[image: image1.wmf]Non-memberC

MemberC

MemberID

specialServiceAccess()

Reminder

Invoice#

Amount

CustomerID

Payment#

reconcile()

generateReminder()

printReminder()

sendReminder()

Customer

CustomerID

CustomerName

CustomerAddress

OrderRecord

insert()

search()

delete()

update()

membershipCheck()

Invoice

Invoice#

Amount

CustomerID

generateInvoice()

delete()

printInvoice()

Payment

Payment#

Amount

CustomerID

getPayment()

validate()

Receipt

Receipt#

Invoice#

Payment#

Amount

CustomerID

issueReceipt()

printReceipt()

Architecture Design for B2B Invoice Processing System

CS 6362

Software Architecture and Design

Instructor: Dr. Lawrence Chung

Fall 2000

Team Project

By

Wenping Sun

Jihong Zhao

Jiwen Steven Lin

[image: image2.wmf]
Table of Contents

1. Introduction ..……………………………………………………….…………………. 1

2. Process Architecture ………………………………………………..…………………. 2

3. Architecture Design Alternatives ……………………………………………………... 4

3.1 Object-oriented Architecture 1(ADT) ………..……………………………………… 4
3.2 Object-oriented Architecture 2 (UML) ………..……………………………….……. 8
3.3 Pipe and Filter Architecture ………..……………………..………….……………. 10
3.4 Implicit Invocation Architecture 1 ………………………...………………………. 12
3.5 Implicit Invocation Architecture 2 …………………………...……….…………… 15
4. Trade-Off Analysis ……………………………………………………………………... 17

4.1 Object-oriented Architecture 1(ADT) ………………………………………….…... 18
4.2 Object-oriented Architecture 2 (UML) ...………………………………………….. 18
4.3 Pipe and Filter Architecture …....……..……………………..……………………. 19
4.4 Implicit Invocation Architecture 1 ………...…………………………...…………. 19
4.5 Implicit Invocation Architecture 2 ……………………………...………...………. 20
5. The Selected Architectural Design ………………………….………….…………... 21

6. Decision Point during Architectural Design ………………………………………. 21

6.1
General Decision Points ……………………………………………….………… 21
6.2
Decision Points for OOD-UML .………………………………………….…..….. 22
1. Introduction

Today, electronic commerce is one of the fastest growing and evolving area. It typically involves use of an electronic commerce system, which enables buyers and sellers to exchange commodities and services electronically. Electronic business operation has been the privilege of large companies that had the knowledge, technology and sufficient capital to invest in an electronic infrastructure that supports business transactions electronically. To support such an advanced concept, an intelligent architecture should be adopted. A B2B-IPS (business to business invoice processing system) is being considered as part of the next generation of electronic commerce network.

B2B-IPS would issue invoice to business customers. It will distinguish two types of customers, member customers and non-member customers. The system shall allow only the member customers to use some of the special features of the system, for instance, viewing the real-time research on the goods and services being sold. The system will receive payments from customers, issue receipts for these payments, and generate reminders for unpaid invoice to the customers. For the convenience of customers, the system would allow both on-line payment (e.g., through transfer of funds) and payments via other means (e.g., checks and “wire transfer”).

In order to build an invoice processing system to be used as part of an electronic commerce system, our team will consider five alternative software architectural designs for this project: one for pipe-and filters structure, two for object-oriented structures, and two for implicit invocation structure. Based on a detailed analysis of the advantages and disadvantages of the four alternatives, a rational decision is made to select one of the five architectures for this project.
2. Process Architecture

This section will describe team roles, team architecture and role playing for process architecture. Our team has three members: Jihong Zhao, Jiwen Steven Lin, and Wenping Sun. There are multiple parties involved in the development, including the requirement engineers, product managers, and project managers, quality assurance managers and architects. The detailed process architecture is described as follows:

2.1 Team roles
· Requirement Engineer: Requirement Engineer is responsible for identifying, analyzing, and specifying requirements for the software system. When the design phase starts, the requirement engineers should provide requirement specifications to the design team. During the architectural design, the architects go back to the requirement engineers for clarification if there is any ambiguity about the requirements. The requirement engineers, in turn may have to discuss the issues with the customers/users before they get back to the architects.

