is full-replication algorithm. Each host keeps a copy of the artifact file. We must keep all of the

 copies the same. In order to do that, we plan to use timestamps or the logical clock, which

 is generated and attached to the broadcast message when a host user wants to update the

 artifact. Now we are considering the details of how to implement the timestamps or the

 logical clock to ensure the consistence.

Report by group 3 --- Communication

 Group Members: Jun Chen, Xin Liu
1. Introduction

The objective of our group is design and implement a subsystem to support distributed real-time interactive communication functions for COBAR tool set. This goal was achieved by implemented a new GUI interface and added more features to exist system.

2. The Improvement Have Been Made

Base on exist system and the requirements which be given by Dr. Chung, we redesigned and developed the user interface part. For having better functionality and management improvement, we came out the two-window application interface instead one-window which had been support on old code. The two-window version has one window which labeled as "public window"; and another one which labeled as "private window". The public window is used for showing the whole project which are shared with distributes system. And private window is used for editing the local work, which wouldn't visible until you publishing it to public window. Based on this design idea, we used different layout manager for these two windows, and added different functionality on its.

3. Implementation Detail

 The source code was written in Java. We keep most the exist code, but modify some major classes. As in old file "PetriNet.java", there were three important data members in the class PetriNet -- petriList has LinkedList data type; eventVector has Vector data type; groupList has the LinkedList data type. At new file we get two sets of those data members, one for public window, and one for private window. When the local work updated, the private set data members are been update. Whenever the local work published, the private set data are coped to public set in both local host and remote hosts through sockets. Whenever the "refresh" button pushed, the public set data are coped to private set. So when the application running, the public window are non editable, most function on menu are disabled. The private window basically is editor for this application. once the public data is loaded to private window that is updated the private version to latest whole project version.

Report by group 4 --- Pert Chart implementation

 Group Members: Xiaotang Liu, Xiang Yan
1 Objectives

The Virtual Office tool suite is a distributed client/server system that enables multi-users from different geographical locations to work collaboratively on system behavior modeling (PetriNet). The objective of the current phase of this project is to incorporate PERT chart into the tool suite in order to enhance its functionalities such as software project planning and scheduling.

The existing system provides mechanisms to plot Augmented Petri-Net (APN) and allows simulation of the behavior of a system represented by an APN. Similar functionality should be available on PERT chart. To incorporate the simulation and monitoring functionalities to PERT chart representation, a conversion from PERT to APN is needed to facilitate the implementation of the functionalities. An APN representation of PERT has been deployed in the system to improve the usability and user-friendliness of the system.

2 Implementation

Development of PERT functionality has been carried out independent from the original system. The purpose of doing this is to maintain the correctness of the system. The modification is performed on an old version of the system without communication and simulation functionalities. Parts of the implementation in old system have been reused in order to keep the consistency of the system. New modules (classes and functions) were added into the system.

In order to separate the new implementation from the existing system functionalities, a new menu called “PERT” was added in the menu bar. All of the activities relate to PERT chart operation were represented as menu items in the “PERT” menu. An event listener class was implemented as an inner class of the original “MyFrame” class in order to separate new events corresponding to the “PERT” menu from the original events in the system.

The new functionalities enable the system to do two things.

1 The system allows user to draw traditional PERT charts (AON). This gives the project

 managers a chance to see their project-scheduling model in a traditional way.

2 The system allows user to draw PERT chart using APN representation, which is also

 mentioned as “conversion”. The purpose of using conversion is based on the fact that

 traditional PERT chart lacks the functionality of modeling dynamic behavior of the

 system. By converting PERT to APN representation, simulation of project progressing

 can be accomplished.

The APN representation of PERT chart basically inherited all notations and similar appearance from the system’s original APN plotting mechanism. In addition, a cyclic checking notation called “cycle” is incorporated. It enables the system to cyclically check the progress of a sub-task of the project. The direct implementation of “cycle” for project progress simulation. When plotting the APN representation of PERT chart, users are asked by the system to input information such as the duration of each sub-task (days), the condition for each sub-task such as under what condition a transition to next sub-task can be made, etc.

3 Integration

The PERT chart has been integrated into the system. After integration, the system appears to the user as two different aspects, one for system behavior modeling and the other for project planning. When the system starts, only one menu is enabled that asks user to make selection between working on APN or working on PERT chart. After user makes selection, only the menu items related to user’s selection are enabled. By doing this, the chance for users get confused by too many un-related menu selections is minimized.

