
Computer Science Program, The University of Texas, Dallas

Lawrence Chung

System Design

What?

Why?

How?

Lawrence Chung

✈ OMT Methodology

Problem Statement

Object Model

Dynamic Model

Functional Model

System Design

Object Design

� � � � � � � � � � � � 	 �

 � � � � � � � � � � � �

 � � � � � � � � � �

precise, concise, understandable
correct model of the world

GIGO

partitioning the system

Conquering Complexity is a Challenge

Lawrence Chung

✈

System (Architectural) Design

From problem definition to (high-level) solution definition

Problem

Design
Space

n...

m

...

� ! � " � � � # $ � � � � �

Lawrence Chung

✍

Why?

An Architecture Analogy

☞ easy to use

☞ easy to maintain

☞ accommodate more items

☞ flexible

Anything else?

[Mowbray & Zahavi]

Messy closet Clean closet

m.c:n m.o:n

m.c:2 m.o:2

c.o:1

☛

b c d

l m n

x y% & ' () * + , - . / 0 1

assume a sw system is composed of an arbitrary collection of
modules, each with a series of versions

b c
m n

x y1 2 () 3 4 & 5 0 3 5 .) 0
l

d

a a

, % 6 0 3 5 + , - . / 0 1

b

l

c

n
d

x y

Lawrence Chung

System Modeling

b c

n

x y

l

d

1 , .) 3 0 + , - . / 0 1

a.c a.o

m.c m.o

m.c:1 m.o:1

1 2
c.o:2

b.o:1

b.o:2

3

% & ' () *

% & ' () *4

☛ an interface is the link between
the server module that provides a service and
the client module that uses the service

✠ 7 0 3 (/ / 8 - (5 (9 / , 2
✠ 7 0 3 (/ / 8 , : 0) (5 & , ' ; 1 0) < & 3 0

b c
m n

x y

l

d

Module x

op1 (p: int)

op2

☛ for every client/server relationship, the system model must specify
the version of {the interface, the server, the client}

Lawrence Chung

System Modeling

☛ then, a = > = ? @ A A B C @ D is a complete and detailed description of
the client/server relationships in a sw system at a given point

Module m

mop1(s:string, h:vector)
x.op1(i)

Module y
y.l(t)
y.k(u,v)

k(r,s: real)

l(c:boolean)

☛ a sw system is "consistently composed" if for every client/server
relationship, the client & the server agree on the interface between them

What if algorithms change?

import/export (private/public) restrictions

parameter types
of parameters

return type

names

Lawrence Chung

✈

Types of decisions

Partitioning the system into subsystems

✍ A subsystem is a package of classes, accociations, operations, events,

and constraints

✍ A subsystem has a reasonably well-identified interface

✍ A subsystem can in turn be decomposed into smaller subsystems

✍ Each lowest level subsystem is called "module" in OMT

✈ Identifying concurrency inherent in the problem

✍ To achieve as much independence as possible

✍ The dynamic model can be the guide

e.g., two objects receiving events at the same time

✈ Allocating subsystems to processors and tasks

✍

✍ The connectivity of subsystems needs to be determined

✁ hardware-software tradeoff

Each concurrent subsystem is allocated to (a) hardware (or software)

Lawrence Chung

Architectural Styles

Consider patterns of interaction
(e.g., procedure call, external files, message passing, sockets, RPCs, MOMs, etc)

Consider system style, subsystem style, homogeneity, etc.
(e.g., 4+2 layer, first layer being pipe-and-filter, second layer OO, etc.)

Lawrence Chung

CORBA

☛ Common Object Request Broker Architecture

E F G H I J K L M N L M

E F G H I J K L M N L M

E F G H I J K L M N L M

☛ A specification for a standard OO architecture for applications
not a low-level design/implementation✇

✇

☛ defined by the Object Management Group (OMG) since Nov 1990

platform (OS, HW)-independence, PL-independence

currently >500 members

☛ CORBA clients and servers do not need direct knowledge of each other
the broker knows the locations and capabilities of the servers on the network

☛ A client request can be fulfilled by several (competing) servers
the broker should know who can provide the service fastest and cheapest

☛ An Object Model requires abstraction, encapsulation, inheritance & polymorphism

Few individuals practicing in the software industry have this ability - perhaps as few as
one in five software designers." [Coplien, ’94]

"The ability to create simplifying abstractions is a key innate talent of the software architect.

