

 1

 A Critical Study of COUGAAR Agent Architecture

 APPROVED BY:

 Dr Lawrence Chung

 2

Copyright 2005

Tarun Belagodu

Sasikiran Kandula

All Rights Reserved

 3

A Critical Study of COUGAAR Agent Architecture

by

Tarun Belagodu

Sasikiran Kandula

Term Paper

THE UNIVERSITY OF TEXAS AT DALLAS

 i

Abstract

Cognitive Agent Architecture (COUGAAR) is a Java-based architecture developed to

build large-scale distributed agent systems. The architecture was developed as part of a

research program funded by DARPA. Though distributed agent systems have been

around for a considerable time and are known to be useful in building large systems,

there have been concerns about their scalability, security and survivability in the event of

attacks or hardware failures. COUGAAR architecture is expected to address these issues

and provide a robust, secure and scalable agent architecture that provides a framework for

developing large scale applications.

In this paper we study the presented architecture and analyze how the architecture assures

the above features. We will also point out some critical issues which we consider need to

be addressed to make the architecture better.

 ii

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1 Agent architectures ... 1

2. BASIC TERMINOLOGY .. 3

2.1 Agents in COUGAAR ... 4

2.1.1. Plugin .. 5

2.1.2 Blackboards... 5

2.2 Agent Interactions... 6

2.2.1 Relays:... 7

2.2.2 Attribute-based Addresses: ... 7

2.3 Inter-agent relationships.. 8

3. ISSUES ... 9

3.1 Robustness .. 9

3.2 Security at agent-level... 10

3.3 Blackboard-related issues ... 10

3.4 Constructing societies and communities:.. 11

3.5 Agent Initialization and Node Agents... 12

3.6 White pages and Yellow Pages... 13

3.7 Bandwidth ... 13

3.8 Steep Learning Curve ... 13

3.9 Asynchronous Communication... 13

4. CONCLUSIONS .. 14

 iii

TABLE OF FIGURES

Figure 1: COUGAAR society... 4

Figure 2. COUGAAR Agent internals.. 4

Figure 3. COUGAAR Inter-agent relationship... 8

 1

CHAPTER1

INTRODUCTION

In computer science, a software agent is defined as a piece of autonomous or semi-

autonomous proactive and reactive, computer software. To be considered an agent, a

software object must be a self-contained program that is capable of making independent

decisions and taking actions to satisfy internal goals based upon its perceived

environment. Commonly cited main attributes of agents include the following:

• Autonomy: the ability to act autonomously to some degree on behalf of users for

example by monitoring events and changes within their environment.

• Pro-activity: the ability to pursue their own individual set goals as well as making

decisions.

• Re-activity: the ability to react to and evaluate external events and consequently

adapt their behavior and make appropriate decisions to carry out the tasks to help

them achieve their goals.

• Communication and Co-operation: the ability to behave socially, to interact and

communicate with other agents (in multiple agent systems (MAS)) i.e. exchange

information, receive instructions and give responses and co-operate when it helps

them fulfill their own goals.

• Negotiation: the ability to conduct organized conversations to achieve a degree of

co-operation with other agents

• Learning: the ability to improve performance over time when interacting with the

environment in which they are embedded.

1.1 Agent architectures

An agent architecture gives a high-level view of the subsystems that make up the agent

system, their interactions and the flow of control and/or information among the

 2

subsystems. Cognitive agent architecture (COUGAAR) is an agent architecture

developed for DARPA under the Advanced Logistics program (ALP), by a consortium of

companies during the period 1996-2001. The architecture was developed by ALPINE, a

consortium currently composed entirely of BBN Technologies and further developed till

2004 under the DARPA program UltraLog. Its main purpose was to develop techniques

to capture and solve problems related to military logistics planning and execution. But

COUGAAR essentially describes an approach to building software and can be used in

various other domains involving large scale distributed applications. The essential

features of COUGAAR that the developers tried to achieve are:

• Robustness – the loss of any hardware component or hardware substrate has to

result in only minimal loss of functionality.