4 Challenges and Obstacles

Simulation of the project progress is much different from simulation of system behavior using APN. When doing a project, each sub-task of the project has a scheduled time duration, which is provisioned at the planning stage of the project. However, the simulation cannot be based on the scheduled time duration, because during the process of accomplishing a project, the actual time spent on each sub-task is subject to changes. In other words, each sub-task may finish either ahead of time or fall behind schedule. When doing simulation, since the system has no knowledge of the exact time spent on each sub-task, the user has to get involved to “tell” the system when and whether a transition need to be made. Meanwhile, the system has to keep track of the progress of each sub-task and generates reminders in case a sub-task is falling behind schedule. For example, the system needs to perform cyclic checking of the progress of a sub-task based on the condition input by the user to determine whether it stays in the loop or make transition to next task.

The follow-up work should focus on deploying an effective way of implementing the simulation part. One possible way to do simulation is use system clock to record time spent on each task, and compare the time elapsed against scheduled time duration. User can determine and let the system know when a task is actually done and then the system takes actions correspondingly. However, detailed implementation depends on the developer’s decision.

Report by group 5 --- Simulation

Group Members: Wenping Sun, Xiaohong Fu

1 Overview

Since the system requirement document and architecture design is unavailable at the beginning of Fall00 semester, software source code is the only place to start with. Therefore, reverse engineering approach is taken to understand and elucidate software architecture design.

· Understanding the source code

· Identify system components

· Identify system component interrelationship

· Define problems

· Divide tasks and assign to three groups

· Fix problems

· Integration

Scenarios of simulation

When you select the simulation menu item, all tokens in firable input places will move from the input places to output places one by one until there is no place they can go. When all input places of a transition are enabled (i.e. with a token) and the external stimulus associated with the transition occurs, the tokens move form the input places to output places. These input places are firable in this situation. In our system, we assume all stimulus associated with the transition automatically occurs, so as long as all input places of a transition have tokens, they are firable.

There are four basic scenarios for simulation and various combinations of these consist the scenarios of simulation in our system.

1. Sequencing

Before simulation:

T1

 T2

 After simulation:

T1

 T2

2. Concurrency

Before simulation:

T2

 T1

T3

 After simulation:

T2

 T1

 T3

3. Synchronization

Before simulation:

T1

T2

 T3

After simulation:

T1

 T3

T2

4. Decision making

Before simulation:

 T1

 T2

 After simulation: (only one transition will be fired)

 T1

 T2

2 Problems in simulation

We tested the simulation functionality of spring version COBRA project. The system does have simulation function and it works well sometimes. But it is not stable and robust. When you first enter the system, everything works nice. However after several operations on your graph, you will find it doesn’t work at all or doesn’t work correctly. We list problems we have found as following:

1. If there is no output place for a transition, token will lost. The old simulation function didn’t consider this situation and didn’t try to catch exception when this happened. Simulation function will never work again after this operation.

 P1 P3 P4

 P2

Suppose above is the PetriNet we have drawn. If you delete P3 token and run simulation, you will find token will lost. Then add another token at P1, do simulation again. The token doesn’t move at all. Even using clear function to clear the window and drawing another PetriNet, simulation function doesn’t work any more.

2. If we delete some arches and break the PetriNet to several parts, it is possible that the simulation function doesn’t work any more after one operation of simulation. This is due to the same problem as no output place. When you break PetriNet, it is very likely some transitions will have no output place to go.

3. When the token begins simulation, you can see a small area in mixed color of green and blue left at the beginning position of token until the simulation is finished and the graph repaints itself. This is not what we want. We want the new token overwrites the old one when it simulates along the arch.

4. If you move a place in a PetriNet and then move it back, even it is in the exactly same position, the simulation function will not work and the token will lost and disable this function forever.

5. The simulation function doesn’t work at all in communication version. Spring developers disabled this function since simulation in this version is much more complicated than the simulation in version without communication. The icons drawn by different parties are independent. There is no interrelationship among these icons. So even it looks that the token should do simulation along some path, it will not do because this path is not drawn by the party that draws this token.

6 According to PetriNet, paths that token goes through are decided by positions of places and transitions, not by time that they are added. Token will move to the next place which transition point to when the condition is satisfied. Since we assume all conditions are satisfied, the token will move immediately as long as it is firable. However, in this system, icons are added to the linked list according to time order. Token will move to the output place when it is the turn of this transition in this link list.