· Product Manager: Product Manager is responsible for the production and release of the software once the development is done.

· Project Manager: Project Manager is Responsible for the management of requirements specification and architectural design and all the technical, financial, and personal aspects of this activity.

· Quality Assurance Manager: Quality Assurance Manager is responsible for verifying the architectural design against the requirement specification. H will ensure that the products and services are delivered at the required quality level, and that the project scope, cost, and time functions are fully integrated. His responsibility includes incorporation of quality assurance, a continuous process in every phase of the software life cycle.

· Architect: Architect is responsible for delivering a conceptual architecture design of the system based on both the functional and non-functional requirements. This architectural design will be the starting point for detailed design activities later in the development life cycle.

2.2
Process Architecture
Based on the responsibilities of the various parties involved and interactions between each party, the diagram below shows an overall team architecture in the architectural design process.

Monitors & Controls

 Input

 Feedback

 (Problems) Monitors &

 Verifies

 Input (RS)

 Manages

 Report to

 Development status

 & Technical issues

Team Architecture
2.3
Role Playing

Each of the three team members: Jihong Zhao, Steve Lin, and Wenping Sun, is assigned different roles during the architectural design activity based on the individual’s strengths and past experience. We believe this way everyone can contribute the most to the project, and we will have a final product of the highest possible quality. The roles are assigned as following:

Wenping Sun played the roles of customer, requirements engineer, and architect in the project team. Her responsibility is:

(1) Analyze the project requirements,

(2) Design two Object-Oriented architectural alternatives.

Jihong Zhao played the roles of architect, product manager and project manager. Her responsibility is:

(1) Design pipe and filter architectural alternatives.

(2) Resolve any issues that occurred during the architectural design process.

(3) Organize team meeting, monitor the status of the project, and sign contracts.

Steve Lin played the role of architect, Q&A manager. His responsibility is:

(1)
Design two implicit architectural alternatives.

(2)
To check and make sure that the design meets the stated requirements, both functionally, and non-functionally, and to make sure that the final document gets delivered on time and with quality.

3. Architectural Design Alternatives

In this section, five different design alternatives are presented: Object-Oriented Design 1 (ADT), Object-Oriented Design 2(OOD), Pipe-And-Filter Design, and Implicit Invocation Design 1, Implicit Invocation Design 2. Each includes detail description.

3.1
Object-Oriented Design 1 (Abstract Data Type (ADT)

In ADT architecture design, the components are objects. The system is divided into ADT objects, each handling a specific aspect of system functions. Each ADT object provides interface to communicate with other objects. An object is responsible for preserving the integrity of its representation that is hidden from other object. So data are not directly shared by different objects, but through explicitly invoking interfaces.

Subprogram Call

System I/O

Figure 1. Object-Oriented (ADT) Architecture

3.1.1 Architectural Style: Object-Oriented (ADT) (Figure 1).

3.1.2 Components/Elements:

Input: Get information through input medium.

Customer: Store new customer information. Read and check existing customer information, order information. Check customer membership.

Invoice process: Get customer’s order information and related products information, and then generate invoices.

Payment Handling: Get payment information and validate payment.

Reminder Process: After reconcile the payments generate remainder.

Receipt Handling: According the result of reconcile issue receipt.

3.1.3
Interactions/Connections:

Module Input:

Get customer information and order information from customer and store in Customer File.