• Security - Maintain information integrity, communication security and to repel all

co-coordinated attacks including DoS

• Scalability – If the application logic allows for a particular degree of scalability,

the underlying COUGAAR architecture should allow that i.e. addition of more

agents or hardware components to achieve more or better functionality.

In section 2 of this paper, we give a brief description of the architecture of COUGAAR.

Section 3 lists out some of the issues which we feel need to be addressed to make the

COUGAAR architecture better, in terms of robustness, security and scalability. The last

section tries to conclude and show some possible research directions for the COUGAAR

community.

 3

CHAPTER 2

BASIC TERMINOLOGY

In this section we describe some of the terminology related to the COUGAAR

architecture. Individual agents in the system are grouped or clustered to form larger

subsystems like communities and societies. A COUGAAR society is a collection of

communities and agents that collectively solve a particular problem or group of

problems. The problems are typically related to planning and the plans change

dynamically. A COUGAAR society may be made up of one or more communities.

A COUGAAR community is a notional concept and refers to a group of agents with some

common functional purpose or organizational commonality. Each community in turn can

have separate individual sub-communities; each community co-coordinating with others

for achieving a particular task. An agent community is a notional concept in the sense

that it provides some kind of notional interface describing what it does to the society –

the services it provides by specifying the inputs it requires and the output it produces (It

specifies what it can provide but not how it does so). For instance, in military logistic

transportation can be modeled to be a community. But transportation in turn can be split

further into sub-communities in the form of air-transportation, sea-transportation and

ground-transportation.

 A COUGAAR community contains one or more nodes. A node is a single JVM on

which one or more agents are deployed and maintained. The grouping of agents into

nodes is not domain-related but is done in order to maintain a more equitable distribution

of resources among all agents. Agents belonging to different communities can reside on

the same node. Agents on the same node share and compete for the resources – CPU

time/bandwidth etc.

 4

 Figure 1: COUGAAR high level view

2.1 Agents in COUGAAR

An agent is the smallest functional unit in the COUGAAR architecture. An agent has two

main components

• Blackboard

• Plugins

Figure 2. COUGAAR Agent internals

Society

Community1

Node1 Node 2

Agent2 Agent1 Agent2 Agent1

Community2

Node1

Node2

 Agent2

Agent1

Agent2

Agent1

 5

2.1.1. Plugin

Plugins are the software components that provide behavior and business logic to the

agent’s operations. Depending on the functionality that an agent wants to achieve, it can

initialize a certain set of Plugins. Once initialized, a plugin is a conceptually different

entity from the agent. Plugins are self-contained elements of software and are not

dependent on other plugins. They can communicate with other plugins only through the

agent’s blackboard. They can publish results to the blackboards and react to events from

the blackboard.

2.1.2 Blackboards

A blackboard is an agent-local memory store that supports subscribe/publish semantics.

The components (plugins) of the agent can be assigned objects. The components can

add/delete/update objects from the blackboard. At the same time, they can subscribe to

add/change/remove notification for certain objects. The COUGAAR blackboards are

local to an agent and this provides for scalability. If a global blackboard had been used it

would have been a single point of failure (as in JMS).

Access to the blackboard is transaction-controlled. But this transaction management is

only for the addition and removal of objects and not for any changes made at the sub-

object level. This transaction management is done by proxy object entities called

‘Subscribers’. Each plugin is associated with a subscriber which serves as an interface

and manages all interaction between the plugin and the blackboard. This subscriber is

also responsible for other plugin functionality like querying and publication of plan

changes to the blackboard.

