
Software Architecture:
Past, Present, and Future

©David Garlan 2005

1

Software Architecture:
Past, Present, and Future

David Garlan
Carnegie Mellon University

University of Texas, Dallas
October 14, 2005

October 14, 2005 Garlan 2

Examples of Architecture
Descriptions

Software Architecture:
Past, Present, and Future

©David Garlan 2005

2

October 14, 2005 Garlan 3

October 14, 2005 Garlan 4

Software Architecture:
Past, Present, and Future

©David Garlan 2005

3

October 14, 2005 Garlan 5

October 14, 2005 Garlan 6

Software Architecture:
Past, Present, and Future

©David Garlan 2005

4

October 14, 2005 Garlan 7

October 14, 2005 Garlan 8

This Talk

The Challenge for Software Architecture
Today’s practice

What is needed

Research Themes (Part 1)
Notations and tools for software architecture
Architecture-based analysis

Research Themes (Part 2)
Architecture-based dynamic adaptation

Software Architecture:
Past, Present, and Future

©David Garlan 2005

5

October 14, 2005 Garlan 9

Joint Work
Staff

Bradley Schmerl

Graduate Students
Robert Allen
Owen Cheng
George Fairbanks

Vahe Poladian
Bob Monroe
Bridget Spitznagel

October 14, 2005 Garlan 10

Issues Addressed by
an Architectural Design

Decomposition of a system into interacting
components

typically hierarchical
using rich abstractions for component interaction or system
“glue”

Emergent system properties
performance, throughput, latencies
reliability, security, fault tolerance, evolvability

Rationale and assignment of function to components
relates requirements and implementations

Envelope of allowed change
“load-bearing walls”, limits of scalability and adaptation
design idioms and styles

Software Architecture:
Past, Present, and Future

©David Garlan 2005

6

October 14, 2005 Garlan 11

The Challenge

How can we establish intellectual control over
this world?

Express architectural descriptions precisely and
intuitively
Provide soundness criteria & tools to check them
Analyze architectural designs to determine key
properties
Exploit patterns and styles
Guarantee conformance between architecture and
implementation

October 14, 2005 Garlan 12

Software Architecture in Context

2000

1980

1950

1970

1990

1960

Programming-
any-which-way

Programming
-in-the-small

Programming-
in-the-large

Programming-
in-the-world

Software architecture

NATO SE conference

Programming-in-the-large

Software development environments

Subroutines

Separate compilation

Integrated product lines

Information hiding

Inheritance
Abstract data types objects

Packages
Pipes and filters

Object-oriented Patterns

Software Architecture:
Past, Present, and Future

©David Garlan 2005

7

October 14, 2005 Garlan 13

Today’s Practice
Growing recognition of role of sw architecture

Architect as distinct job title
Architectural design reviews part of sw devel
processes
Investment in product lines and frameworks
Courses, textbooks, certificates, conferences

Standard notations and techniques
UML 2.0

supporting object-oriented arch modeling

“Model-driven architecture,”
addressing platform independence

Middleware and integration standards
enabling component composition

October 14, 2005 Garlan 14

But …
Notations are largely informal

Meager analytical capability
No way to check/enforce compatibility with
implementation
Hard to maintain architectural integrity over time

There are few tools for the architect
Supporting scalability
Tailorable to domain and product family
Allowing flexible tool integration and analysis
Enabling code generation and conformance
checking

Software Architecture:
Past, Present, and Future

©David Garlan 2005

8

October 14, 2005 Garlan 15

Research Themes (Part 1)
Formal representation of software architecture

Precise definition of high-level system designs
Identify design flaws early in lifecycle
Specify rules for domain-specific architectural frameworks

Architecture-based analyses
Reliability, performance, framework conformance,…

Tools to support software architects
Graphical and textual interfaces for creating and
maintaining architectures
Integration platform for architecture-based analyses
and code generation for frameworks

