
Work-Conserving Fair-Aggregation Across Multiple
Core Networks

Jorge A. Cobb Zhe Xu
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75083-0688
Email: {cobb,xuzhe}@utdallas.edu

Abstract—In the effort of reducing or eliminating per-flow state
at routers, hence making QoS schedulers scalable in the core
Internet, Flow Aggregation outperforms Dynamic Packet State by
providing better end-to-end delay guarantee. Work-Conserving
Flow Aggregation (WCFA) has the advantage of gaining work-
conserving property at the cost of an extra per-hop delay. Most
research on work-conserving flow aggregation so far has focused
on a single level of flow aggregation within a single aggregation
domain. In this paper, we investigate the per-hop behavior of
flow aggregation over multiple aggregation domains. Moreover,
in each aggregation domain, multiple aggregation levels are
considered. We show that the aggregating cost happens only
once in each aggregation domain over all aggregation levels, and
higher level of flow aggregation provides lower per-hop delay
guarantee.

I. INTRODUCTION

Traditionally, the Internet only provides best effort service to
all applications. Although this service works well for elastic
applications such as file transfer, email, web browsing, etc.,
Quality of Service (QoS) guarantees are required for emerging
applications such as real-time audio and video conferencing,
Video on Demand (VoD), IP Telephony, etc.. In order to
support new inelastic applications, the network must reserve
resources for an individual flow so that QoS is guaranteed
at each hop. The IETF has defined two service disciplines,
namely, Integrated Services (IntServ) [3] and Differentiated
Services (DiffServ) [12], [13].

In the IntServ approach, QoS is provided by real-time
scheduling algorithms such as Virtual Clock (VC) [10], [25]
and Weighted Fair Queuing (WFQ) [17]. Zhang provided an
excellent review of such schedulers [24] in 1995. Schedulers
such as VC and WFQ reserve bandwidth along the path of
each flow, and provide similar end-to-end delay guarantees to
each packet of a flow. Since the delay guarantee is related to
the reserved rate, they belong to the same scheduler family
called Guaranteed Rate Schedulers (GRS).

GRS schedulers need to maintain per-flow state at each
hop along the path of a flow in order to schedule packets
going out of the same link of a router, in which a scheduler
is implemented for each outgoing link. While the number of
flows is manageable in an access network, routers in the core
network do not have necessary resources to keep track of
each individual flow. In other words, GRS schedulers do not
scale well. This leads to the design of DiffServ scheduling

algorithms. Dynamic Packet State (DPS) [22], [14] and Flow
Aggregation [4] are among approaches to make GRS sched-
ulers more scalable.

In DPS, scheduling information is carried in the packet
header. Each router along the path of the flow extracts out the
scheduling information and updates the flow state in the packet
header. By storing and updating per-flow state in the packet
header, DPS eliminates the burden of maintaining per-flow
state in the routers, hence makes the scheduling algorithms
scalable. However, this limited amount of state provides only
a coarse allocation of resources, and falls short of the QoS
level available in IntServ [22].

Fair aggregators provide better performance guarantees to
individual flows [4]. In flow aggregation, all flows that are
going into and coming out of the core network through the
same ingress and egress routers are aggregated together. Per-
flow state is only maintained in routers of access networks.
In contrast, routers in the core network do not know or
simply choose to ignore the existence of individual flows. In
other words, Core routers only need to maintain states for
aggregate flows. Hence, the number of flows that a core router
needs to manage is drastically reduced, making the scheduling
algorithms scalable. With flow aggregation, scheduling and
signaling is also simplified [9]. Moreover, fair aggregators
also provide a delay bound that is inversely proportional to
the reserved rate of the aggregate flow while it is inversely
proportional to the reserved rate of the individual flow in the
case of no flow aggregation. Since we expect the reserved
rate of the aggregate flow to be much larger than that of
each individual flow, flow aggregation has the advantage of
providing a much lower delay guarantee across the core
network. However, fair aggregators are non-work-conserving,
which means a scheduler might be idle although packets are
queued waiting for service.

Work-Conserving Flow Aggregation (WCFA) has been pro-
posed recently [7]. WCFA follows the same network model
as fair aggregators do. In WCFA, each packet is tagged at the
aggregator with its Virtual Finishing Time calculated accord-
ing to Virtual Clock. Then at each hop along the path through
the core network, packets within the aggregate flow are sorted
by their tags. This packet reordering eliminates the effect of
burstiness of other individual flows in the same aggregate flow,
hence provides flow isolation for each constituent flow of the

aggregate. WCFA requires scheduling algorithms to be fair in
the core network [19], [2]. Although WCFA gains the work-
conserving property at the cost of larger per-hop delay, the
end-to-end delay guarantee is still inversely proportional to
the reserved rate of the aggregate flow.