Module Custome:

Procedure Set Cust Info (id, name, addr, creditPeriod):

/*
Create customer based on

id: customer id;

name: customer name;

addr: customer address;

creditPeriod: credit period; */

Procedure MembershipCheck (id)

/*
check customer membership;

display special feature service option to member customer;

provide special feature service to member customer;

accept customer membership application */

Procedure Orer Infor (item#)

/* display order information, assign unique order# */

Function Get Cust Info(id):

/*
return customer information including

customer id,

customer name,

customer address,

customer credit period */

Module Invoice process

Procedure setup (CustInfo, OrderInfo):

/*
System get customer information and order information from Customer module */

Procedure IssueInvoice (order#):

/*
According the information issue invoice, assign unique invoice# */

Module Payment Handling

Procedure setup (invoice#, payment):

/*
System get invoice# and all relative information */

Function Get Payment ():

/*
return payment information including:

the invoice related to the payment,

the date the payment is made,

the amount paid,

the customer Id who made the payment,

and if it is by credit card, check or cash. */

Function Validate Payment():

/*
Check payment is valid or not, if yes generate payment# */

Module Reminder Process

Procedure setup (invoice#, payment#):

/*
Get invoice information and payment information */

Procedure Reconcile (invoice#, payment#):

/*
perform once a week in a predefined time;

compare invoice information with payment information;

create a reminder for the invoice that have passed due date. */

Function Generate Reminder ():

/*
return reminder information */

Module Receipt Handling

Procedure setup (invoice#, payment#):

/*
create receipt with information:

invoice#: the invoice this receipt is related to,

amount: the amount received,

customerId: the customer the receipt is issued to. */

Function Issue Receipt():

/*
return receipt with receipt# */

Module Output

Operation PrintInvoice: get invoice from Invoice Processing and print invoice.

Operation PrintReceipt: get receipt from Receipt Handling and print receipt.

Operation PrintReminder: getl Reminder from Reminder Processing and print reminder.

Module Master Control

Synchronize the activities of all the other modules by using procedure calls of the modules.

3.1.4 Constraints: Each object provide interface that permit other components to access data only by invoking procedures in that interface

3.1.5 Pattern:

Procedure call

System I/O

3.2 Object-Oriented Design 2 (Unified Modeling Language (UML)

In UML architecture design, we use class diagram model the static design view of Invoice processing system. Classes encapsulate data and information. They can be inherited and reused.

[image: image3.wmf]
 Figure 2. Object-Oriented (UML) Architecture

3.2.1
Architectural Style: Object-Oriented (UML) (Figure 2).

3.2.2
Components/Elements (class):

Customer: Read and store customer information, order information, and check membership.

Invoice: Get customer order information and generate invoice.

Payment: Get payment information and validate payment.

Reminder: After reconcile the payments generate remainder.

Receipt: According the result of reconcile issue receipt.

3.2.3
Interactions/Connections:

Class Customer

/*
store customer information;

check customer membership, provide special feature service to member customer;

display order information, assign unique order# */

Class Invoice

/*
get customer information and order information from Customer class;

issue invoice, assign unique invoice# */

Class Payment

/*
get invoice# and all relative information;

get payment information including:

the date the payment is made,

the amount paid,

the customer Id who made the payment,

and if it is by credit card, check or cash;

check payment is valid or not, if yes generate payment# */

Class Reminder

/*
get invoice information and payment information;

compare invoice information with payment information;

create a reminder for the invoice that have passed due date */

Class Receipt

/*
issue receipt with unique receipt# according reconcile information:

invoice#: the invoice this receipt is related to,

amount: the amount received,

customerId: the customer the receipt is issued to. */

3.2.4
Constraints:

Other components access data only by invoking the authorized functions.

3.2.5 Pattern:

 Procedure call

 System I/O
3.3
Pipe and Filters Architecture

In a pipe-and-filter style, the whole software system is divided into a set of components. Each component has a set of inputs and outputs. It can read streams of data on its inputs, apply a local transformation to the input streams and compute incrementally then produce steams of data on its outputs. The process seems to be a “filter”; hence components are termed as filters. The connectors of this style serve as conduits for the streams, transmitting outputs or previous filter to input of next filter. Hence the connectors are termed pipes. The filters must be independent entities; they should not share state with other filters and do not know the identity of their connection filters. Through a line of pipes and filter, initial input data are incrementally transformed into final output data.