 P5

 P2

 T1 T5 T4

 P1 T2

 P3 T3 P4

Suppose we draw a PetriNet as above, T1 T2 T3 T4 T5 is the ordered list of transition in the link list. When token reaches P3, it should split and move to P4 and P5 at same time. However, it will go to P4 along T3 first then P5 along T4.

3 Solved Issues and Open Issues

We have solved several problems and also leave some open issues for further development.

1. For the lost token problem, we checked the source code and find the solution for this problem.

First we enhanced the firable() function in Transition class. The old one didn’t consider the situation that there is no output place for a transition. We added the checking for output place for transition. If there is no output place, this transition is not firable. Secondly, we included this consideration into fire() and running() functions. When a transition has several outgoing arches, we need check the output places for each arch to make sure token will not lost and if first arch has no output place, simulation can continue along next arch which does have output place.

Since we solve this problem, when you break the PetriNet, the simulation works very well because transition without output place is no longer firable now.

2. We removed the small area with mixed color of green and blue left at the starting point of simulation by changing some part of animation() function in Arch class. The old version used setXORMode(Color.white) to overwrite the old token. They forgot the original color of drawing is black when you first enter the function. By setting color to red at the beginning of the function, we solved this problem and simplified this function.

 3. Simulation after moving and in communication situation has same problem. The problem is related to the interrelationship among icons on graph. After moving a place, this place is deleted from the linked list and all reference lists of arches. When you add a new place around this area, even in exactly same place, there is no connection between this new place and the old arch, so simulation can’t happen whereas it should in this situation. In communication situation, icons drawn by this party are not related to the icons by other parties. Even from the graph, you see that token can move all the way down to the last output place, it is impossible to do it in this system. There is no central party who takes care of all icons. However this problem is eliminated by our implementation of new window. There are several assumptions in two-window version. Public window is just a display panel in two-window version, so the simulation is not needed in this version. Problem doesn’t exist any more. And each party will load the public window to its private window before adding new icons to PetriNet. By loading public window, everything in public window will be added to its own petrilist and the new icons will have interrelationship with them. Simulation will have no problem now.

4. Simulation after moving is still an open issue. It depends on the requirement. There are two ways you can solve it. First you can specify that the arch should be deleted if there is no output place. Another way to solve it is to memorize the coordinates of every icon. When the new icon is added, check the coordinate to see if it is in the area of other icon. If it is, establish relationship between them. Next time when you do simulation after moving, there should be no problem.

5. For the sixth problem, we didn’t try to fix it in this version. It is related to the algorithm. The algorithm we used decides that the simulation will happen according to time order. It is another open issue for further development.

 Besides simulation, there are several open issues related to other aspects of the project.

Since most issues are about improvements, not bugs of the system, we didn’t spend time on them. However, the system will be much nicer if they can be fixed.

(Architecture of communication

Current architecture of communication

Proposed architecture of communication

In current version, there are two processes running on each machine. One process for GUI part. Other one works as server. The communication between these two processes is same as communication between different machines. The cost is heavy and the speed is slow. Since these two processes are cooperative, it is better to use threads to do GUI and server in one process. Thread is light-weighted. Hopefully the performance will be improved by this approach.

In current version, the server of each machine interacts with GUI part of other machine directly as well as it does with server part of other machine. If using layered approach to do communication, sever thread takes care of communication with other machine. GUI thread takes care of user interaction. GUI thread only interacts with server thread on same machine, not server on other machines. The service is clearly defined for each layer and the whole architecture is neat and understandable.

(GUI

In current version, if you want to move or drag something, you have to highlight the icon first, then go to click the corresponding menu item, then go back to the graph to do move or drag and only works once for each click. It is obviously inconvenient for user. If we can move or drag an object using mouse instead of go to menu bar, that would be nice.

(Source code

There is a huge inner class in CobraFrame class in current version. This inner class has 9 pages. It is a bad design to include such a huge inner class. And actually it is not necessary to put so many methods in this inner class. What we really need is just a panel for drawing. We can shorten this huge inner class to a simple one with only one method paintComponent(). This is enough for our need. Other functions can move into CobraFrame class. And since CobraFrame class is very long, we can simplify it in many parts. One part we can definitely improve is the GUI setup part. We can use a nested for loop to do it. In that way, the moving of functions from inner class to CobraFrame class will not mess this class.

