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✈

System (Architectural) Design

From problem definition to (high-level) solution definition
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✍

Why?

An Architecture Analogy

☞ easy to use

☞ easy to maintain

☞ accommodate more items

☞ flexible

Anything else?

[Mowbray & Zahavi]

Messy closet Clean closet
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assume a sw system is composed of an arbitrary collection of
modules, each with a series of versions
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System Modeling
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☛ an interface is the link between 
the server module that provides a service and
the client module that uses the service
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Module x

op1 (p: int)

op2

☛ for every client/server relationship, the system model must specify
the version of {the interface, the server, the client}
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System Modeling

☛ then, a = > = ? @ A A B C @ D is a complete and detailed description of
the client/server relationships in a sw system at a given point

Module m

mop1(s:string, h:vector)
x.op1(i)

Module y
y.l(t)
y.k(u,v)

k(r,s: real)

l(c:boolean)

☛ a sw system is "consistently composed" if for every client/server
relationship, the client & the server agree on the interface between them

What if algorithms change?

import/export (private/public) restrictions

parameter types
# of parameters

return type

names
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✈

Types of decisions

Partitioning the system into subsystems

✍ A subsystem is a package of classes, accociations, operations, events, 

and constraints

✍ A subsystem has a reasonably well-identified interface

✍ A subsystem can in turn be decomposed into smaller subsystems

✍ Each lowest level subsystem is called "module" in OMT

✈ Identifying concurrency inherent in the problem

✍ To achieve as much independence as possible

✍ The dynamic model can  be the guide

e.g., two objects receiving events at the same time

✈ Allocating subsystems to processors and tasks

✍

✍ The connectivity of subsystems needs to be determined

✁ hardware-software tradeoff

Each concurrent subsystem is allocated to (a) hardware (or software)
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Architectural Styles

Consider patterns of interaction
(e.g., procedure call, external files, message passing, sockets, RPCs, MOMs, etc)

Consider system style, subsystem style, homogeneity, etc.
(e.g., 4+2 layer, first layer being pipe-and-filter, second layer OO, etc.)
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CORBA

☛ Common Object Request Broker Architecture
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☛ A specification for a standard OO architecture for applications
not a low-level design/implementation✇

✇

☛ defined by the Object Management Group (OMG) since Nov 1990

platform (OS, HW)-independence, PL-independence

currently >500 members

☛ CORBA clients and servers do not need direct knowledge of each other
the broker knows the locations and capabilities of the servers on the network

☛ A client request can be fulfilled by several (competing) servers
the broker should know who can provide the service fastest and cheapest

☛ An Object Model requires abstraction, encapsulation, inheritance & polymorphism

Few individuals practicing in the software industry have this ability - perhaps as few as
one in five software designers." [Coplien, ’94]

"The ability to create simplifying abstractions is a key innate talent of the software architect.
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✈ OMT Methodology
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Object Design
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Conquering Complexity is a Challenge

data structures and algorithms
(preliminary design +)



s/he is recorded as an employee
When a person gets hired, s/he is given an office

Afterwards, the company informs the payroll of the change

s/he participates in projects

When the company changes her salary,  a meeting is called for
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Object Design:
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Sue.project <- {SuperBanking, MAN, GPS}

When Sue gets hired, Sue.office <- FN2.106
instanceOf (Sue, Employee)

When the company changes her salary,  

initiate -------> get constraints -------> request for

Afterwards, the company informs the payroll of the change

mtgProposal schedule
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When a person gets hired, s/he is given an office
s/he is recorded as an employee

Afterwards, the company informs the payroll of the change

When the company changes her salary,  a meeting is called for

s/he participates in projects
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Object Design:

■
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Sue.project <- {SuperBanking, MAN, GPS}

When Sue gets hired, Sue.office <- FN2.106
instanceOf (Sue, Employee)

When the company changes her salary,  

initiate -------> get constraints -------> request for

Afterwards, the company informs the payroll of the change

mtgProposal schedule
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Person
salary

salary-position
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Object Design:

■ s c V S Q S t ] V S P T
❏

Company
Employs

Person
Has-skill

Skill

Company::find-skill (Japanese) -> |Person|, |Person| x |Skill| iterations

Company language Person
Speaks language

Adding redundant qualifier for efficient access

❏ Saving derived attributes to avoid recomputation

Person
salary

salary-position

/salary-position
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Object Design:

■

❏
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1

Start

Password entered

enter passwordpassword NOK read password

repeat

password OK
do: verify password

verify password

until password OK

❏2

enter password password OK password NOK

Password enteredStart

Password entered
verify password

Start

❏3

State -> Location

Assume State Machine Engine Exists

Major OOPLs do not support concurrency
-> no such thing as message passing

High overhead

Object -> Task (-> Concurrent Processes)



Person Cat ...

Stack

push
pop

List

add

first
last

add

List

remove
first
last

remove
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Object Design:

■

❏
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Generalize

age

Animal

❏ Specialize

❏ Use delegation to share implementation

Person Cat

age age

Overriding discouraged!

Anything wrong?

Stack

pop
push
body:list {private}

The body of each stack is a list
self.push(e) = self.add(e) s.t. self.first() = e
self.pop() = self.remove() s.t.self.first() = ???

Person

employer

Company

find-employees
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Object Design:

■
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(in requirements, usually two-way; in design, efficiency)

❏ Two-way associations

❏ One-way associations

if backward search is rare, efficient space & update
backward search expensive

2. use one-way + set-valued attribute

1. use one-way: backward search expensive

Person

employer

Company

employees

Employee-Set

access>>update bothways; 
consistent update obligation

3. as distinct object

Person Company
Works-for

Works-for

Person

employer Company

❏ Link attributes
Excercise!
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Object Design:

■

❏

x ] ` y ] _ S T _
Information hiding

REVIEW Software Engineering

private vs. public

❏

❏

❏ ??? coupling

??? cohesion

A chunk of classes as a module

Document decision decisions!!!❏