October 14, 2005 Garlan 16

Architectural Views
There are many possible “views” of software
architecture

Implementation structures
Modules, packages, work units
Uses, contains, specializes relations

Run-time structures
Components, connectors
Interactions, quality attributes

Deployment structures
Hardware, processes, networks

We focus on Component & Connector (C&C)
Views

Software Architecture:
Past, Present, and Future

©David Garlan 2005

9

October 14, 2005 Garlan 17

Representing C&C Views

connector

component

system

port role

October 14, 2005 Garlan 18

Modeling Structure
System simple-cs = {

Component client = { port call-rpc; };

Component server = { port rpc-request; };

Connector rpc = {

role client-side;

role server-side;

};

Attachments = {

client.call-rpc to rpc.client-side;

server.rpc-request to rpc.server-side;

}

}

client server

Software Architecture:
Past, Present, and Future

©David Garlan 2005

10

October 14, 2005 Garlan 19

Representations

Provide hierarchical element abstractions
Can represent (multiple) sub-
architectures System

Component Representation

Abstraction
Map

System
(sub-architecture)

...

...

...

...

October 14, 2005 Garlan 20

Beyond Structure

Annotate structure with properties
Quality attributes (e.g., performance, reliability)
Behavior (e.g., protocols of interaction)
Interface details (e.g., required and provided
services)

Properties can then be analyzed by tools
Schedulability analysis

Reliability analysis
Deadlock and race condition detection

Software Architecture:
Past, Present, and Future

©David Garlan 2005

11

October 14, 2005 Garlan 21

Properties
System simple-cs = {

…

Component server = {

port rpc-request = {

Property sync-requests : boolean = true;

};

Property max-transactions-per-sec : int = 5;

Property max-clients-supported : int = 100;

};

Connector rpc = { …

Property protocol : string = “aix-rpc”;

}; …

};

October 14, 2005 Garlan 22

Schedulability Analysis

Software Architecture:
Past, Present, and Future

©David Garlan 2005

12

October 14, 2005 Garlan 23

Modeling Architecture Behavior

Key idea: represent behavior as protocols
For connectors define separate protocols for each
role and for the “glue” that binds them together
For components define protocols for ports and for
the overall component behavior

Can then check (using model checkers)
Consistency freedom of connectors

Compatibility of component interface to connector
interaction protocol
Consistency of a component behavior to its
interfaces

October 14, 2005 Garlan 24

Representing Behavior

Which is the reading/writing end of the pipe?
Is writing synchronous?
What if F2 tries to read and the pipe is empty?
Can F1 choose to stop writing?
Can F2 choose to stop reading without consuming
all of the data?
If F1 closes the pipe, can it start writing again?
If F2 never reads, can F1 write indefinitely?

F1 F2

Pipe

Software Architecture:
Past, Present, and Future

©David Garlan 2005

13

October 14, 2005 Garlan 25

Specifying Connector Behavior

Events: e, request, read?y, write!5

Processes: P, Reader, Writer, Client, §

Sequence: e → P, P ; Q

Choice: P ⎡⎤ Q, P [] Q

Composition: P || Q

Wright: a variant of CSP (Hoare 85)

October 14, 2005 Garlan 26

Example: A Pipe Connector

Connector Pipe
Role Writer = (write!x → Writer) ⎡⎤ (close → §)
Role Reader = Read ⎡⎤ Exit

where Read = (read?x → Reader) [] (eof → Exit)
Exit = close → §

Glue = Writer.write?x → Glue []
Reader.read!y → Glue []
Writer.close → ReadOnly []
Reader.close → WriteOnly

where ...

