RE Process

Lawrence Chung
Department of Computer Science
The University of Texas at Dallas
RE Process: Why?

Quality of product ← Quality of Process

- Garbage in garbage out, so get the right requirements

Product
RE Process:

What is a Process?

- Given input, transforms it into output
- Consist of a set of activities
- Process descriptions are also *specifications*
 - Often produced by Requirements Engineers
 - Should be as complete, consistent and clear
RE Process:
The Basic RE Evolutionary Process

Old Reality

Old Reality

Old Model

Old Implementation

Change in Reality

Change Definition

Reverse Engineering

Legacy Integration

New Reality

New Model

New Implementation

Change Incorporation
RE Process:
The Basic RE Evolutionary Process

Evolution is inevitable – *traceability* is more than a virtue
RE Process:
A Basic Framework [Loucopolos]

Many variations and extensions

- 3 fundamental activities:
 understand, (formally) describe, attain an agreement on, the problem

- Elicitation: determine what’s really needed, why needed, whom to talk to
- Specification: produce a (formal) RS model: translate "vague" into "concrete", etc. make various decisions on what & how
- Validation: assure that the RS model satisfies the users’ needs

Elicitation

User reqs
knowledge
For more knowledge
Domain knowledge
Problem Domain

User feedback

Specification

 Req. models
Val. result
Domain knowledge

Validation

User

Elicitation: determine what’s really needed, why needed, whom to talk to
Specification: produce a (formal) RS model: translate "vague" into "concrete", etc. make various decisions on what & how
Validation: assure that the RS model satisfies the users’ needs
RE Process:
Spiral Model [KotonyaSummerville98]

How many cycles? When to analyze and negotiate? Risk analysis?

- Requirements elicitation: Requirements discovered through consultation with stakeholders
- Requirements analysis and negotiation: Requirements are analysed and conflicts resolved through negotiation
- Requirements documentation: A requirements document is produced
- Requirements validation: The requirements document is checked for consistency and completeness
An RE Process is dominated by human, social and organisational factors
RE Process:
A RE Process Maturity Model
Based on CMM

- **Level 1 - Initial**: Ad-hoc requirements engineering; requirements problems are common
- **Level 2 - Repeatable**: Standardised requirements engineering; fewer requirements problems
- **Level 3 - Defined**: Defined process based on best practice; process improvement in place
IEEE Standard for SRS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>- Purpose
- Scope
- Definitions, acronyms, abbreviations
- Reference documents
- Overview</td>
</tr>
<tr>
<td>2 Overall Description</td>
<td>- Product perspective
- Product functions
- User characteristics
- Constraints
- Assumptions and Dependencies</td>
</tr>
<tr>
<td>3 Specific Requirements</td>
<td>- All the requirements go in here (i.e. this is the body of the document).
IEEE STD provides 8 different templates for this section</td>
</tr>
</tbody>
</table>

1 Introduction

- **Purpose**
- **Scope**
- Definitions, acronyms, abbreviations
- Reference documents
- Overview

2 Overall Description

- Product perspective
- Product functions
- User characteristics
- Constraints
- Assumptions and Dependencies

3 Specific Requirements

- Identifies the product, & application domain
- Describes contents and structure of the remainder of the SRS
- Describes all external interfaces: system, user, hardware, software; also operations and site adaptation, and hardware constraints
- Summary of major functions
- Anything that will limit the developer’s options (e.g. regulations, reliability, criticality, hardware limitations, parallelism, etc)
3.1 External Interface Requirements
 3.1.1 User Interfaces
 3.1.2 Hardware Interfaces
 3.1.3 Software Interfaces
 3.1.4 Communication Interfaces

3.2 Functional Requirements
 this section organized by mode, user class, feature, etc.
 For example:
 3.2.1 Mode 1
 3.2.1.1 Functional Requirement 1.1
 ...
 3.2.2 Mode 2
 3.2.1.1 Functional Requirement 1.1
 ...
 ...
 3.2.n Mode n
 ...

3.3 Performance Requirements
 Remember to state this in measurable terms!

3.4 Design Constraints
 3.4.1 Standards compliance
 3.4.2 Hardware limitations etc.

3.5 Software System Attributes
 3.5.1 Reliability
 3.5.2 Availability
 3.5.3 Security
 3.5.4 Maintainability
 3.5.5 Portability

3.6 Other Requirements
RE in Agile Methods

- **Basic Philosophy**
 - Reduce communication barriers
 - Programmer interacts with customer
 - Reduce document-heavy approach
 - Documentation is expensive and of limited use
 - Have faith in the people
 - Don’t need fancy process models to tell them what to do!
 - Respond to the customer
 - Rather than focusing on the contract

- **Weaknesses**
 - Relies on programmer’s memory
 - Code can be hard to maintain
 - Relies on oral communication
 - Mis-interpretation possible
 - Assumes single customer representative
 - Multiple viewpoints not possible
 - Only short term planning
 - No longer term vision

- **E.g. Extreme Programming**
 - Instead of a requirements spec, use:
 - User story cards
 - On-site customer representative
 - Pair Programming
 - Small releases
 - E.g. every three weeks
 - Planning game
 - Select and estimate user story cards at the beginning of each release
 - Write test cases before code
 - The program code is the design doc
 - Can also use CRC cards (Class-Responsibility-Collaboration)
 - Continuous Integration
 - Integrate and test several times a day
RE in V Model

- System requirements
- Software requirements
- Preliminary design
- Detailed design
- Code & debug
- System integration
- Acceptance test
- Software integration
- Component test
- Unit test

Level of abstraction

Time

analyze and design

test and integrate
RE Process:
Why?

It is more important to understand the problem than the solution. [Albert Einstein]

If software is simply for automation, what would a washing machine be like?