Figure 3. Pipe and Filter Architecture

3.3.1 Architecture Style: Pipe and filters (Figure 3).

3.3.2
Components/elements: There are nine filters as the components in pipe-and-filter architectural style, as shown in the Figure 3.

· filter Input

The input is read from an external database that consists of the customer information details of payments and invoices. All the data entered during the week are recorded in this external database. The daily transactions are entered in the database. Depending upon the status of the payments, receipts will be issued. The data received will be in a fixed format.

· filter Membership Checking

For this process, system should check user’s authority, either member or non - member.

· filter Provide Special Feature

In this process system should provide some of the special features of the system, such as viewing the real-time research on the goods and services being sold, to the member customers.

· filter Invoice Process

In this process each of the entered data is verified to determine whether the data requires an invoice. Invoices are issued for new entries. The issued invoices are printed out on a printer. Recording it in the required field indicates the entries for which invoices are printed out. The constraint for this process is that if the invoice required field is not entered correctly, invoices will not be printed and the flag for issued invoices are not set.

· filter Payment Handling

For each of the invoices issued, payments are to be received. Recording the mode of payment indicates the payment received. The mode of the payment could be credit card, or check. The customer information is to be authenticated while receiving the payment. The constraint for this process is that the mode of payment could only be of the formats specified. No other mode of payment will be accepted by the system. The processed data is then passed to the next module.

· filter Reconcile

This is a weekly process. In this process, the entries for which the payment has been made are reconciled against the invoices. The process involves associating invoice number, data and amount and customer number with each payment and associating invoice number, date, and amount and customer number with each invoice. The reconciled entries are removed and are updated into the external database and unreconciled entries are carried over.

· filter Receipt Handling

The data received after the payment receipt process, is verified and the receipts are issued for those payments for which the receipts have not been issued. The issue of receipts is done by associating the customer number, name, address and customer number with each receipt. The receipts are printed on a printer. A record for all the receipts issued are maintained to handle any complaints from the customers in future. The constraint for the process is that the receipts are issued only if the payment is made in full. Partial payments are not considered by the system.

· filter Reminder Process

For all the invoices a payment time is allowed, for making the payments in full. If the payment is not made within the allowable time, a reminder is issued. Comparing the invoices with the payments and identifying the payments that are overdue does this. The reminder statements are printed out on the printer. The constraint for this process is that the dates of the invoices and the payment date should be entered in the correct format.

· filter Output

All the paid and reconciled entries are stored and updated in the external database. The unpaid and unreconciled entries are copied. The system keeps track of the stored entries. The unreconciled and unpaid entries should be carried forward to the input file for proper updating of the process.

3.3.3 Interaction/connection:

The interactions in the pipe-and-filter are pipes and system I/O.

3.3.4 Constrains:

Each filter processes the input and produces output data. Each filter can run whenever it has the data needed to compute. Processes do not share states. They do not know the identity of it’s upstream and down stream processes. Processes are independent from each other.

3.3.5 Patterns

Filter

Pipe

System I/O

3.4
Implicit Invocation Design 1

The idea behind implicit invocation is that instead of invoking a procedure directly, any components in the software system can announce one or more events. Other components in the system can register an interest in one or more particular event(s) by associating their procedures with it. When the event is announced, the system itself invokes all of the procedures that have been registered for this event. Thus an event announcement “implicitly” causes the invocation of procedures in other modules.