Software Architecture:
Past, Present, and Future

©David Garlan 2005

14

October 14, 2005 Garlan 27

Architectural Styles

Architectural styles represent families of
systems

Vocabulary of component and connector types
(clients&servers, pipes&filters, …)
Properties of interest and shared analyses
Constraints on topology and properties

Most systems are instances of styles
Sometimes generic (3-tired client-server, …)
Often domain-specific (power-train controllers, …)

October 14, 2005 Garlan 28

Representing Styles

Augment notation with
Component, connector, and property types

Constraints

Constraints
First-order predicates over architecture structure
and properties

Augmented with architectural primitives to simplify
expressions

Software Architecture:
Past, Present, and Future

©David Garlan 2005

15

October 14, 2005 Garlan 29

Styles/Families
Family PipeFilterFam = {

Component Type filterT = {
Ports {In,Out};
…};

Connector Type pipeT = {
Role Reader = {Property datatype = …};
Role Writer = {Property datatype = …};
Invariant
self.Reader.datatype =

self.Writer.datatype;
…}

System myPF-System : PipeFilterFam = {…}

October 14, 2005 Garlan 30

Example: MDS
MDS defines an architectural framework for a
family of NASA space systems

System of architectural component types

Rules on how they can be connected
Run-time infrastructure for executing MDS systems
Reusable code base

Checking/ensuring conformance to MDS is an
important and hard problem

Many rules, many components, complex topology
Mapping between architectural design and code is
non-trivial

Software Architecture:
Past, Present, and Future

©David Garlan 2005

16

October 14, 2005 Garlan 31

Formal Modeling of MDS
Acme used to specify the MDS style

8 Component types (sensor, actuator, estimator …)

12 Connector types (measurement query, command
submit, state update)

MDS rules defined using Acme constraints
Ten “rules” from MDS designers become 38
checkable predicates

AcmeStudio for tool support
Eclipse-based graphical editor, constraint checker,
tool plug-ins

October 14, 2005 Garlan 32

Software Architecture:
Past, Present, and Future

©David Garlan 2005

17

October 14, 2005 Garlan 33

Temperature Control System

October 14, 2005 Garlan 34

The MDS Style

State Query

Command Submit

Command Notif.

Measurement Query

State Update

State Notification

Constraint Execution

Software Architecture:
Past, Present, and Future

©David Garlan 2005

18

October 14, 2005 Garlan 35

MDS Rules
As specified by MDS designers:

“For any given Sensor, the number of
Measurement Notification ports must be
equal to the number of Measurement Query
ports (rule R5A).”

Acme rule (associated with the sensor
component type)
numberOfPorts (self, MeasurementNotifReqrPortT) ==

numberOfPorts (self, MeasurementQueryProvPortT)

October 14, 2005 Garlan 36

Software Architecture:
Past, Present, and Future

©David Garlan 2005

19

More MDS Rules
Rule 4:“Every estimator requires 0 or more
Measurement Query ports. It can be 0 if estimator does
not need/use measurements to make estimates, as in
the case of estimation based solely on commands
submitted and/or other states. Every sensor provides
one or more Measurement Query ports. It can be more
than one if the sensor has separate sub-sensors and
there is a desire to manage the measurement histories
separately. For each sensor provided port there can be
zero or more estimators connected to it. It can be zero if
the measurement is simply raw data to be transported
such as a science image. It can be more than one if the
measurements are informative in the estimation of more
than one state variable.”

October 14, 2005 Garlan 38

More MDS Rules
As specified by MDS designers:

“…It can be more than one if the sensor has
separate sub-sensors and there is a desire to
manage the measurement histories separately….”
Acme rule (associated with the sensor
component type):
(numberOfPorts(self, MeasurementQueryPort) > 1)

self.manageHistoriesSeparately AND
hasCommandableSubunits(self));

where hasCommandableSubunits = …

Software Architecture:
Past, Present, and Future

©David Garlan 2005

20

October 14, 2005 Garlan 39

On-going Work
Scaling up to realistic systems

Thousands of components

Tools to refine architectures to code
Ensure implementation conforms to architecture
Reuse large body of framework code