COBRA project development Groups report

Spring 2001

COBRA Group meeting

Date/Time:

March 14, 2001

Place:

CS Dept. Conference Room 4.718

Participants:
Dr Lawerence Chung, Weiye Li, Yinlin Ma, Xia Wei, Hong Li, Ling Chen, Nan Jiang, Ahamad Jemal and Xiaobing Zhang.

1 General Information
1.1 General
The meeting is official aimed updating the progress and setting up the goals for the next stage

All the meeting minutes and progress reports can be found at the web site: www.utdallas.edu/~larryz

1.2 Meeting minutes
· Each group reports the progress, and clarified the responsibilities especially on those overlapping with other groups.

Discussed the architectural design of the whole system.

2 Old Action Points

	Meeting Date
	Group
	Subject
	Responsible
	Status

	2/24
	1
	Saving Function
	NA
	NA

	2/24
	2
	Communication
	Broadcast in Friend Window
	Closed

	2/24
	3
	GUI
	Add Friend Window to panel
	Closed

	2/24
	4
	Simulation
	Simulation in Public Window
	Closed

	2/24
	5
	Pert
	Redesigned and revised menu Bar
	Closed

3 Group Responsibilities
3.1 Group 1
 Work with Communication part, and help the improvement of “SAVE” or “SAVE AS”

 function.
3.2 Group 2
The objective of our group is to improve communication part to support distributed real-time interactive communication functions for COBRA tool set.

3.3 Group 3
 The objective of our group is to improve the functionality of the GUI on the current

 available window system.

3.4 Group 4
· Simulation of the public window
· Conditional firing
· Coordination among groups
3.5 Group 5
The objective is to study and develop the functionality of the Pert Chart on the current available system with the emphasis on similarity of Microsoft windows appearance.

4 AOB
None

5 New Action Points
	Meeting Date
	Group
	Subject
	Responsible
	Status
	Deadline

	3/14/01
	1
	Save
	Create a database for the project. So, the users are able to save the latest job, instead of start over each time.
	Open
	ASAP

	Meeting Date
	Group
	Subject
	Responsible
	Status
	Deadline

	3/14/01
	2
	Communication
	Should be able select who are the “friends” in the Friends Windows, so that only the work of chosen remote offices appears in the Friend Window. Either IP address or port number can be used to select “friends”. A pop up menu may be used for the user to make the selection.
	Open
	ASAP

	3/14/01
	2
	Communication
	Disconnect Function
	Open
	ASAP

	3/14/01
	2
	Communication
	Auto/Manual broadcast: A configuration menu can be added to menu bar to let user to choose the auto or manual broadcasting method. If auto is chosen, broadcasting would be done automatically, otherwise, the broadcasting is done manually by clicking in the menu.
	Open
	ASAP

	Meeting Date
	Group
	Subject
	Responsible
	Status
	Deadline

	3/14/01
	3
	GUI
	The move function should be able to remove all the connections and reestablish them later when new connections are made. The move function of the current code is not working properly – after moving the links cannot be reestablished. This problem should be fixed so that all the functions can work properly.
	Open
	ASAP

	3/14/01
	3
	GUI
	Swap the public window with private window, because public window generally has more contents than private window.
	Open
	ASAP

	Meeting Date
	Group
	Subject
	Responsible
	Status
	Deadline

	3/14/01
	4
	Conditional Firing

	Fire according to specified conditions.
	Open
	ASAP

	Meeting Date
	Group
	Subject
	Responsible
	Status
	Deadline

	2/24/01
	5
	PERT
	Make simulation and other functions to work.
	Open
	ASAP

6 Other topics discussed
Pros and Cons of three Architecture designs for communication part.

BIBLIOGRAPHY

[1] L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos,Non-Functional Requirements in Software

 Engineering, Kluwer Academic Publishing, Boston, MA, 1999.

[2] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline,

 Prentice Hall, 1996.

[3] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice, SEI Series in

 Software Engineering, Addison-Wesley, 1998.

[4] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language User Guide,

 Addison-Wesley,1999.

[5] J. Mylopoulos, L. Chung, S. S. Y. Liao, H. Wang, E. Yu, “Exploring Alternatives During

 Requirements Analysis”, IEEE Software, January/February 2001, pp. 2 – 6.