 6

2.2 Agent Interactions

Though the blackboard allows the plugins within an agent to interact, the architecture

should allow for the agents to interact with each other. For this the COUGAAR supports

various features:

• Naming: The communication to a particular agent should essentially require that

each agent is identified uniquely with a name. The naming service in an

application based on COUGAAR architecture can be modeled as per the

developer’s preference. The developer can choose to name an agent so that the

name reflects the functionality of the agent. Alternatively, the name of the agent

can be generated randomly, for instance, with the nodes’ network id concatenated

by a very large randomly generated number. The architecture does not attach any

specific significance to the name but only requires them to be unique. This is

analogous to naming of files.

• White pages: is a distributed table that maps the agent names to network

addresses. The use of a distributed table makes it more robust since we do not

have a single point of failure and also scalable as the addition of new agents or

agent organizations is not limited by the restriction on the size of the central table.

Efforts are on to replace the white pages with a JNDI lookup service.

• Yellow Pages: is an attribute based service, something similar to that in a phone

directory. Each agent registers itself depending on its’ set of capabilities. An agent

looking for a service from another agent can query the yellow pages depending on

the capabilities it is looking for.

Inter-agent communication is necessary in querying and delegating tasks. For this

COUGAAR provides two features, Relays and Attribute-based Addresses.

 7

2.2.1 Relays:

These consist of two interfaces, source and target, that the blackboards objects can

use. They ensure that an object in one agent can have manifestation on the object of

another agent with which it wishes to communicate. Objects on the source blackboard

implement the Relay.source interface and this ensures that data at the source can

appear on the target. Similarly Relay.target interface should be implemented by the

object on the target blackboard so that any response from the target can appear on the

source. It is allowed for the same object to act as a source and target for different

agents simultaneously, by implementing both the interfaces.

2.2.2 Attribute-based Addresses:

In some cases, the communication needs to be sent to a community but the source is

not sure which particular agent in the target community is responsible for this kind of

tasks. For instance, an agent might have certain critical sensor information, like

breach of security at a particular plant, which should be conveyed to an agent

community responsible for taking corresponding action, like raising an alarm. By

using attribute-based addressing the source can look up which of the agents in the

target community can handle this. Also in cases where there can be more than one

targets, the source can multi-cast the information to all the target agents.

 8

2.3 Inter-agent relationships

Figure 3. COUGAAR Inter-agent relationship

For each agent in Cougaar, roles can be defined depending on the services it can offer to

other agents. Efficient communication between the agents is possible if the relationships

between agents are clearly specified. An agent that is required to perform a particular

operation can delegate the work to other agents that is related to. These inter-agent

relationships can be of various kinds but the most important among them are:

• Superior/sub-ordinate relationship, in which there is a long-term relationship

between the agents. The designated supervisor can ask its subordinate to perform

a certain function. The sub-ordinate agent can make use of its resources and

negotiate with other agents and work to achieve the goal. It keeps reporting to the

supervisor agent at regular intervals.

• Customer/provider relationship, in contrast is a short-lived relation in which the

customer requests for a service and the provider replies with the results of the

service.

An agent on realizing that it does not have enough resources to reach a particular goal can

request the services of agents it is related to. The agent on receiving the request can either

choose to perform the job or delegate it to one of the agents that it is related to. This

would create a chain-like structure that would transfer the jobs as well as the results of

the job once it is completed.

 9

CHAPTER 3

ISSUES

COUGAAR architecture was designed to provide a framework for developing large-scale

distributed application which can ensure high security, scalability and robustness. There

are specific features in the COUGAAR that have been designed for this purpose. The

COUGAAR architecture indeed appears to be good in ensuring these. But our study of

the architecture has raised some concerns which might not go well with the features that

COUGAAR wants to achieve. Some of these concerns are described.

3.1 Robustness

To ensure robustness the Cougaar application should be able to survive an attack or loss

of components with minimal loss of functionality. However, to achieve this objective

each agent or cluster of agents reacts independently when it detects a potential loss of

hardware components. Though this tends to locally optimize the performance in the event

of an attack, the overall performance may be adversely affected. A much better

alternative prescribed, would be to have a coordinated recovery which can ensure that the

overall performance suffers minimal hindrance. This can be handled in two ways;

• When an agent or group of agents, identify a threat, they can query whether any

other agents are facing the same threat. In case the attack is being faced by a

group of agents, then these agents can negotiate with each other to determine the

most appropriate action for each of the agents.