Although flow aggregation over multiple domains has been
studied in [5], most research so far has concentrated on a single
level of flow aggregation over a single aggregation domain.
This is especially true for work-conserving flow aggregation.
In this paper, we investigate work-conserving flow aggregation
over multiple domains. In each domain, we consider the case
of multiple levels of flow aggregation. We show that the per-
hop delay increase is inversely proportional to the reserved rate
of the highest level aggregation flow, which implies a lower
end-to-end delay guarantee compared to one single level flow
aggregation. Moreover, the aggregation cost is only paid once
in each aggregation domain, no matter how many levels of
aggregation there are in the domain.

The rest of this paper is organized as follows. In Section II,
we introduce the QoS model on which our work is based on.
Section III introduces WCFA. Multi-Level Work-Conserving
Flow Aggregation is shown in Section IV. Then in Section V,
we investigate WCFA over multiple domains. We also briefly
review other approaches to scalable scheduling algorithms and
compare them with our model in Section VI. Finally, Section
VII concludes the paper.

II. QUALITY OF SERVICE MODEL

In this section, we define the QoS model that the network
will provide to each real-time flow. We base our service model
on the models of [11], [20].

A. Virtual Finishing Times and Guaranteed-Rate Schedulers
A flow is a sequence of packets generated by an applica-

tion. Each output channel of a computer is equipped with a
scheduler, whose function is to schedule packets in an order
which guarantees QoS to each input flow. We say a packet
exits/arrives from/to a scheduler when the last bit of the packet
is transmitted/received by the scheduler. For simplicity, we
assume the propagation delay between schedulers is zero.

Each flow is characterized by its reserved packet rate and
its maximum packet size. We adopt the following notation for
each flow f and each scheduler s along the path of f .

Cs output channel bit rate of s
Rf bit rate reserved for flow f
f.i ith packet of flow f

As
f.i arrival time of f.i at s

Es
f.i exit time of f.i from s

Lf.i length of packet f.i
Lmax

f.i maximum of Lf.j , where 1 ≤ j ≤ i
Ls

max maximum packet size at s

Consider a scheduler s and a flow f . We define the virtual
finish time 1 F s

f.i of packet f.i at scheduler s as follows.

1The virtual finishing time is also known as the guaranteed rate clock value
in [11], and it is also equal to the time stamp assigned by a virtual clock
scheduler [25].

Assume s were to forward the packets of f at exactly Rf

bits/sec.. Then, F s
f.i is the time at which the last bit of f.i

is forwarded by s. More formally, let f be an input flow of
scheduler s. Then,

F s
f.1 = As

f.1 + Lf.1/Rf (1)
F s

f.i = max(As
f.i, F s

f.(i−1)) + Ls
f.i/Rf , for every i, i > 1

Because scheduler s will forward the packets of f at a rate at
least Rf , each packet f.i exits from s close to F s

f.i. Schedulers
with this property are known as guaranteed-rate schedulers
[11]. More formally, a scheduler s is a guaranteed-rate (GR)
scheduler if and only if, for every input flow f of s and every
i, i ≥ 1,

Es
f.i ≤ F s

f.i + βs
f (2)

for some constant βs
f . We refer to βs

f as the scheduling
constant of f at s.

Since the virtual finishing time of a packet determines its
exit time from a scheduler, then a bounded end-to-end delay
requires a bounded per-hop increase in the virtual finishing
time. This bound is well known (it was shown in [11] and
also follows from the results in [6], [20]) and is as follows.
Let t1, t2, . . . , tk be a sequence of k GR schedulers traversed
by flow f . For all i,

F tk

f.i ≤ F t1

f.i +
k−1∑
x=1

(
Lmax

f.i

Rf
+ βtx

f

)
(3)

B. Flow Aggregation

To reduce the amount of state managed by each router,
multiple flows can be combined together to form a single
aggregate flow [4], [5], [9], [18].

An aggregate flow g is obtained by merging, at a sin-
gle point in the network, the packets of multiple flows
f1, f2, . . . , fn. In this case, f1, f2, . . . , fn are said to be the
constituents of g. A flow f is simple if it is not an aggregate,
i.e., if f is not the constituent of any other flow.

The reserved rate, Rg , of aggregate flow g is at least the
sum of the reserved rates of the immediate constituent flows
of g. Schedulers after the aggregation point are not aware
of the constituents of an aggregate flow. At a later point in
the network, the aggregate flow is separated again into its
constituent flows.

A scheduler that receives as inputs a set of flows
f1, f2, . . . , fn, and produces as output a single aggregate
flow g, by merging the packets of the input flows, is called an
aggregator. Thus, ingress routers contain N − 1 aggregators,
one for each egress router. A scheduler whose set of input
flows is the same as its set of output flows is called a
non-aggregating scheduler, or simply scheduler for terseness.
Thus, core routers contain schedulers but no aggregators.

We assume all schedulers, aggregating or not, are GR
schedulers. Thus, for any scheduler s and any input flow h

of s (regardless of whether h is a simple or aggregate flow),
every packet ph.i exits s no later than time F s

h.i + βs
h.

A separator is a process that receives as input an aggregate
flow, and produces as output the set of constituents of the input
flow. We assume a separator causes no packet delay by simply
examining the packet’s header.

Consider as an example a computer with four input/output
channels as depicted in Figure 1. Here, flows c and e are
the constituents of d, and they are separated from d through a
separator. Input flows f and h are aggregated together to form
flow g. Flows e and g are forward to the output channel by
a non-aggregating scheduler, thus they remain separate in the
output channel.

scheduler

separator

aggregator

e c

d

h

g f

g

e

Fig. 1. Flow Aggregation Example

Even if an aggregator is a GR scheduler, it is not sufficient to
guarantee a bounded end-to-end delay to its input flows. E.g.,
consider again Figure 1. Assume h generates packets at a rate
greater than Rg, i.e., greater than Rf +Rh. On the other hand,
f is generating few packets, if any, and the aggregator does
not delay packets. Since the scheduler forwards the packets of
g at a rate of Rf + Rh, the queue of g may grow arbitrarily
large. Thus, the next packet of f arriving at the scheduler
encounters a large queue of g (consisting of packets from h),
causing an excessive delay for f .

To prevent the above, in addition to being a GR scheduler,
aggregators must restrict their output rate, and thus be non-
work-conserving [4]. In this case, the per-hop delay of a flow
f as it traverses a scheduler t is

Lmax
(t,f)

R(t,f)
+ βt (4)

where (t, f) is the “root” flow of f at scheduler t, i.e., the
highest level aggregate flow containing f . An additional delay
of

Lmax
(s,f)

R(s,f)
occurs for each aggregator s along the path of f .

Notice that the per-hop delay above is similar to the per-hop
delay in (3). However, in general, R(t,f) À Rf and Lmax

(t,f) ≈
Lmax

f , and hence, aggregation provides a much smaller per-
hop delay.

III. WORK-CONSERVING FLOW AGGREGATION

As mentioned above, flow aggregation requires aggregators
to be non-work-conserving [4].

In [7] we presented a work-conserving aggregation method
whose per-hop delay is similar to Relation (4), and is thus

scheduler t

x

g
f

aggregator s
g

x
. . .

Fig. 2. Aggregator and scheduler.

independent of the leaky-bucket parameters of other flows.
We overview this method in this section.

Our original results were limited to a single level of ag-
gregation. In Section IV we enhance the method to allow a
multi-level aggregation, and thus reducing even further the per-
hop delay and the number of flows visible to each router. In
Section V we apply multi-level aggregation across a multi-core
stateless network.

A. Tagging-aggregators and Non-FIFO Schedulers

We first describe how flows are aggregated together, and
then discuss the behavior necessary from the schedulers after
the point of aggregation. Note that, aggregators are internal,
and thus their output channel capacity is, in principle, un-
bounded. Hence, we assume Cs = ∞ for any aggregator s.

Consider the general case of an aggregator s whose input
flows include f , its aggregate output is g. Packet f.i is one
packet in g, and g is an input to scheduler t, as shown in Figure
2. If there is a large queue at g when packet f.i arrives, the
delay of f.i could be kept small if the queue of g were not
served in FIFO order. That is, if f.i could be served first before
other packets of other flows in the queue of g.