It has two important differences comparing to other architectural styles. First, the interface of the data is more abstract. Rather than exposing the storage formats to the computing modules, this solution accesses data abstractly. Second, computations are invoked implicitly as data is modified. Thus interaction is based on an “active data” model

Figure 4. Implicit Invocation Architecture 1

3.4.1
Architectural Style: Pure implicit invocation architecture (Figure 4).

3.4.2
Components/Elements:
Input: Get information through input medium.

Customer: Store new customer information. Read and check existing customer information, order/payment information. Check customer membership and provide special service to members.

Invoice Process: Get customer’s order information and related products information, and then generate invoices.

Payment Handling: Get payment information and validate payment.

Reminder Process: After reconcile the payments generate reminder.

Receipt Handling: According the result of reconcile issue receipt.

3.4.3 Interactions/Connections:

Module Input:

Operation Read: customer information from input medium

/*
through Operation New, customer information like id, name, address are generated into New-Input */

/*
(implicitly invoke Module Customer */

Module Customer

/*
through Operation I-th: read New-Input and identify customer and membership using database of Customer File. Insert new customer into Customer File and provide special service to members.

New-Order based on New-Input is created. */

/*
(implicitly invoke Invoice Process and Payment Handling. */

Module Invoice process

/*
through Operation (2nd) I-th: read New-Order and generate New-Invoice to business customer if New-Order is purchase order through Operation Issue Invoice.

Operation Insert will insert New-Invoice into invoice file. */

Module Payment Handling

/*
through Operation (3rd) I-th: retrieve information from New-Order. If New-Order is a payment, check payment information and validate the payment. New-Payment is generated. Operation Insert will record New-Payment into Payment file. */

/*
(implicitly invoke Receipt Handling. */

Module Receipt Handling

/*
through Operation (4th) I-th: read New-Payment and produce New-Receipt. */

Module Reminder Process

/*
through Operation Reconcile, which compare Invoice file, Payment file once a week, and generate Unpaid-Invoice, New-Reminder file is produce. */

Module Output

/*
Access New-Invoice, New-Receipt, New-Reminder and print out */

Module Master Control

/*
Synchronize the activities of all the other modules by using procedure calls of this modules and explicitly triggers input and output. */
3.4.4 Constraints: Computations are invoked implicitly as data is modified, based on active data model.

3.4.5 Pattern:

Subprogram Call

System I/O

3.5
Implicit Invocation Design 2

This second implicit invocation design is going to use majority components of Implicit Invocation Design 1 as a subsystem. The main Master Control will use shared data architecture. Any output from subsystem trigger reconcile module in the main master control.

v

Figure 5. Implicit Invocation Architecture 2.

3.5.1
Architectural Style: Hybrid architecture: implicit invocation + shared data (Figure 5).

3.5.2 Components/Elements:

Input: Get information through input medium.

SubInput: Get information through Master Control.

Customer: Store new customer information. Read and check existing customer information, order/payment information. Check customer membership and provide special service to members.

Invoice Process: Get customer’s order information and related products information, and then generate invoices.

Payment Handling: Get payment information and validate payment.

Receipt Handling: According the result of reconcile issue receipt

SubOutput: Print out invoice and receipt and inform Master Control.

Reconcile: Check invoice-file and payment-file. Generate reminder.

3.5.3 Interactions/Connections:

Module Input:

Operation MainRead: customer information from input medium

Operation Store: customer information to InputFile.

Module SubInput:

Operation Read: customer information from InputFile

/*
through Operation New, customer information like id, name, address are generated into New-Input */

/*
(implicitly invoke Module Customer */

Module Customer:

/*
through Operation I-th: read New-Input and identify customer and membership using database of Customer File. Insert new customer into Customer File and provide special service to members.

New-Order based on New-Input is created. */

/*
(implicitly invoke Invoice Process and Payment Handling. */

Module Invoice process

/*
through Operation (2nd) I-th: read New-Order and generate New-Invoice to business customer if New-Order is purchase order through Operation Issue Invoice.