However, in some cases the agents may not have similar goals and the negotiation

process should prioritize the goals, which may not be easy to achieve. Further, for the

agents to negotiate there should be an underlying communication mechanism. But if the

communication network is itself facing the attack, then the negotiation may induce extra

traffic into the network and may not be a viable alternative.

 10

• A separate agent can be assigned to take the necessary action to ensure

survivability. A specialized agent, says a co-coordinator agent, can be assigned

for each group of agents. This agent needs to be informed by any agent that

perceives a threat and it is the responsibility of the coordinator agent to use other

coordinator agents and arrive at a possible course of action.

However, having a single agent can cause scalability problems eventually. As such, both

the coordinated recovery methodologies have some drawbacks and the independent

recovery mechanism may result in poor performance. The architecture does not suggest

any better mechanism to ensure robustness.

3.2 Security at agent-level

An agent in the COUGAAR architecture can belong to more than one COUGAAR

community at the same time. If an agent belongs to more than one community then

agents of one of the community can access the information of the other community

through the agent. In the event of a security threat when agents of a particular community

or node have been compromised, it is better if the damage is localized and other

communities are not affected. The architecture does not clearly describe how this is

going to be achieved.

3.3 Blackboard-related issues

The blackboards used in the agents are local only to the agent i.e. contents of the

blackboard are visible only to the agent in which it resides. As discussed earlier other

agents that are interested in the objects of an agent’s blackboard can subscribe to the

information. These blackboards are independent of each other and there is no existing

control over the contents of the blackboard or the consistency between the elements of

the blackboard. However, the blackboard is consistent in itself i.e. all the objects of the

blackboard are consistent with each other.

 11

The architecture specifies that any COUGAAR application should incorporate the

necessary logic to maintain the consistency. We feel that achieving consistency would

not be easy especially in application that requires a certain amount of synchronous

behavior among the agents and it would have been better if the architecture had addressed

this issue. For applications that require the agents to be asynchronous and more

independent, this architecture can provide a good framework.

3.4 Constructing societies and communities:

The efficiency of a Cougaar community depends on how well the agents are organized

into societies and communities. One significant requirement for a community is that it

should provide single-coherent interface to other communities in the society. Though

agents within the same community are more tightly coupled to each other, they do not

share a same state and the blackboards in the agents are also independent. Due to this,

providing consistency in a community is hard. One way around would be to make a

single agent as a gateway to a set of agents within the community. Since all interaction

with this group should be through the same agent, a coherent system is possible.

However, this poses severe scalability problem. This singe agent which serves as an

interface would be a bottleneck and the number of agents that can be added to the

community would be limited by the capability of the agent to provide the necessary

interactions.

Another important consideration is the distribution of the agents of a community. As

discussed earlier, the architecture does not place any restriction on the agents that reside

on the same agent node. These agents share the same set of hardware resources but can

belong to different communities and provide different functionalities. However, the

agents of the same community need to have greater communication and distributing them

arbitrarily might mean additional traffic on the communication network connecting the

nodes. An alternative proposed was to deploy all the agents of the same community on

the same LAN. This would provide for better and faster communication between the

agents.

 12

However, this might cause some survivability problems. The localization of all the agents

of a community can cause problems if there is any disruption in the locality of the

community. For example, if the LAN on which the community is deployed is down due

to some reason, the entire community might be unreachable from any other community of

the society. Considering that each community depends on another to provide some

service, the complete non-availability of an entire community can cause severe

performance degradation and in some cases bring the entire agent society to a halt.

Deploying redundant communities to provide the same functionality will be very

expensive and might not be feasible for most applications. The architecture does not

prescribe an alternative.

3.5 Agent Initialization and Node Agents

Cougaar provides two ways for creating or initializing new agents: static and dynamic.

• In static initialization, each agent node is provided with an XML file which

contains information regarding the agents that have to be created and the plugins

that have to be loaded to each agent. A node initializes an agent by granting it

some resources and specifying the part of the XML file which is relevant to that

agent. The agent then reads the XML file and loads the plugins it is meant to load.

• In dynamic initialization, each node can be run as a generic agent server i.e. it

creates or remove agents from the node depending on the requests from other

nodes.

Each node has exactly one node agent, which provides management functionalities at a

node. This agent is a super-agent in the sense that it has control over all the objects at the

node irrespective of which agent it belongs to. We feel that this poses a serious threat to

the security aspect of the node. A malicious agent gaining control of the single node

agent can gain complete access to all the agents and also control the hardware resources

of the node. Further, the node agent is a single point of failure and in the event of failure

of this agent; the nodes can no longer function.

 13

3.6 White pages and Yellow Pages

White Pages are implemented as distributed tables and can provide the mapping from an

agent name to the agent’s physical network address. Yellow Pages (YP) provide a look-up

service based on the services that each agent needs or provides. Yellow pages are more

complex to implement as the queries for service can be quite demanding (for instance, an

and relation describing the set of services). Implementing the YP as a distributed system

would be very hard since that would imply updating a large number of tables whenever

an agent starts to offer or stops offering a service. On the other hand, YP cannot be

implemented as a global database due to scalability reasons.

One alternative would be to build a kind of hierarchical system of YPs. An agent looking

for a service would look in the YP of the lowest hierarchical level. If the required service

is not found then it can move upwards along the hierarchy. However, this would mean

multiple queries for looking up a single service

3.7 Bandwidth

COUGAAR architecture is suitable to build large scale applications that have high-

bandwidth availability. Due to the large number of inter-agent interactions that are

required, an application that cannot provide a decent bandwidth would eventually have

only a marginal performance.

3.8 Steep Learning Curve

As mentioned earlier, COUGAAR architecture is suitable for large scale applications. As

a result of which, there is a steep learning curve associated with its use.

3.9 Asynchronous Communication

The architecture has been designed to make the agents independent and asynchronous.

This can cause serious consistency and coherence problems. Providing synchronous

communication is definitely an issue to consider.

 14

CHAPTER 4

CONCLUSIONS

COUGAAR architecture is a robust, highly scalable, dependable agent architecture that

has undergone years of development and evolution. Though, we consider COUGAAR to

be one of the most complete and detailed agent architectures available today, there is still

room for improvement. In most cases, the architecture introduces a single agent as a

super-agent for coordinating the activities of a group of agents. This would severely

effect the scalability and security requirements that COUGAAR aims to achieve. The

architecture should be improved to eliminate such bottlenecks. Some of the cases to be

considered have been pointed in the previous section.

Further, the architecture is suitable for large scale applications, especially, ones that can

guarantee very high bandwidth. This limits the number of applications that can afford to

provide such high bandwidth requirements. We strongly believe that a scaled down

version of the architecture can be designed that can be suitable for small scale

applications and thus provide greater flexibility.

One important advantage in COUGAAR is that it evolving continuously and has been

able to draw the attention of a considerable number of research organizations and

communities. It is currently the focal point of many research organizations and we

believe its relevance to applications in various domains is bound to increase.

 15

BIBLIOGRAPHY

[1] Cougaar Architecture Document, BBN Technologies, 2004.

[2] Christopher Matthews, An Expose of Autonomous Agents in Command and Control

Planning, Command and Control Research and Technology Symposium, 2004.

[3] Aaron Helsinger, Michael Thome, Todd Wright, Cougaar: A Scalable, Distributed

Multi-Agent Architecture, IEEE SMC, 2004.

[4] Dana Moore, Aaron Helsinger, David Wells, Deconfliction in Ultra-large MAS:

Issues and a Potential Architecture, Proceedings of the first COUGAAR conference,

2004.