B
ro

ke
r

Lawrence Chung

✈ OMT Methodology

Problem Statement

Object Model

Dynamic Model

Functional Model

System Design

Object Design

� � � � � � � � � � � � 	 �

 � � � � � � � � � � � �

 � � � � � � � � � �

precise, concise, understandable
correct model of the world

GIGO

partitioning the system

Conquering Complexity is a Challenge

data structures and algorithms
(preliminary design +)

s/he is recorded as an employee
When a person gets hired, s/he is given an office

Afterwards, the company informs the payroll of the change

s/he participates in projects

When the company changes her salary, a meeting is called for

Lawrence ChungLawrence Chung

Object Design:

■ O P Q R S T U V W U X Q P Y U Z [

\ \ \] [[^ Q S T _] Z Z P `] V S P T P a a ^ T ` V S P T [W] b U R U U T Y P T U

Sue.project <- {SuperBanking, MAN, GPS}

When Sue gets hired, Sue.office <- FN2.106
instanceOf (Sue, Employee)

When the company changes her salary,

initiate -------> get constraints -------> request for

Afterwards, the company informs the payroll of the change

mtgProposal schedule

P R V] S T P c U d] V S P T [P T ` Z] [[U [

When a person gets hired, s/he is given an office
s/he is recorded as an employee

Afterwards, the company informs the payroll of the change

When the company changes her salary, a meeting is called for

s/he participates in projects

Lawrence ChungLawrence Chung

Object Design:

■

\ \ \] [[^ Q S T _] Z Z P `] V S P T P a a ^ T ` V S P T [W] b U R U U T Y P T U

Sue.project <- {SuperBanking, MAN, GPS}

When Sue gets hired, Sue.office <- FN2.106
instanceOf (Sue, Employee)

When the company changes her salary,

initiate -------> get constraints -------> request for

Afterwards, the company informs the payroll of the change

mtgProposal schedule

e U [S _ T Y] V] [V d ^ ` V ^ d U [] T Y] Z _ P d S V W Q [

f g h i j k l
f m n h o p j k l

q h n r p

Person
salary

salary-position

Lawrence ChungLawrence Chung

Object Design:

■ s c V S Q S t] V S P T
❏

Company
Employs

Person
Has-skill

Skill

Company::find-skill (Japanese) -> |Person|, |Person| x |Skill| iterations

Company language Person
Speaks language

Adding redundant qualifier for efficient access

❏ Saving derived attributes to avoid recomputation

Person
salary

salary-position

/salary-position

Lawrence ChungLawrence Chung

Object Design:

■

❏

u Q c Z U Q U T V] V S P T P a ` P T V d P Z
1

Start

Password entered

enter passwordpassword NOK read password

repeat

password OK
do: verify password

verify password

until password OK

❏2

enter password password OK password NOK

Password enteredStart

Password entered
verify password

Start

❏3

State -> Location

Assume State Machine Engine Exists

Major OOPLs do not support concurrency
-> no such thing as message passing

High overhead

Object -> Task (-> Concurrent Processes)

Person Cat ...

Stack

push
pop

List

add

first
last

add

List

remove
first
last

remove

Lawrence ChungLawrence Chung

Object Design:

■

❏

v Y w ^ [V Q U T V P a S T W U d S V] T ` U
Generalize

age

Animal

❏ Specialize

❏ Use delegation to share implementation

Person Cat

age age

Overriding discouraged!

Anything wrong?

Stack

pop
push
body:list {private}

The body of each stack is a list
self.push(e) = self.add(e) s.t. self.first() = e
self.pop() = self.remove() s.t.self.first() = ???

Person

employer

Company

find-employees

Lawrence ChungLawrence Chung

Object Design:

■
e U [S _ T P a] [[P ` S] V S P T [

(in requirements, usually two-way; in design, efficiency)

❏ Two-way associations

❏ One-way associations

if backward search is rare, efficient space & update
backward search expensive

2. use one-way + set-valued attribute

1. use one-way: backward search expensive

Person

employer

Company

employees

Employee-Set

access>>update bothways;
consistent update obligation

3. as distinct object

Person Company
Works-for

Works-for

Person

employer Company

❏ Link attributes
Excercise!

Lawrence ChungLawrence Chung

Object Design:

■

❏

x] ` y] _ S T _
Information hiding

REVIEW Software Engineering

private vs. public

❏

❏

❏ ??? coupling

??? cohesion

A chunk of classes as a module

Document decision decisions!!!❏