[6] Robert Orfail, Dan Harkey and Jeri Edwards. The Essential Client/Server Survival Guide,

 John Wiley and Sons, Inc., 1996.

[7] L. Chung, "Architecting Quality Using Quality Requirements," Proc., 1998 KUST, Oct. 22-

 24, Vienna, Virginia, 1998..

[8] L. Chung and E. Yu, "Achieving System-Wide Architectural Qualities ,"; OMG-DARPA-

 MCC Workshop on Compositional Software Architectures,Monterey, CA, January 6-8,

 1998.

[9] L. Chung, B. A. Nixon and E. Yu, "An Approach to Building Quality into Software

 Architecture ," IBM CASCON, CD-ROM, Oct. 1995.

[10] L. Chung, B. Nixon and E. Yu, "Using Non-Functional Requirements to Systematically

 Select Among Alternatives in Architectural Design ,"; Proc., 1st International Workshop on

 Architectures for Software Systems, Seattle, April 24-28, 1995., pp. 31-43.

[11] L. Chung, B. A. Nixon and E. Yu, "Using Quality Requirements to Systematically

 Develop Quality Software,"; Proc., 4th International Conference on Software Quality,

 McLean, VA, U.S.A. Oct. 3-5, 1994.

[12] L. Chung, "Representing and Using Non-Functional Requirements: A Process-Oriented

 Approach,", Ph.D. thesis, Univ. of Toronto, 1993.

[13] L. Chung, D. Gross and E. Yu, "Architectural Design to Meet Stakeholder Requirements,"

 in P. Donohoe (Ed.) Software Architecture, pp. 545 - 564. Kluwer Academic Publishing,

 1999.

[14] L. Chung, D. Rios-Zertuche, B. Nixon and J. Mylopoulos, "Process Management and

 Assertion Enforcement for a Semantic Data Model." In J. W. Schmidt, S. Ceri and M.

 Missikof (Eds.), Advances in Database Technology -- EDBT '88, 1st Int. Conf. on

 Extending Database Technology, Venice, Italy, 1988 Berlin: Springer-Verlag, 1988, pp.

 469-487.

[15] Antonietta Grasso, Jean-Luc Meunier, Daniele Pagani, Remo Pareschi ,GMPP group.

 "Distributed Coordination and Workflow on the World Wide Web",Computer Supported

 Kluwer Academic Publishers, Cooperative Work (CSCW) 6 (2/3):175-200, 1997.

[16] Antero Taivlasarri and Sami Vaaraniemi , “TDE (telecom design environment) :

 Supporting Geographically Distributed software Designing with shared, collaborative

 workspaces,” Nokia Research Center Helsinki, Finland July 6, 1996.

[17] Andrew Blumberg, Randall Davis, Rodney S. Daughtrey, Roger Hurwitz, John C.

 Mallery, Christopher Vincent,“Intelligent Information Infrastructure Project”. M.I.T

 Artificial Intelligence Laboratory, October 1, 1993.

[18] John Smith, Kevin Jeffay, Don Smith, the Colab group. “CSCW (Computer Supported

 Cooperative Work)”, University of North Carolina, 1996.

[19] Josef altman and Rainer Weinreich, “ An Eniromental for Cooperative Software

 Development Realization and Implications” ; Proc. of the 31 of Hawaii

 International Conference on system Sciences, Hawaii, 1998.

[20] Collaborative product development for business-to-business commerce, I2 TradeMatix

 platform, I2 Technologies, Inc. 2000.

[21] Client software for secure interactive business, for Businesses and Individuals, Groove,

 Groove Networks, Inc. 2000.

[22] The BEA WebLogic E-business platform, the essential infrastructure for building a future

 proof e-business, BEA Systems, Inc. 1995..

[23] Gary Knotts, Moshe Dror, Bruce Hartman, “A Project Management Tool for Compute-

 Supported Cooperative work During Project Planning,” ; Proc. of the 31 of Hawaii \

 International Conference on system Sciences, Hawaii, 1998.

[24] Randall B. Smith, Ronald Hixon, Bernard Horan, “Interactive Collaborative Systems”,

 Interactive Collaborative Systems group, Sun Microsystems, Inc.1994.

