How the customer explained it
How the Project Leader understood it
How the Analyst designed it
How the Programmer wrote it
How the Business Consultant described it

How the project was documented
What operations installed
How the customer was billed
How it was supported
What the customer really needed
RE Process

Lawrence Chung
Department of Computer Science
The University of Texas at Dallas
RE Process:
What is a Process?

- Given input, transforms it into output
- Consist of a set of activities
- Process descriptions are also specifications
 - Often produced by Requirements Engineers
 - Should be as complete, consistent and clear
RE Process:
Why?

Quality of product ← Quality of Process

- Garbage in garbage out, so get the right requirements
RE Process:
Why?

It is more important to understand the problem than the solution. [Albert Einstein]

If software is simply for automation, what would a washing machine be like?
RE Process:
The Basic RE Evolutionary Process
Evolution is inevitable – *traceability* is more than a virtue
RE Process:
A Basic Framework [Loucopulos]

Many variations and extensions

- 3 fundamental activities:
 understand, (formally) describe, attain an agreement on, the problem

- Elicitation: determine what’s really needed, why needed, whom to talk to
- Specification: produce a (formal) RS model: translate "vague" into "concrete", etc. make various decisions on what & how
- Validation: assure that the RS model satisfies the users’ needs

Elicitation

<table>
<thead>
<tr>
<th>User reqs</th>
<th>knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>For more knowledge</td>
<td></td>
</tr>
</tbody>
</table>

User

<table>
<thead>
<tr>
<th>User feedback</th>
<th>Req. models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val. result</td>
<td></td>
</tr>
</tbody>
</table>

Specification

<table>
<thead>
<tr>
<th>Domain knowledge</th>
</tr>
</thead>
</table>

Problem Domain

<table>
<thead>
<tr>
<th>Domain knowledge</th>
</tr>
</thead>
</table>

Validation

For more knowledge

(domain experts, laws, standards, policies, documents, etc.)
RE Process:

Spiral Model [KotonyaSummerville98]

How many cycles? When to analyze and negotiate? Risk analysis?

- Requirements elicitation: Requirements discovered through consultation with stakeholders
- Requirements analysis and negotiation: Requirements are analysed and conflicts resolved through negotiation
- Requirements documentation: A requirements document is produced
- Requirements validation: The requirements document is checked for consistency and completeness
RE Processes: RAD (Role Actor Diagram)

An RE Process is dominated by human, social and organisational factors

for prototyping [Kotonya&Sommerville98]
RE Process: A RE Process Maturity Model Based on CMM

- **Level 1 - Initial**
 Ad-hoc requirements engineering; requirements problems are common

- **Level 2 - Repeatable**
 Standardised requirements engineering; fewer requirements problems

- **Level 3 - Defined**
 Defined process based on best practice; process improvement in place
IEEE Standard for SRS

1 Introduction
- Purpose
- Scope
- Definitions, acronyms, abbreviations
- Reference documents
- Overview

Identifies the product, & application domain

Describes contents and structure of the remainder of the SRS

2 Overall Description
- Product perspective
- Product functions
- User characteristics
- Constraints
- Assumptions and Dependencies

Summary of major functions

Anything that will limit the developer’s options (e.g. regulations, reliability, criticality, hardware limitations, parallelism, etc)

3 Specific Requirements

All the requirements go in here (i.e. this is the body of the document).

IEEE STD provides 8 different templates for this section

Appendices

Index
IEEE Standard Section 3

3.1 External Interface Requirements
 3.1.1 User Interfaces
 3.1.2 Hardware Interfaces
 3.1.3 Software Interfaces
 3.1.4 Communication Interfaces

3.2 Functional Requirements
 this section organized by mode, user class, feature, etc.
 For example:
 3.2.1 Mode 1
 3.2.1.1 Functional Requirement 1.1
 ...
 3.2.2 Mode 2
 3.2.1.1 Functional Requirement 1.1
 ...
 ...
 3.2.n Mode n
 ...

3.3 Performance Requirements
 Remember to state this in measurable terms!

3.4 Design Constraints
 3.4.1 Standards compliance
 3.4.2 Hardware limitations etc.

3.5 Software System Attributes
 3.5.1 Reliability
 3.5.2 Availability
 3.5.3 Security
 3.5.4 Maintainability
 3.5.5 Portability

3.6 Other Requirements
RE in Agile Methods

Basic Philosophy
- Reduce communication barriers
 Programmer interacts with customer
- Reduce document-heavy approach
 Documentation is expensive and of limited use
- Have faith in the people
 Don’t need fancy process models to tell them what to do!
- Respond to the customer
 Rather than focusing on the contract

Weaknesses
- Relies on programmer’s memory
 Code can be hard to maintain
- Relies on oral communication
 Mis-interpretation possible
- Assumes single customer representative
 Multiple viewpoints not possible
- Only short term planning
 No longer term vision

E.g. Extreme Programming
- Instead of a requirements spec, use:
 User story cards
 On-site customer representative
- Pair Programming
- Small releases
 E.g. every three weeks
- Planning game
 Select and estimate user story cards at the beginning of each release
- Write test cases before code
- The program code is the design doc
 Can also use CRC cards (Class-Responsibility-Collaboration)
- Continuous Integration
 Integrate and test several times a day
RE in V Model

- System requirements
- Software requirements
- Preliminary design
- Detailed design
- Code & debug
- Component test
- Unit test
- System integration
- Acceptance test

Level of abstraction

Time
Appendix
RE Processes:
Volere Requirements Process
How many cycles? When to analyze and negotiate?
RE Processes:
RE Process Variability

Many Variety …and Evolution is inevitable

- RE processes vary radically from one organisation to another
- Factors contributing to this variability include
 - Technical maturity
 - Disciplinary involvement
 - Organisational culture
 - Application domain
 - ...

- There is therefore no ‘ideal’ requirements engineering process [KotonyaSummerville98]
NFRs & RE Process: A Requirements Management System

Many variations and extensions