Operation Insert will insert New-Invoice into invoice file. */

Module Payment Handling

/*
through Operation (3rd) I-th: retrieve information from New-Order. If New-Order is a payment, check payment information and validate the payment. New-Payment is generated. Operation Insert will record New-Payment into Payment file. */

/*
(implicitly invoke Receipt Handling. */

Module Receipt Handling

/*
through Operation (4th) I-th: read New-Payment and produce New-Receipt. */

Module SubOutput

/*
Access New-Invoice, New-Receipt, New-Reminder and print out.

Inform Master Control. */

Module SubMaster Control

/*
Synchronize the activities of all modules within subsystem by using procedure calls of the modules and explicitly control SubInput and SubOutput. */
Module Reminder Process

/*
Through Operation Reconcile, which is trigger by SubOut through MasterControl, updated Invoice-file and Payment-file will be compared. And Reminder-File will be generated. */

Module Output

/*
Access Reminder-File and print out. */

Module Master Control

/*
Control the sequencing of subprogram and modules. */
3.5.4 Constraints:

Computations are invoked implicitly as data is modified, based on active data model for subprogram. Data is communicated between the subprogram and components through shared storage.

4. Tradeoff Analysis

When we decide which architecture design to use, we need to consider the following types of non-functional requirements for trade-off analysis.

· User Friendly --- how easy it is for user to use the system.

· Enhanceability --- accommodate new function to system.

· Performances --- space and time.

· Reusability --- to what extents can the components serve as reusable entities.

· Robustness --- behaves reasonably.

· Maintainability --- repairability and evolvability.

· Security --- protect internal data from undesired access.

· Portability --- can be used in different platforms.

The advantages and disadvantages of the five architectural styles are discussed as follows.

4.1
Abstract Data Type

4.1.1
Advantages:

· The design style can easily accommodate new functionality without the need for changing the existing modules. This is because that each module is designed to access other modules only through the well-defined interface procedures/functions. As an example, this design can be updated to be an inventory system by adding appropriate modules and appropriate interfaces. (enhanceability (+))

· Because each module in the design is self-encapsulated, and providing well defined functionality. Most components from this design style can easily accommodate with a new system, the reusability and portability are very high. (reusability (+) and portability (+))

· The system is easy for end-user to navigate. (User Friendly (+))

· If part of the system malfunction, it will not affect the whole system drastically as others would. So the robustness is strong. (robustness (+))

· This design is easier to maintain (+) compared to other design style. This is because all modules interact with each other only through clearly defined interface procedures/functions. Bug fixing inside one module will not result in change in other modules and interfaces. (maintainability (+))

4.1.2
Disadvantages:

· This design will consume more space than other design styles due to duplicated information (e.g. invoice Id, amount…). (space (-))

· Reconcile payments and invoices, reading and writing invoice/payment from/to database can be poor due to need for construction and destruction of the objects. (performance (-))

· One object must know the identity of the called object.

4.2
Object-Oriented Design 2 (Unified Modeling Language

4.2.1
Advantages:

· It is easy to add new features to the system, because changes in data representation or processing algorithms do not affect other objects, so it has high maintainability. (maintainability (+))
· The bundling of a set of accessing routines with the data they manipulate allows designers to decompose problem into collections of interacting agents. Therefore, the maintainability is very high.

· It provides reliable functionality and increases reusability, as modules make fewer assumptions about the others with which they interact. (reliability (+) reusability (+))

· Highly portable for the other systems. (portability (+))

4.2.2
Disadvantages:

· It usually has longer run-time when compared with other architecture styles. (run-time performance (-))

· It takes more time to design than other traditional structural designs.

· The architecture tends to use more space than traditional structure design styles. (space (-))

4.3
Pipe and Filter Architecture
In pipe and filter style each component has a set of inputs and a set of outputs. Common specialization of this style include pipelines which restrict the topologies to linear sequences of filters; boundaries pipes which restrict the amount of data that can reside on a pipe; and a typed pipes which require that the data passed between two filters have a well-defined type.