ONTARIO

Site

NORTH CAROLINA

 Site

TEXAS

 Site

� EMBED Visio.Drawing.5 ���

1

2

3

1

1’

2

3

PERT

APN

1

2

3

1

2

3

APN

PERT

 Symbols used in figures 6.5 and 6.6

(Numbered rectangles are nodes that represent events or milestones

(Directional arrows represent tasks that must be completed sequentially

(Diverging arrow directions indicate possibly concurrent tasks

(Dotted lines indicate dependent tasks that do not require resources

(Symbols used

(Numbered rectangles are nodes that represent states of a project

(Directional arrows represent moving from one state to another

(Vertical bars represent transitions from one state to another

Figure 2. APN Representation

MyFrame

MyFrame

Machine B

Machine A

Server1

Server1

User input

User input

MyFrame

Shard data

Shard data

MyFrame

Server1

Server1

Communication

Machine B

Machine A

_1048652897.vsd
Min
coupling
[COBRAS]
 �

Optimize size of each component
[COBRAS]
�

Replaceability
[COBRAS]
�

Min data
sharing
[COBRAS]

�

Min control
sharing
 [COBRAS]
�

Min Coupling
[COBRAS]

�

Max simulation
support
[COBRAS]
�

 Maintainability [COBRAS]�

Max
validatability
[COBRAS]

�

Min domain
assumption
[COBRAS]

�

Max
Integration testability
[COBRAS]
�

Min nesting
[COBRAS]
�

Max consistency checking
 [COBRAS]

 �

Max functional
Independence
[COBRAS]
�

Max
Cohesion
[COBRAS]

�

Max use of widely-use techniques
[COBRAS]
 �

Comprehensibility
 [COBRAS]�

Testability
[COBRAS]
�

COBRAS NFRS�

Max functional
Independence
[COBRAS]
 �

Max animation
support
[COBRAS]

�

GUI�

Integrator�

 Client-server
communicator�

Negotiator �

Repository �

Animator�

Simulator�

COBRAS
 Architectural Component�

Replay �

Objects�

Data�

Events�

Static generator�

Scenario Driver�

Event Generator�

Utility
GUI�

Mapper�

Basic GUI�

Condition
indicator�

Time�

Scale�

Single-level only�

Nested levels �

Distrbuited�

Centeralized�

Concurency controlerl�

Consistancy manager�

Proposal tracker�

Argumentation supporter�

Session manager�

Initiator�

Terminator�

_1048906014.doc
[image: image1.bmp]

Sequencing

T1

T2

T1

Concurrency

T2

T3

Synchronization

T1

T2

T3

_1048911250.vsd
Replaceability
[COBRAS]
�

Min data
sharing
[COBRAS]

�

Min control
sharing
 [COBRAS]
�

Min Coupling
[COBRAS]

�

 Maintainability [COBRAS]�

Min domain
assumption
[COBRAS]

�

Max functional
Independence
[COBRAS]
�

Max use of widely-use techniques
[COBRAS]
 �

Comprehensibility
 [COBRAS]�

Testability
[COBRAS]
�

Min
coupling
[COBRAS]
 �

Optimize size of each component
[COBRAS]
�

Max simulation
support
[COBRAS]
�

Max
validatability
[COBRAS]

�

Max
Integration testability
[COBRAS]
�

Min nesting
[COBRAS]
�

Max consistency checking
 [COBRAS]

 �

�

Layered�

Shared
 Data�

Object
oriented�

Blackboard�

Implicit
Invocation�

Pipe&
Filter�

Control loop�

Shared
Information�

Client/
Server�

COBRAS
 Architecture for Styles�

Batch
Sequential�

Simple repository�

Hierarchical
layers�

 Virtual
 repository�

Client/server with file servers�

Client/
server
with
database�

Client/
server
withTP �

Client/
server
GroupWare �

Client/
server
Web
 �

Client/
server
distributed objects
 �

Max functional
Independence
[COBRAS]
 �

Max animation
support
[COBRAS]

�

COBRAS NFRS�

Max
Cohesion
[COBRAS]

�

Whiteboard�

_1048906087.vsd
Place�

Transition�

Token�

T�

_1048676265.vsd
Min
coupling
[COBRAS]
 �

Optimize size of each component
[COBRAS]
�

Replaceability
[COBRAS]
�

Min data
sharing
[COBRAS]

�

Min control
sharing
 [COBRAS]
�

Min Coupling
[COBRAS]

�

Max simulation
support
[COBRAS]
�

 Maintainability [COBRAS]�

Max
validatability
[COBRAS]

�

Min domain
assumption
[COBRAS]