Analyses
Schedulability, power consumption, footprint
Requirements coverage

October 14, 2005 Garlan 40

Software Architecture:
Past, Present, and Future

©David Garlan 2005

21

October 14, 2005 Garlan 41

Example: Distributed Simulation
Distributed simulation

simulation is a multi-billion $ industry

critical problem for DoD (and others) is multi-vendor
interoperability
envision ~1000 cooperating simulations

The “High-Level Architecture” (HLA)
Defense Modeling and Simulation Office (DMSO)
standard -- about 250 pages
http://www.dmso.mil/docslib/hla
each page defines 1 API call Sim1 Sim2 Sim3

Classification of Findings
Ambiguity/imprecise wording 28

critical reading, Wright, other
Inadequate pre-/post-conditions 12

critical reading
Missing information 20

critical reading, Wright, FDR
Race conditions 5

FDR, Wright
Errors (invariant violation, unexpected conseqs) 11

critical reading, Wright, other
Misc (typos, impl warnings, docn inconsistencies) 11

critical reading ,Wright, FDR
87 issues

Software Architecture:
Past, Present, and Future

©David Garlan 2005

22

October 14, 2005 Garlan 43

Example: Ford Model-based Design
Worked with Ford Motor Company to develop
tools for design of automotive control systems
Two layered model

abstract, platform-independent
concrete, component model

Tools to map between them
Component selection
Automatic “hook-up”
Creation of composite Simulink models

Estimated savings
“what used to take 6 months now takes a week”

October 14, 2005 Garlan 44

Software Architecture:
Past, Present, and Future

©David Garlan 2005

23

October 14, 2005 Garlan 45

Beyond Static Analysis
We are making great progress in design-time
techniques for improving traditional systems
But … increasingly, systems

are composed of parts built by many organizations
must run continuously
operate in environments where resources change
frequently

For such systems, traditional methods break
down

Exhaustive verification and testing not possible
Manual reconfiguration does not scale
Off-line repair and enhancement is not an option

October 14, 2005 Garlan 46

Research Themes (Part 2)
Goal: systems automatically and optimally
adapt to handle

changes in user needs
variable resources
faults
mobility

?

Executing System

Control Mechanisms

SenseAffect

But how?But how?

Answer: Move from openAnswer: Move from open--loop to closedloop to closed--loop systemsloop systems

Architecture-based
Self-repair

Software Architecture:
Past, Present, and Future

©David Garlan 2005

24

October 14, 2005 Garlan 47

Example: University Grade System

Client 1

University Server

Client 3

Client 2

Students using University web
University aims to provide
timely and ubiquitous access
One student tries to hack in
and change her grades

Possible (escalating)
responses:

Turn on auditing
Switch authentication scheme
Sandboxing
Move grades data
Close off connections
Partition network
Turn off services

October 14, 2005 Garlan 48

Many Things Can Go Wrong

Wireless device moves into a different network

Server load changes

Resource variability
Changing environments
Shifting user needs and intents
System faults

Application or network connection fails

The system should dynamically adapt to these problems.

User attempts foul-play

Running SystemRunning System

Software Architecture:
Past, Present, and Future

©David Garlan 2005

25

October 14, 2005 Garlan 49

Traditional, Internal Mechanisms

Limitations
Detection limited to localized view of system
Outcome difficult to reason about
Costly or infeasible to modify existing system
Difficult to reuse logic for new system

Exception handling
Network time-outs
Signal and interrupt
Memory management

Running SystemRunning System

Data formatting in DB causes exception
Network failure causes time-outs

One application failure causes sig-HUP on the socket of another

Garbage collection

October 14, 2005 Garlan 50

Model &
Adaptation mechanism

External Adaptation

adapt monitor

Architectural model &
Adaptation mechanism

Running SystemRunning System

Global system perspective
Important system-level behaviors
and properties
Explicit system integrity constraints
Proven trade-off analysis techniques

Software Architecture:
Past, Present, and Future

©David Garlan 2005

26

October 14, 2005 Garlan 51

Rainbow

Translation
Infrastructure

System API

Running System
System Layer

ProbesResource
DiscoveryEffectors

Architecture Layer

Model
Manager

Adaptation
Executor

Arch
Evaluator

Adaptation
Engine

Gauges

Monitoring mechanisms

Effector mechanisms

October 14, 2005 Garlan 52

Rainbow
Mechanisms

Rainbow Illustrated – Intrusion Detection

Arch
Evaluator

Adaptation
Engine

Translator

Adaptation
Executor

Model Manager

Possible grade change

Client2.intrusion_prob = 75%

True?: intrusion_prob <= max_prob

False! Find the right tactic

Client2.isolate() /
Grades.audit()

Change link / Add Auditing

Software Architecture:
Past, Present, and Future

©David Garlan 2005

27

October 14, 2005 Garlan 53

Research Challenges

One size does not fit all
Ideally the approach should

apply to many architecture and implementation styles
Generality

facilitate adding self-adaptation capabilities to
existing software systems at low cost

Cost-effectiveness

support run-time trade-off between multiple
adaptation goals

Composablity

October 14, 2005 Garlan 54

Our Rainbow Approach (2)

Translation
Infrastructure

Arch
Evaluator

Adaptation
Engine

Model
Manager

Adaptation
Executor

Running System

System API

System Layer

ProbesResource
DiscoveryEffectors

Architecture Layer

Gauges

Translation
Infrastructure

Arch
Evaluator

Adaptation
Engine

Model
Manager

Adaptation
Executor

Running System

System API

System Layer

ProbesResource
DiscoveryEffectors

Architecture Layer

Gauges

Arch
Evaluator

Adaptation
Engine

Model
Manager

Adaptation
Executor

Software Architecture:
Past, Present, and Future

©David Garlan 2005

28

October 14, 2005 Garlan 55

What’s tailored
Properties, probes & gauges

Vocabulary of model
Architectural constraints

Strategies & tactics

System change operators

Arch-system mappings

Rainbow as a Tailorable Framework

General framework with
Reusable infrastructure + tailorable mechanisms

Specialized to targeted
system + adaptation goals

Main components
Monitoring mechanisms

Model manager

Architectural evaluator

Adaptation engine
Effector mechanisms

Translation infrastructure

October 14, 2005 Garlan 56

Progress To Date
Rainbow prototype

Developed and integrated mechanisms

Tested control cycle
Demonstrated usefulness for specific adaptation
scenarios

Case studies
Three styles of system

Client-server, service-coalition, data repository

Three kinds of adaptation goals
Performance + security + cost

Adaptation language under development

Software Architecture:
Past, Present, and Future

©David Garlan 2005

29

October 14, 2005 Garlan 57

Some Research Challenges
Modeling

Architectural “recovery” at run time
Environment modeling and scoping
Handling multiple models and dimensions of concern

Capabilities of the adaptation infrastructure
Efficient, scalable constraint evaluation
Timing issues (non-deterministic arrival of system
observations, change latencies)

Avoiding thrashing

Advanced features
Reasoning about the correctness of adaptation
Adapting the adaptation strategies

October 14, 2005 Garlan 58

Other Software Architecture Research

Architectures for emerging systems
Pervasive computing – thousands of
heterogeneous computing elements
Service oriented computing – highly dynamic,
highly distributed

Architecture conformance and discovery
How can we ensure that a system has its
advertised architecture?

Methods and processes
Architecture-centric development

Software Architecture:
Past, Present, and Future

©David Garlan 2005

30

October 14, 2005 Garlan 59

ConclusionThe END

Software architecture has come a long way.
There remain many challenges.

We examined two research threads
Modeling architectures:

Representation and Analysis
Practical tools

Run-time adaptation:
The reusable, tailorable Rainbow framework

Many more exist! David Garlan
garlan@cs.cmu.edu