4.3.1
Advantages:

· The architecture design is easy to understand overall input/output behavior of a system as a simple composition of the behaviors of the individual filters. (understandability (+))

· Systems are easy to maintain and enhance: new filters can be added to existing systems at the appropriate points and old filters can be replaced by improved ones. (maintain (+) enhance (+))

· It will support component/filter reuse: any two filters can be linked together. (reusability (+))

· Permit certain kinds of specialized analysis, such as throughput/bottleneck and deadlock analysis.

· Support concurrent execution: each filter can be implemented as a separate task and potentially executed in parallel with other filters. (concurrent execution (+))

4.3.2
Disadvantages:

· Often lead to a batch organization of processing. (time performance (-))

· This architecture does not support interactive applications.

· Hampered by having to maintain correspondences between two separate but related streams. (maintainability (-))

· It might be very difficult to provide a user-friendly interface. (user-friendliness (-))

· Space is being used inefficiently, since almost all the data must be copied over. (Space (-))

· The system will lead to both the lost performance and increased complexity. (performance (-))

4.4
Implicit Invocation Architecture 1
4.4.1
Advantages

· This system supports functionality enhancement by addition of new components and interfaces. (enhanceabiliby (+))

· Insulate computations from changes in data representation. This will bring easy modification of individual modules without changing entire system. (modification (+))

· The system evolves easily: Components may be replaced or added by other newly designed components without affecting existing system or by establishing new interfaces for new components with current system. (evolution (+))

· It usually provides a user-friendly interface. (user-friendliness (+))

· If some components malfunction, the system might still perform some functions. (robustness (+))

4.4.2
Disadvantages

· Difficult to control the processing order of the implicitly invoked modules because components relinquish control over the computation performed by the system. (time performance (-))

· It usually requires more space due to transaction data/files creating. (space performance (-))

· Most of the system components have to be used in similar system due to data sharing. The reusability is low. (reusability (-))

· Reasoning about correctness can be problematic, since the meaning of a procedure that announces events will depend o the context of bindings in which it is invoked. (understandability (-))

· Low portability: some modules can be implemented in same architecture designs as a whole. (portability (-))
4.5
Implicit Invocation Architecture 2
This architecture contains part of design in Implicit Invocation Architecture 1. Therefore it inherits some advantages and disadvantages from Architecture 1.

 4.5.1
Advantages

· The system is better designed for easier understanding, enhanceabiliby, robustness, maintainability and portability as entire system is divided into subsystem and modules.

· System resources are better utilized as Reconcile can be performed any time triggered by new payment or invoice.

· Reminder can be revealed at “real-time”.

 4.5.2 Disadvantages
· Global performance and resource management can become critical issues.

Table 1. Tradeoff analysis Summary

Pipe & Filter
OO Model 1

ADT
OO Model 2

UML
Implicit Invocation 1
Implicit Invocation 2

User Friendliness
--
+
++
+
+

Performance

Time
--
- +/-
- +/-
-
+/-

Space
--
-
-
-
-

Security
-
+
+
+
+

Enhanceability
+
+
+ +
+
+

Robustness
-
+
+
+
+

Reusability
+
+ +
+ +
+-
+

Maintainability
+/-
+
+ +
+
+

Portability
-
+
+
+-
+

Total Credit
-7
6
9
3
6

5. The Selected Architectural Design

Object-Oriented Design 2 (Unified Modeling Language is the best selection among architectural design list. The tool of object-oriented design is well developed and quite mature. It is implemented into major programming languages currently widely used, like C++, Java, etc. The architecture design is clearly understood. The system is easily enhanceable and maintainable. Information hiding and encapsulation, the characteristics of the architecture, further increases system’s security, robustness, portability and reusability. UML, a state of art requirement engineering tool, makes entire software process much more discipline oriented. The software system is even more enhanceable, modifiable, reusable.

6. Decision Points during the Architectural Design

6.1
General Decision Points
Our knowledge about software architecture is quite limited. We take this course project opportunity to study and compare the pros and cons about these five architecture styles, OOD/ADT, OOD/UML, Pipe and Filter, Implicit Invocation and Shared Data.

The functional requirements of this B2B-IPS system were listed first with well-defined input and output. Each function was made as a filter in Pipe and Filter style. But closed related functions or data closely shared functions were grouped together in other architecture styles through object creation, data abstraction or implicit invocation. Each of these groups is made of an object, a module or component. The interaction of each component with a given system is restricted to its architecture styles. OOD, Pile and Filter allow direct interaction and sequential execution while implicit invocation uses direct and indirect interactions. Based on functions performed by the system and data flow, all interactions among each component within same architecture styles were decided.

The Pipe and Filter style was initially tried. The system was easy understood and architecture was clearly layered out. But the time and space performance, user friendliness, etc. are quite unacceptable. The maintenance and portability are difficult. Then, we took object-orientated approach and used abstract data type style. We were satisfied with its clear architecture, system enhanceability, user-friendliness, component’s portability and reusability. Under the help of UML, the advantage of OOD over Pipe and Filter was made even more clear. We tried two different architecture designs using implicit invocation. Analysis doesn’t support any advantage over OOD’s disadvantage. Oppositely, the implicit style will result in a more complicated system control. So OOD-UML is the best choice.

6.2 Decision Points for OOD-UML

There was one decision point we made to keep invoice file and payment file separated. We could use one database file since payment information will and should match existing invoice file. This will speed up reconcile process. But using one larger file in OOD approach will deteriorate system’s space performance, slow down payment process and decrease user-friendliness. Two separate database files were preferred. The reconcile process can be improved during detain design by using better scheduling technique, data structure and algorithm.

Another decision point was whether to combine Receipt Process and Payment Process. Since both processes perform quite different functions. We decided to keep them separated to enhance system modularity, evolvability, and reusability.

Through this software architecture design process, we had a very chance to learn and understand the major advantage and disadvantage of five basic architecture styles.

System I/O

Implicit Invocation

Subprocedure Call

Direct Memory Access

Control Line

Payment-File

r

New-Receipt

r

Invoice-File

r

New-Invoice

r

New-Order

Requirements Engineers

New-Payment

r

New-Input

r

New

r

I-th

I-th

I-th

Insert

I-th

Insert

Payment-

File

Invoice-

File

Reminder-File

 Invoice

Process

Payment Handling

 Receipt

Handling

Customer

SubInput

Reconcile

SubOutput

SubMaster Control

Architects

Input

Output

InputFile

Master Control

Input Medium

Output Medium

Q&A

Manager

System I/O

Product

Manager

Pipe

Output

Provide

Special

Feature

Project

Manager

Invoice Process

Output

Medium

Receipt

Handling

Validate

Checking

Reminder

Process

Input Medium

Input

Reconcile

Payment

Handling

Master Control

Input Media

Customer

Set Cust Info

Get Cust Info

Invoice Process

Set up

Payment

Handling

Set up

Get Payment

Validate Payment

Reminder

Process

Set up

Reconcile

Receipt

Handling

Set up

Issue receipt

Order Info

Output Media

MembershipCheck

Input

Output

System I/O

� EMBED MS_ClipArt_Gallery ���

Issue Invoice

Generate remainder

Implicit Invocation

Subprocedure Call

Input Medium

Output Medium

Control Line

Payment-File

r

New-Receipt

r

Invoice-File

r

New-Invoice

r

New-Order

New-Reminder

r

New-Payment

r

New-Input

r

New

r

I-th

I-th

I-th

Insert

Reconcile

I-th

Insert

 Receipt

Handling

Payment Handling

 Invoice

Process

Customer

Reminder

Process

Output

Input

Master Control

PAGE

1

_1031782893