�

Max
Integration testability
[COBRAS]
�

Min nesting
[COBRAS]
�

Max consistency checking
 [COBRAS]

 �

Max functional
Independence
[COBRAS]
�

Max
Cohesion
[COBRAS]

�

Max use of widely-use techniques
[COBRAS]
 �

Comprehensibility
 [COBRAS]�

Testability
[COBRAS]
�

COBRAS NFRS�

Max functional
Independence
[COBRAS]
 �

Max animation
support
[COBRAS]

�

Batch�

 Incremental�

Centralized�

Distributed �

Concurrent�

Sequential�

COBRAS
 Architecture for Constraint�

Hybrid- Centeralized & Distributed�

Distributed with supervisor�

Constraint on components�

Constraint
 on Interactions�

Constraint on
Patterns�

Constraint on
Styles�

_1048676385.vsd
COBRAS
 Architecture for Constraint�

Hybrid- Centeralized & Distributed�

Distributed with supervisor�

Constraint on components�

Constraint
 on Interactions�

Constraint on
Patterns�

Constraint on
Styles�

Security [COBRAS]�

Min data
sharing
[COBRAS]

�

Batch�

 Incremental�

Centralized�

Distributed �

Concurrent�

Sequential�

Min number of
Parameters
 [COBRAS]

�

Min Set valued parameters and returns
[COBRAS]
�

Min frequency of
communication
 [COBRAS]

�

Adaptability [COBRAS]�

Max analyzability of impact from Changes
[COBRAS]
�

Max
openness
[COBRAS]
�

Offer several similar
components
[COBRAS]
�

COBRAS NFRS�

_1048653071.vsd
Security [COBRAS]�

Min data
sharing
[COBRAS]

�

Min number of
Parameters
 [COBRAS]

�

Min Set valued parameters and returns
[COBRAS]
�

Min frequency of
communication
 [COBRAS]

�

Adaptability [COBRAS]�

Max analyzability of impact from Changes
[COBRAS]
�

Max
openness
[COBRAS]
�

Offer several similar
components
[COBRAS]
�

COBRAS NFRS�

GUI�

Integrator�

 Client-server
communicator�

Negotiator �

Repository �

Animator�

Simulator�

COBRAS
 Architectural Component�

Replay �

Objects�

Data�

Events�

Static generator�

Scenario Driver�

Event Generator�

Utility
GUI�

Mapper�

Basic GUI�

Condition
indicator�

Time�

Scale�

Single-level only�

Nested levels �

Distrbuited�

Centeralized�

Concurency controlerl�

Consistancy manager�

Proposal tracker�

Argumentation supporter�

Session manager�

Initiator�

Terminator�

_1048495124.vsd
COBRAS NFRS�

�

Security [COBRAS]�

Min data
sharing
[COBRAS]

�

Min number of
Parameters
 [COBRAS]

�

Min Set valued parameters and returns
[COBRAS]
�

Layered�

Min frequency of
communication
 [COBRAS]

�

Adaptability [COBRAS]�

Max analyzability of impact from Changes
[COBRAS]
�

Max
openness
[COBRAS]
�

Offer several similar
components
[COBRAS]
�

Shared
 Data�

Object
oriented�

Blackboard�

Implicit
Invocation�

Pipe&
Filter�

Control loop�

Shared
Information�

Client/
Server�

COBRAS
 Architecture for Styles�

Batch
Sequential�

Simple repository�

Hierarchical
layers�

 Virtual
 repository�

Client/server with file servers�

Client/
server
with
database�

Client/
server
withTP �

Client/
server
GroupWare �

Client/
server
Web
 �

Client/
server
distributed objects
 �

Whiteboard�

_1048558393.doc

1

1’

2

3

4

5

5’

6

7

8

9

10

11

Schedule

done

@now>=t0+9

?

~d

one /reminder

Hardware

bought

@now>=t0+4

?

~d

one /reminder

Programming

done

@now>=t0+18

?

~d

one /reminder

@now>=t0+13

?

~d

one /reminder

Installation

done

@now>=t0+13

?

~d

one /reminder

man done

@now>=t0+4

?

~d

one /reminder

conversion

done

@now>=t0+4

?

~d

one /reminder

Training

done

@now>=t0+9

?

~d

one /reminder

User test done

@now>=t0+18

?

~d

one /reminder

Code test done

@now>=t0+9

?