To implement the above, aggregator s assigns a tag Tf.i to
each input packet f.i. We choose a tag equal to the virtual
finishing time of the packet at s, i.e., Tf.i = F s

f.i. Scheduler
t then sorts each of its input queues by tag value.

Note however that although t is aware of flow g, it is not
aware of g’s constituent flow f .

Also note that because t sorts each input flow by tag value,
then the exit time of a packet g.j of flow g depends not only
on packets of g arriving before g.j, but also on packets of g
arriving after g.j whose tag is at most that of g.j.

B. Coordinated Virtual-Finishing-Time

To capture the above behavior, we define the Coordinated
Virtual-Finishing-Time, Φ. Intuitively, Φt

g.j is the time at which
g.j would exit t if t served the packets of g at exactly the rate
Rg, and, furthermore, t serves every packet of g whose tag is
at most Tg.j before it serves g.j.

We next provide a more detailed definition of Φ. We begin
with some auxiliary definitions.
• Let filter(g, t, τ) return a flow that differs from g only

by removing those packets of g whose tag is greater than
τ.

• Let advance(g, t, f.i) return a flow that differs from g
with only the following difference. The only difference
is that all packets in g that arrive after f.i, where f.i is a
packet of g, are moved immediately ahead of f.i if their
tag is at most that of f.i.

Definition 1: Let s be an aggregator with an input flow f
and with output flow g. Let f.i = g.j, and let t be the next
scheduler after s. Then,

Φt
g.j = F t

g′′.|g′′|

where g′ = filter(g, t, Tf.i) and g′′ = advance(g′, t, f.i).

C. Fair Schedulers

We argued in [7] that schedulers must be fair in order
to support work-conserving flow aggregation. Consider again
Figure 2. If scheduler t stops providing service to flow g, then
even if the arriving packet of f is moved to the head of the
queue of g, the packet will suffer excessive delay. Note that
if the scheduler is a GR scheduler, but is unfair, such as the
Virtual Clock protocol [25], [10], then it may stop providing
service to g for an arbitrary length of time.

The amount of time that may elapse without a scheduler
serving a flow can be formalized by the Worst-Case Fair Index
(WFI), as defined in [2].

Definition 2: A scheduler t provides to an input flow g a
Worst-Case Fair Index (WFI) of W t

g if for any time τ , the
delay of a packet arriving at τ is bounded above by

Qt
g(τ)
Rg

+ W t
g

where Qt
g(τ) is the queue of flow g at scheduler t at time τ.

In this manner, regardless of how many packets from g have
been forwarded by t, i.e., even if g has exceeded its packet
rate, at all times t will serve g at a rate at least Rg, except
for an additional delay of at most W t

g . This ensures an exit
bound on all packets of g that is related to their coordinated
virtual-finishing time.

D. End-to-End Delay

In [7], we considered a network with only a single level
of aggregation. That is, each flow f would be aggregated
once with other flows to become flow g, and g would not be
aggregated any further. In Section IV, we will examine how
to provide multi-level flow aggregation while maintaining a
work-conserving system.

Under a single aggregation level, we have the following
end-to-end delay.

Lemma 1: Let f be an input flow of an internal aggre-
gator s, g be the output of s, and let g traverse schedulers
t1, t2, . . . tk, and f.i = g.j. Then, the end-to-end delay of
any packet f.i of flow f is as follows.

Φtk

g.j ≤ Φtk−1

g.j + W tk−1

g +
Lmax

g

Rg
(5)

Etk

f.i ≤ F s
f.i +

k∑
x=1

W tx

g + (k − 1)
Lmax

g

Rg
(6)

We thus have that the end-to-end delay has a per-hop
increase proportional to L

Rg
, as in the case of regular flow

aggregation (see (4)). However, we have the additional WFI
term W t

g . This term should be as small as possible to ensure
a low end-to-end delay.

Virtual Clock has an unbounded WFI. On the other hand,
Weighted Fair Queuing (WFQ) [17] has a WFI, which al-
though bounded, equal to L

Rmin
, where Rmin is the minimum

rate among the flows at the scheduler [1]. If Rmin is allowed
to be very small, this will cause a significant end-to-end delay.

Although end-to-end delay is bounded with WFQ, we desire
a tighter bound in proportion to L

Rg
. In [1], WF2Q is proposed

as an alternative to WFQ, and it is shown that the WFI of a
WF2Q scheduler t is bounded as follows.

W t
g ≤

Lmax
g

Rg
+

Lt
max

Ct

WF2Q is part of a whole family of schedulers, called Shaped
Rate Proportional (SRP) schedulers [21], [19], whose WFI is
as above. Any work-conserving member of this family could
be used as a scheduler in work-conserving flow aggregation.

We thus have that the end-to-end delay has a per-hop
increase proportional to L

Rg
, as in the case of regular flow ag-

gregation (see Relation (4)) plus the small per-hop term Lt
max

Ct .
However, most GR scheduling protocols have βt

g = Lt
max

Ct .
Thus, work-conservation increases the per-hop delay by L

Rg
.

However, this is a relative small increase that is outweighed
by the advantages of a work-conserving system.

IV. MULTI-LEVEL WORK-CONSERVING AGGREGATION

We next consider multi-level flow aggregation. That is,
an aggregate flow can have constituent flows which are
themselves also aggregate flows. Multi-level aggregation has
the advantage that the rate of the resulting aggregate flow
increases with each aggregation level, and the per-hop delay is
inversely proportional to the rate of the flow. However, because
aggregation is work-conserving, aggregation and separation of
flows has different consequences than the original results on
non-work-conserving aggregation [4].

We address aggregation in two steps. We first consider
aggregators and schedulers. We then consider the effects of
separating flows.

A. Multi-level Aggregation

Because we address work-conserving flow aggregation, sim-
ilar assumptions to those of Section III are made. That is, each
packet of an aggregate flow g, regardless of the aggregation
level, contains a tag Tg.j , and schedulers sort the queue of
each flow by tag value. The coordinated virtual finishing time
Φg.j is defined as before.

In Section III, we defined an aggregator that receives simple
(i.e., non-aggregated) flows as input and produces a single
aggregate flow as output. Below, we consider an aggregator
whose input is a set of aggregate flows and whose output is a
single (higher layer) aggregate flow.

Recall that an aggregator assigns tags to packets and then
merges the packets over its output channel. When the inputs
are aggregate flows, packets are already tagged. We have
chosen to preserve this tag in the output flow. That is, if an
aggregate flow g is aggregated with other flows to become
flow h, and if g.j = h.k, then Th.k = Tg.j . With respect to
merging of the flows, this is done as before, i.e., in a FCFS
manner.

We refer to a higher-layer aggregator as a “non-tagging”
aggregator. It is basically a FCFS multiplexer, with the only
difference that it modifies the packet header to reflect that the
packet belongs to the new higher level flow h.

The exit time of a packet is tightly related to its Φ value at
a scheduler. Thus, we must evaluate the effect of aggregation
on Φ. This is given below.

Theorem 1: Let s be a non-tagging aggregator, and let t be
a scheduler after s. For each aggregate input flow g of s, and
for each packet g.j of g, let Φs

g.j ≤ T s
g.j . Then,

Φt
h.k ≤ T s

g.j = T t
h.k

where h is the output flow of s and g.j = h.k.

Due to the limited space, we will present the proof for
theorems of this paper in [23].

Theorem 1 shows that if Φ is bounded by the tag of the
packet then the same thing holds for the outgoing aggre-
gated flow. This implies there is no additional penalty for
aggregation, and flows can be aggregated without incurring
any additional delay. This is contrary to [4], where each
aggregation point introduce additional end-to-end delay.

Theorem 1 requires that Φ be bounded by the tag of the
packet. However, from (5) in Lemma 1, Φ may increase at
each hop. We therefore require the tag of each packet to be
increased by W t

g + Lmax
g

Rg
at every scheduler t. The scheduler

is aware of these values and therefore they need not be part
of the packet header.

Under these conditions, we have the following bound on
the end-to-end increase of Φ and on the end-to-end delay as
a flow traverses multiple aggregators and schedulers.

Theorem 2: Consider a flow g that traverses multiple ag-
gregators and schedulers along its path. Each scheduler is a
fair scheduler that increases the packet tag as described above,
and each aggregator merges the packets of its input flows but
does not modify the tag. Let t1, t2, ... , tk be the sequence of
schedulers traversed by f . Finally, let Φt1

g.j ≤ T t1

g.j . Then,

Etk

g.j ≤ T t1

g.j +
k∑

x=1

W tx

(tx,g) +
k−1∑
x=1

Lmax
(tx,g)

R(tx,g)

Φtk

(tk,g).j
≤ T t1

g.j +
k−1∑
x=1

W tx

(tx,g) +
k−1∑
x=1

Lmax
(tx,g)

R(tx,g)

where (t, g) is the “root” aggregate flow of g at t, i.e., the
highest level aggregate flow containing g.

The per-hop delay in Theorem 2 is inversely proportional
to the rate of the root flow of g. In consequence, aggregation
has the benefit of reducing per-hop delay. In [4], where non-
work-conserving aggregation is used, the per-hop delay is also
inversely proportional to the the rate of the root flow of g.
However, there are significant differences.

In [4], a penalty of
Lmax

(s,g)

R(s,g)

is incurred whenever g is the input to an aggregator s. No such
penalty occurs in Theorem 2 above, regardless of the number
of aggregation levels. On the other hand, the per-hop delay in
[4] is simply

Lmax
(t,g)

R(t,g)
,

while the per-hop delay in Theorem 2 has the additional term
W t

(t,g). However, since W t
(t,g) can be made very close to

Lmax
(t,g)/R(t,g), this increase is not of great significance, and

it is outweighed by the benefits of work-conservation.

B. Flow Separation and End-to-End Delay

We next consider the effects on Φ of separating an
aggregate flow into its constituent flows. Consider the
following example. Assume k simple flows f1, f2, . . . fk

are aggregated to form flow g, and g is aggregated
with other flows to form flow h, as shown below.

sched

g
f1

aggr s.
g h

. . .
fk

aggr.

 Flow h will then traverse several schedulers. Since each fi

flow is simple, the first aggregator s assigns tag T s
fi.j

= F s
fi.j

to each packet fi.j. From Theorem 2, packets of each flow
fi have a bounded exit time of T s

fi.j
+ ∆ for some bound ∆

which depends on the number of hops.
Assume that the first packets of each of flows arrive at

the same time τ at aggregator s. For simplicity, assume these
flows have the same rate Rf and the same packet length L.
Thus, each receives a tag value T equal to τ + L/Rf . By
the definition of ∆, each of these packets will exit the last
scheduler around time T + ∆.2

Assume h is then separated into its constituents, and thus
g is recovered. Consider the value of Φg for the packets
mentioned above. Since they all arrive at time T + ∆, a
constant rate server of rate Rg = k · Rf would require
(k · L)/(k · Rf) = L/Rf seconds to forward all of these
packets, and hence, for one of these packets,

Φg = T + ∆ + L/Rf

Notice, however, that if h were separated into its simple
constituents (and hence each of f1, f2, . . . fk is recovered
individually) then we would also have

Φf = T + ∆ + L/Rf

2Bound ∆ is reachable, this is not shown due to lack of space.

Core router

Ingress/egress router

Access network

Gateway router

Fig. 3. Multi-Core Network

This is because the virtual time F of a simple flow (and hence
its Φ also) increases by ε if it traverses a system where each
packet is guaranteed to exit the system by its virtual time at
the entrance of the system plus ε [11][6].

We conclude that there is no advantage on end-to-end delay
bound in separating flow h into its aggregate constituents,
such as g, over separating h into its simple flows such
as f1, f2, . . . fk. This is because aggregation introduces no
penalty, and any subset of the simple flows can be aggregated
together again if desired. We thus assume that each separator
always separate a flow into the simple flows that comprise it.

The cause of the additional L/Rf increase in Φ is due
to the overlapping of tag values of the packets in g. That
is, two packets g.i and g.j have overlapping tags if the two
ranges [Tg.i− Lg.i

Rg.i
, Tg.i] and [Tg.j− Lg.j

Rg.j
, Tg.j] intersect. Note

that in our example tags are overlapping since each packet in
f1, f2, . . . fk receives the same tag value.

We have argued that Φ increases by Lmax/Rf when it is
separated into its components. We thus assume that separators
increase the tag of each packet of f by this amount. If
separators are implemented without per-flow state, we assume
that the value of Lmax/Rf can be included in the header of
the packet. This is the same assumption is made by other work
in state-free networks [22], [14].

We thus have the following end-to-end behavior when flows
are separated.

Theorem 3: Consider a flow f that traverses a sequence of
aggregators and schedulers, and the schedulers along this path
are t1, t2, ... , tk, terminating at a separator u. Assume also
that for each packet f.i, Φt1

f.i ≤ T t1
f.i, and that flow f has

non-overlapping tags. Then,

Φu
f.i ≤ Tu

f.i (7)

Tu
f.i = T t1

f.i +
k∑

x=1

W tx

(tx,f) +
k∑

x=1

Lmax
(tx,g)

R(tx,f)
+

Lmax
f

Rf
(8)

V. MULTI-DOMAIN WORK-CONSERVING AGGREGATION

We discussed multiple level work-conserving flow aggre-
gation in the previous section and claim that the per-hop

delay guarantee is inversely proportional to the reserved rate
of the highest level aggregation. Moreover, the price to pay
for flow aggregation is L/Rf , where f is a simple flow. More
importantly, we pay this aggregation price only once at the
separator. In this section, we investigate work-conserving flow
aggregation over multiple domains.

Fig. 3 shows the network architecture for multiple domain
flow aggregation. Only routers in access networks keep per-
flow information. At the ingress router, each packet is tagged
with its virtual finishing time. Along with this tag, the packet
header also carries the reserved rate of the simple flow to
which the packet belong.

When a packet enters the core network, its flow f is
aggregated with other flows traveling the same path, forming
the aggregate flow g. The packets within the aggregate are
sorted according to their tag values at each hop. Each core
router updates the tag of a packet as follows.

T t+1
g.j = T t

g.j + W t
g +

Lmax
g

Rg

Then, this first layer aggregate flow may be aggregated
again with other simple or aggregate flows forming a higher
layer aggregate flow h. The tag of a packet is updated with
all parameters of its highest aggregation, namely, h. This
procedure is repeated for more levels of aggregation.

As described in the previous section, we can not gain any
advantage by separating multiple level flow aggregation one
layer at a time. Hence, the aggregate flow is separated all the
way down to simple flows, no matter how many levels it has.
This is represented as the gateway in Fig. 3. It is worthing
noting that the gateway does not need to maintain any per-
flow information, and only a small amount of information is
kept in the packet header. The gateway only needs to update
the tag of a packet according to (8).

When a packet goes into the next aggregation domain, its
flow can be aggregated freely with other simple or aggregate
flows, and packets are sorted using the tags their headers
carry. And the tag of a packet should be updated accordingly.
If the flow goes through more aggregation domains in the
core network, it will be separated into the original simple
flow again at each gateway. By updating the tag of a packet

at the gateway and all routers on the path, a simple flow
traverses the whole core network through multiple aggregation
domains in multiple level aggregations in each domain. Again,
all routers in the core network, including gateways between
aggregation domains, do not need to maintain any per-flow
state information for simple flows.

In the next section, we discuss other approaches of reducing
number of flows maintained in the core network and compare
major results to our aggregation model.

VI. RELATED WORK

In Dynamic Packet State (DPS) [22], the core routers are
totally relieved from the burden of maintaining per-flow state.
Instead, a time stamp is carried in the header of a packet
along with other necessary information for scheduling such as
reserved rate of a flow, packet length, etc.. A router in the
core network will update the time stamp with the information
that how much time in advance the packet exited the previous
router than its deadline. However, in order to calculate the
time stamp at each hop, all routers in the core network need
to be synchronized, or constant delay links are required. In
the meanwhile, the delay guarantee is much larger than the
one flow aggregation provides. Multiple level flow aggregation
results in an even lower delay, since a higher level aggregation
has a much larger reserved rate.

Core-Stateless Guaranteed Rate (CSGR) networks [15], [16]
follow a similar idea as that in DPS. In CSGR, the ingress
router will calculate a time stamp of a packet for each router
in the core network on the path of a flow. Then, the packet
header carries the whole vector of time stamps into the core
network. Each core router on the path extracts the time stamp
from the corresponding element in the vector, and sort all
packets according to the time stamp. In this manner, all packets
are guaranteed to exit the core network by their deadlines.
The delay guarantee provided by CSGR is the same as that
of DPS, hence is also larger than that of flow aggregation.
Plus, the packet header needs to reserve more space for
scheduling information. However, the deadline reuse technique
[15], with corrected reuse conditions [8], provides a means for
throughput guarantee.

Multi-level work-conserving flow aggregation over multiple
domains not only provides better delay guarantee, but offers
flexibility for aggregation as well. In each aggregation do-
main, flows are freely aggregated together, regardless of their
aggregation level. And the aggregation cost is only paid once
at the separator. Moreover, higer levels of aggregation also
means fewer number of flows to maintain state for in the
core network. These properties, along with work-conservation,
make it an attractive scalable scheduling algorithm for the core
network.

VII. CONCLUDING REMARKS AND FUTURE WORK

As discussed in [7], the fairness among the simple flows
is limited to the aggregate rate. Similar to [8], we speculate
that the “time stamp reuse” technique [15] could also be
incorporated into multi-level flow aggregation. In the future

work, we will study how to provide throughput guarantee,
hence fairness guarantee, to simple flows in multi-level flow
aggregation over multiple domains.

REFERENCES

[1] J. C. Bennett and H. Zhang, “Hierarchical packet fair queueing algo-
rithms,” IEEE/ACM Transactions on Networking, vol. 5, no. 5, pp. 675–
689, Oct. 1997.

[2] ——, “WF2Q: worst-case fair weighted fair queueing,” in IEEE INFO-
COM Conference, 1996.

[3] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet
architecture,” Internet RFC 1633.

[4] J. Cobb, “Preserving quality of service guarantees in-spite of flow
aggregation,” IEEE/ACM Transactions on Networking, vol. 10, no. 1,
pp. 43–53, Feb. 2002.

[5] ——, “Scalable quality of service across multiple domains,” Computer
Communications, vol. 28, no. 18, pp. 1997–2008, Nov. 2005, Elsevier.

[6] J. Cobb and M. Gouda, “Flow theory,” IEEE/ACM Transactions on
Networking, vol. 5, no. 5, pp. 661–674, Oct. 1997.

[7] J. Cobb and Z. Xu, “Maintaining flow isolation in work-conserving flow
aggregation,” in Proc. IEEE GLOBECOM Conference, 2005.

[8] ——, “Guaranteed throughput in work-conserving flow aggregation
through deadline reuse,” in Proceedings of the ICCCN Conference, Oct.
2006.

[9] H. Fu and E. W. Knightly, “A simple model of real-time flow aggre-
gation,” IEEE/ACM Transactions on Networking, vol. 11, no. 3, June
2003.

[10] X. G. and L. S., “Delay guarantee of the virtual clock server,” IEEE/ACM
Transactions on Networking, pp. 683–689, Dec. 1995.

[11] P. Goyal, S. Lam, and H. Vin, “Determining end-to-end delay bounds
in heterogeneous networks,” in Proc.of the NOSSDAV Workshop, 1995.

[12] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured forward-
ing phb group,” Internet RFC 2597.

[13] V. Jacobson, K. Nichols, and K. Poduri, “An expedited forwarding phb,”
Internet RFC 2598.

[14] J. Kaur and H. M. Vin, “Core-stateless guaranteed rate scheduling
algorithms,” in Proc. of the IEEE INFOCOM Conf., 2001.

[15] ——, “Core stateless guaranteed throughput networks,” in Proc. of the
IEEE INFOCOM Conf., 2003.

[16] ——, “Providing deterministic end-to-end fairness guarantees in
corestateless networks,” in Proc. IEEE International Workshop on Qual-
ity of Service (IWQoS), 2003.

[17] A. K. J. Parekh and R. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The single
node case,” IEEE/ACM Transactions on Networking, vol. 1, no. 3, June
1993.

[18] J. Qiu and E. W. Knightly, “Measurement-based admission control with
aggregate traffic envelopes,” IEEE/ACM Transactions on Networking,
vol. 9, no. 2, Apr. 2001.

[19] D. Stidialias and A. Varma, “Rate proportional servers: A design
methodology for fair queuing algorithms,” IEEE/ACM Transactions on
Networking, Apr. 1998.

[20] D. Stiliadis and A. Varma, “Latency rate servers: a general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Transactions on
Networking, vol. 6, no. 5, pp. 611–624, 1998.

[21] ——, “A general methodology for designing efficient traffic scheduling
and shaping algorithms,” in IEEE INFOCOM Conference, 1997.

[22] I. Stoica and H. Zhang, “Providing guaranteed services without per-flow
management,” in Proc. of the ACM SIGCOMM Conference, 1999.

[23] Z. Xu, “Scalable scheduling for quality of service guarantees,” Ph.D.
dissertation, The University of Texas at Dallas, Aug. 2007.

[24] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proceedings of the IEEE, vol. 93, no. 10,
Oct. 1995.

[25] L. Zhang, “Virtual clock: A new traffic control algorithm for packet-
switched networks,” ACM Transactions on Computer Systems, vol. 9,
no. 2, pp. 101–124, May 1991.