~d

one /reminder

system test done

1

1’

2

3

4

5

5’

6

7

8

9

10

11

Schedule

done

@now>=t0+9

?

~d

one /reminder

Hardware

bought

@now>=t0+4

?

~d

one /reminder

Programming

done

@now>=t0+18

?

~d

one /reminder

@now>=t0+13

?

~d

one /reminder

Installation

done

@now>=t0+13

?

~d

one /reminder

man done

@now>=t0+4

?

~d

one /reminder

conversion

done

@now>=t0+4

?

~d

one /reminder

Training

done

@now>=t0+9

?

~d

one /reminder

User test done

@now>=t0+18

?

~d

one /reminder

Code test done

@now>=t0+9

?

~d

one /reminder

system test done

_1048494870.vsd
Security [COBRAS]�

Min data
sharing
[COBRAS]

�

Min number of
Parameters
 [COBRAS]

�

Min Set valued parameters and returns
[COBRAS]
�

Min frequency of
communication
 [COBRAS]

�

Adaptability [COBRAS]�

Max analyzability of impact from Changes
[COBRAS]
�

Max
openness
[COBRAS]
�

Offer several similar
components
[COBRAS]
�

COBRAS NFRS�

Sockets�

RPCS�

 Parameter
types�

RMI �

HTTP �

S-HTTP �

SSL �

OLE/DCOM�

Number of interfaces�

ORBS�

Number of parameters�

COBRAS
 Architecture for Interaction�

Primitive
data �

Events�

Objects�

_1048494895.vsd
Min
coupling
[COBRAS]
 �

Optimize size of each component
[COBRAS]
�

Replaceability
[COBRAS]
�

Min data
sharing
[COBRAS]

�

Min control
sharing
 [COBRAS]
�

Min Coupling
[COBRAS]

�

Max simulation
support
[COBRAS]
�

 Maintainability [COBRAS]�

Max
validatability
[COBRAS]

�

Min domain
assumption
[COBRAS]

�

Max
Integration testability
[COBRAS]
�

Min nesting
[COBRAS]
�

Max consistency checking
 [COBRAS]

 �

Max functional
Independence
[COBRAS]
�

Max
Cohesion
[COBRAS]

�

Max use of widely-use techniques
[COBRAS]
 �

Comprehensibility
 [COBRAS]�

Testability
[COBRAS]
�

COBRAS NFRS�

Max functional
Independence
[COBRAS]
 �

Max animation
support
[COBRAS]

�

Parallel�

Sequential�

Manhattan �

Ring�

Star�

COBRAS
Architecture for Patterns�

_1048494932.vsd
COBRAS NFRS�

Security [COBRAS]�

Min data
sharing
[COBRAS]

�

Min number of
Parameters
 [COBRAS]

�

Min Set valued parameters and returns
[COBRAS]
�

Parallel�

Sequential�

Manhattan �

Min frequency of
communication
 [COBRAS]

�

Adaptability [COBRAS]�

Max analyzability of impact from Changes
[COBRAS]
�

Max
openness
[COBRAS]
�

Offer several similar
components
[COBRAS]
�

Ring�

Star�

COBRAS
Architecture for Patterns�

_1048494840.vsd
Min
coupling
[COBRAS]
 �

Optimize size of each component
[COBRAS]
�

Replaceability
[COBRAS]
�

Min data
sharing
[COBRAS]

�

Min control
sharing
 [COBRAS]
�

Min Coupling
[COBRAS]

�

Max simulation
support
[COBRAS]
�

 Maintainability [COBRAS]�

Max
validatability
[COBRAS]

�

Min domain
assumption
[COBRAS]

�

Max
Integration testability
[COBRAS]
�

Min nesting
[COBRAS]
�

Max consistency checking
 [COBRAS]

 �

Max functional
Independence
[COBRAS]
�

Max
Cohesion
[COBRAS]

�

Max use of widely-use techniques
[COBRAS]
 �

Comprehensibility
 [COBRAS]�

Testability
[COBRAS]
�

COBRAS NFRS�

Max functional
Independence
[COBRAS]
 �

Max animation
support
[COBRAS]

�

Sockets�

RPCS�

 Parameter
types�

RMI �

HTTP �

S-HTTP �

SSL �

OLE/DCOM�

Number of interfaces�

ORBS�

Number of parameters�

COBRAS
 Architecture for Interaction�

Primitive
data �

Events�

Objects�

