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Abstract

Recent windowing systems allow graphics applications to
directly access the graphics processing unit (GPU) for fast
rendering. However, application tasks that render frames on
the GPU contend heavily with the windowing server that also
accesses the GPU to blit the rendered frames to the screen.
This resource-sharing nature of direct rendering introduces
core challenges of priority inversion and temporal isolation
in multi-tasking environments.

In this paper, we identify and address resource-sharing
problems raised in GPU-accelerated windowing systems.
Specifically, we propose two protocols that enable application
tasks to efficiently share the GPU resource in the X Window
System. The Priority Inheritance with X server (PIX) proto-
col eliminates priority inversion caused in accessing the GPU,
and the Reserve Inheritance with X server (RIX) protocol ad-
dresses the same problem for resource-reservation systems.
Our design and implementation of these protocols highlight
the fact that neither the X server nor user applications need
modifications to use our solutions. Our evaluation demon-
strates that multiple GPU-accelerated graphics applications
running concurrently in the X Window System can be correctly
prioritized and isolated by the PIX and the RIX protocols.

1 Introduction

Windowing systems in modern operating systems, like the
X Window System in Linux/FreeBSD, increasingly use the
graphics processing unit (GPU) to provide smart windowing,
high-quality graphics, smooth transitions, and improved orga-
nization. Recent trends on 3-D graphics applications, such as
Compiz Fusion, BumpTop, CoolIris, and Flip3D, are all such
intriguing possibilities that benefit from the GPU to enhance
the user experience.

In the X Window System, the direct rendering infras-
tructure (DRI) [19] is commonly used in conjunction with
OpenGL – an open-standard graphics library – as a software
framework that allows user-space application tasks to directly
access the GPU for fast rendering, without using X protocols.
The X server itself also uses DRI to access the GPU. Partic-
ularly, Gallium3D [8] is a popular open-source OpenGL im-
plementation based on DRI, which is available for many plat-
forms including the Nouveau [23] open-source GPU driver.

Our preliminary evaluation using this open-source graph-
ics stack, provided on the Intel Xeon E5504 machine oper-
ating at 2.0 GHz and the NVIDIA GeForce 9500 GT graph-
ics card operating at 432 MHz, has demonstrated that Gal-
lium3D demo programs [8] accelerated on the GPU execute
more than 10 times faster than those without acceleration.
Newer graphics cards with more advanced GPU architectures,
like the NVIDIA GeForce GTX series, would provide fur-
ther performance improvements. A performance comparison
between representative Intel CPU architectures and NVIDIA
GPU architectures is listed in Table 1. Observe that GPUs
provide considerable benefits over CPUs in performance per
power consumption. These performance benefits from GPUs
would also apply to data-parallel compute-intensive real-time
processing, such as Fast Fourier Transform [24], weather mod-
eling [30], and visual tracking [17].

While the GPU is promising for many graphics applica-
tions, commodity GPU drivers are tailored to accelerate one
particular application in the system, like a video game. In or-
der to support multiple applications running concurrently in
real-time, we have developed TimeGraph [27], which provides
GPU scheduling and reservation mechanisms at the device-
driver level to queue and dispatch GPU commands based on
task priorities. However, priority assignment and reservation
setup need to be managed by system designers. Particularly,
the parameter setup for the X server can significantly affect the
overall system performance, since the X server should not dis-
turb application tasks that render frames on the GPU, whereas
the X server itself needs to be responsive when these tasks use
X protocols to blit frames to the screen.

Unfortunately, there is not yet an explicit solution about
how to address such resource-sharing problems raised on the
GPU, though interactions between the windowing server and
graphics applications in real-time windowing systems have
been somewhat studied [5, 7, 18, 28]. Therefore, we need
to identify the performance implications of GPU-accelerated
windowing systems. Implementation choices, their trade-offs,
and their implications must also be studied.

Contributions: This paper presents two resource-sharing
protocols for the GPU-accelerated X Window System, which
enable the X server to be scheduled with application tasks on
a timely basis. The Priority Inheritance with X server (PIX)
protocol extends the priority inheritance protocol [29] to elim-
inate priority inversion raised due to the existence of the X
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Table 1. Comparison of the Intel CPU architectures and the NVIDIA GPU architectures.
Core 2 Core i7 GeForce GeForce GeForce

QX9650 980XE 9500 GT GTX 285 GTX 480
# of processing cores 4 6 32 240 480

Single-precision performance (GFLOPS) < 100 107 134 933 1350
Memory bandwidth (GB/sec) 7 25 16 159 177

Power consumption (Watt) 130 130 50 183 250
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Figure 1. Frame-rates of three graphics tasks
with priorities lower than the X server.

server when accessing the GPU. The Reserve Inheritance with
X server (RIX) protocol, on the other hand, extends the re-
serve inheritance protocol [22] to reduce the blocking time
imposed on tasks that contend with the X server on the GPU
in resource-reservation [26] systems. Although our protocols
build upon earlier approaches, new windowing systems need
an in-depth look and specialization. Specifically, we describe
that these classical protocols need to be modified to address
resource-sharing problems specific to the GPU-accelerated X
Window System. We also implement our protocols in Time-
Graph to evaluate practical performance.

Organization: The rest of this paper is organized as fol-
lows. Section 2 identifies resource-sharing problems related to
the GPU-accelerated X Window System. Section 3 introduces
our system model. Section 4 and Section 5 present the PIX
and the RIX protocols respectively. Section 6 describes how
to design and implement our protocols in TimeGraph. The ca-
pabilities of the PIX and the RIX protocols are evaluated in
Section 7. Section 8 discusses the related work in this area.
We provide our concluding remarks in Section 9.

2 Problem Observation

In order to understand resource-sharing problems specific
to the GPU-accelerated X Window System, we provide a pre-
liminary evaluation using TimeGraph to see how different pri-
orities assigned to the X server affect the performance of ap-
plication tasks. In the following, the CPU and the GPU share
the same priority level.
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Figure 2. Frame-rates of three graphics tasks
with priorities lower than the X server in the
presence of an X-client task.
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Figure 3. Frame-rates of three graphics tasks
with priorities higher than the X server in the
presence of an X-client task.

Figure 1 shows the performance of three instances of the
Engine widget, which is a Gallium3D demo program [8] that
displays a V-6 3-D engine revolving as fast as possible. We
first configure the X server to have a priority higher than all
the Engine tasks. Among the three Engine tasks, meanwhile,
we assign the high priority to Engine #1, the medium priority
to Engine #2, and the low priority to Engine #3. In this setup,
TimeGraph can correctly prioritize the three Engine tasks as
observed in Figure 1, since the X server accesses the GPU
only when it blits the rendered frames to the screen.
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Assigning a higher priority to the X server, however, causes
X client tasks to affect the performance of primary 3-D graph-
ics tasks. Figure 2 shows the performance of three instances of
the Engine widget with the same priority order as the previous
setup, where another Gallium3D demo program, called Gears,
is competing with them, as an X-client task that does not di-
rectly access the GPU but through the X server. Since the X
server requires more GPU resources to serve the Gears task,
the performances of the Engine #1 and Engine #2 tasks de-
grade accordingly. This performance degradation increases as
the X-client workload increases. In contrast, it is interesting to
observe that the performance of the Engine #3 task is slightly
improved, since the X server invokes more frequently executes
due to the existence of the Gears task, which decreases the ex-
ecution rates of the Engine #1 and Engine #2 task, and reduces
interference to the Engine #3 task.

Assigning a lower priority to the X server, on the other
hand, jeopardizes prioritization among the three Engine tasks,
as observed in Figure 3. In this setup, the Engine #3 task
scheduled at the lowest priority level among the three Engine
tasks can preempt the X server that serves the requests issued
from the Engine #1 and Engine #2 tasks that are scheduled at
higher priority levels. Hence, there are more interferences.

The performance interference observed above can be at-
tributed to the fact that the X server is a shared resource among
application tasks, while the X server itself contends with these
tasks for the GPU resource. Specifically, these tasks access the
GPU to render frames, while the X server sharing the GPU is
used to blit the rendered frames to the screen.

3 System Model

We consider the GPU-accelerated X Window System in soft
real-time environments. Application tasks are assigned static
(fixed) priorities. If optimal priority assignment is required,
the Rate-Monotonic [16] and the Deadline-Monotonic [14] al-
gorithms can be used. This paper is particularly focused on
GPU resource management, and thereby we assume that all
tasks are provided with sufficient CPU resources.

Application programs use Gallium3D [8], as a DRI-based
OpenGL implementation, to directly access the GPU for ac-
celeration. Every time the current frame is rendered on the
GPU, each task sends specific requests to the X server to blit
the rendered frame to the screen. Such a procedure is often
referred to as double buffering. Frames may or may not arrive
in a periodic fashion. X-client tasks can contend with OpenGL
tasks, but these X-client tasks never access the GPU directly.

OpenGL tasks and the X server continuously generate GPU
commands via the user-space driver part of the graphics soft-
ware stack. GPU commands are collected into atomic exe-
cution regions. Each atomic set of GPU commands is called
a GPU command group. While each GPU command group
is non-preemptive, the GPU can be preempted between GPU
command groups using TimeGraph. It should be noted that
when we refer to preemption on the GPU, we denote the pre-
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Figure 4. Example of GPU scheduling [27].
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Figure 5. Example of GPU reservation [27].

emption at GPU command group boundaries in this paper. The
number of GPU command groups submitted to render each
single frame is not known a priori.

OpenGL tasks and the X server are scheduled under Time-
Graph, where GPU command groups issued from the user
space are queued if there are on-the-fly GPU command groups
executing on the GPU, and then dispatched to the GPU in ac-
cordance with task priorities upon completions of GPU com-
mand groups. Coarse-grained GPU reservation support is also
provided. More details can be obtained from our TimeGraph
website [27]. In order to demonstrate the basic functionality of
TimeGraph, however, we quote examples of GPU scheduling
and GPU reservation below.

Figure 4 indicates how three tasks with different priori-
ties, a high-priority (HP) task, a medium-priority (MP) task,
and a low-priority (LP) task, are scheduled on the GPU un-
der TimeGraph. When the MP task arrives, its GPU com-
mand group can execute on the GPU, since no GPU command
groups are executing. Given that the GPU and CPU operate
asynchronously, the MP task can arrive again while its previ-
ous GPU command group is executing. However, the MP task
is queued because the GPU is not idle. Even the next HP task
is also queued, since further higher-priority tasks may arrive
soon. TimeGraph configures the GPU to generate an interrupt
to the CPU upon every completion of GPU command group,
in order to invoke TimeGraph itself to wake up the highest-
priority task in the wait queue. Hence, the HP task is next cho-
sen to execute on the GPU. In this manner, the next instance of
the LP task and the second instance of the HP task are sched-
uled in accordance with their priorities. Thus, higher-priority
tasks can be more responsive on the GPU.

Figure 5 shows how GPU reservation works for four GPU
command groups issued by the same task. Under GPU reser-
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Figure 6. Interaction between a user task and the
X server in the DRI-based X Window System.

vation, tasks can submit GPU command groups to the GPU,
only if their budget is greater than zero. It is therefore pos-
sible for the budget to be negative, meaning that the task is
overrunning out of reservation. The overrun penalty is, how-
ever, imposed on the next budget replenishment. Hence, the
budget for the next period is given by e = min(C, e + C). As
observed in Figure 5, the budget is initialized to C. When the
second GPU command group completes, the budget becomes
negative. Hence, the third GPU command group must wait for
the budget to be replenished, even though the GPU remains
to be idle. Due to the scheduling policy explained above, the
fourth GPU command group is blocked, though the budget is
positive, when another GPU command group is executing.

Figure 6 illustrates how a user task interacts with the X
server in the DRI-based X Window System. When all GPU
command groups for rendering the current frame are submitted
to the GPU, the user task sends a request to the X server. The
user task is then blocked until the X server responds. When the
X server is dispatched on the CPU, it receives the request, and
waits for the frame, associated with the request, to be rendered
on the GPU. Once the frame is rendered, the X server in turn
issues another set of GPU command groups to blit the frame
to the screen. Finally, the user task is notified of the frame to
be displayed on the screen, and resumes execution.

It depends on an X server implementation about how to
schedule X requests within the X server. The X requests may
or may not be scheduled according to task priorities. For in-
stance, the X server in commodity operating systems is de-
signed to maximize the overall throughput, though priorities
are also effective to some extent. If stronger timing support for
the X server is required, the X server itself needs to be mod-
ified accordingly [5, 18]. In order to make our contribution
available for as many versions of the X Window System as
possible, we design our system without modifying any part of
X server implementation.

4 Priority Inheritance with X Server

We now investigate in depth how the resource-sharing prob-
lems observed in Figure 3 are caused. Since the X server is a
shared resource in the X Window System, tasks eventually ac-
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Figure 7. Example of priority inversion in the
GPU-accelerated X Window System.
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Figure 8. Example of PIX procedure.

cess the X server to blit the frames rendered on the GPU to the
screen. Especially, OpenGL tasks are likely to send requests to
the X server at the end of each frame to swap data from a hid-
den space to the screen. Suppose that the X server is assigned
a priority lower than these tasks. The execution of the X server
on the GPU, servicing the requests issued by a higher-priority
task, can be preempted by a lower-priority task that is directly
accessing the GPU for rendering frames, since the priority of
the lower-priority task is still higher than that of the X server.
This leads to priority inversion [29].

Figure 7 illustrates how priority inversion occurs on the
GPU for three tasks with different priorities higher than the
priority of the X server. For simplicity of description, we as-
sume that (i) X requests are scheduled in accordance with task
priorities, and (ii) the executions of lower-priority tasks on
the GPU can be preempted immediately when higher-priority
tasks need to execute, though they must wait for the preceding
GPU command group to complete in real environments. In this
example, the high-priority task first submits all GPU command
groups associated with the current frame to the GPU, and then
sends a request (Request #1) to the X server to blit its frame to
the screen later. The frame is, however, still being rendered on
the GPU. Hence, the X server needs to wait for its completion.
Once the frame is rendered, the X server accesses the GPU to
blit it to the screen. Suppose that the X server is preempted on
the GPU by the low-priority task in the middle of frame blit-
ting. This low-priority task also sends a request (Request #2) to
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the X server. At some later point of time, the medium-priority
task further preempts the low-priority task on the GPU, and
similarly sends a request (Request #3) to the X server. Only
after the frame of the medium-priority task is rendered, the X
server can resume on the GPU to respond to the high-priority
task. The pending X requests are also processed on the GPU
in accordance with their priorities, and the X server returns
the requests to the medium- and the low-priority tasks respec-
tively. As a consequence, the high-priority task is blocked
for a long interval due to priority inversion introduced by the
medium-priority task that preempts the X server on the GPU.

This priority inversion problem is slightly different from
what was considered in the previous work [29], where a shared
resource causing priority inversion is a critical section guarded
by a lock. A shared resource considered herein, on the other
hand, is the X server that is at the same time a task. How-
ever, we can still apply the same idea. We consider that the
real shared resource considered in our scenario is the GPU re-
source used by the X server, and this shared resource is always
held by the X server. Hence, priority inversion will occur every
time tasks access the shared resource in our scenario, while it
may or may not occur in the original scenario.

We now propose the Priority Inheritance with X server
(PIX) protocol to avoid the priority inversion specific to GPU
processing. It is a specialization of the priority inheritance pro-
tocol [29] for the GPU-accelerated X Window System. The
protocol is defined as follows:

1. Every time a task sends a request to the X server, the pri-
ority of the task is inherited by the X server, only if it is
greater than the current priority of the X server.

2. Every time the X server completes a task request, the X
server is assigned the highest priority among remaining
tasks whose X requests are pending.

The first policy feature is exactly subject to the original pri-
ority inheritance protocol. The second feature is, however,
somewhat modified. According to the original protocol, when
a task exits from the shared resource, it resumes with the prior-
ity that it had at the point of entry into the shared resource [29].
In the X Window System, on the other hand, it is possible that
a low-priority task can receive a response from the X server
before a high-priority task that sent an X request after the low-
priority task in a FIFO order, unless the X server is explicitly
implemented to respond in accordance with priorities of tasks
sending X requests. In such a case, the X server should still re-
main at the priority level of the high-priority task. The second
policy feature is thus required.

Figure 8 illustrates how the PIX protocol avoids the prior-
ity inversion observed earlier in Figure 7. It ensures that the
execution of the X server that services Request #1 issued by
the high-priority task is not preempted on the GPU by the low-
priority task. The X server can also preempt the low-priority
task on the GPU to service Request #3 issued by the medium-
priority task. The response times of the high- and the medium-
priority tasks are therefore improved accordingly. However,
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Figure 9. Example of untimely enforcement in
the GPU-accelerated X Window System.

priority inheritance blocked

CPU

GPU

time

time

#1 #2#3

#1 #1 #2 #3 #2#3

priority inheritance

replenishment

reserve 
inheritance

X server
budget

reserver inheritance
reserve 
inheritance

reserve 
return reserve 

return

HP task X serverMP task LP task

Figure 10. Example of RIX procedure.

the cumulative response time may be increased, as seen in case
of Request #2, because the X server needs to synchronize with
all tasks that access the GPU.

5 Reserve Inheritance with X Server

Resource reservation has been used to provide real-time
tasks with temporal isolation [1, 21, 26]. It has also been used
in the X Window System [18] to deliver reliable quality of ser-
vice (QoS) to graphics applications. In fact, it is natural to
exploit resource reservation for the X Window System, given
that graphics applications may send X requests arbitrarily, and
usually have variability in execution times. We however need
to remind that the X server is a shared resource.

Figure 9 shows an example of GPU reservation that poses
untimely enforcement during the execution of the X server,
when the same set of three tasks as used in the previous ex-
amples are co-scheduled. Each task is assigned a reserve that
abstracts the GPU resource by a budget and a period. Suppose
that these tasks are assigned reserves of sufficient sizes, while
the X server has a small reserve. We claim that such a mis-
specification likely occurs if system behavior is not precisely
known a priori. As observed in Figure 9, the X server is forced
to suspend, since its budget is exhausted. All X requests is-
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sued by the tasks therefore need to wait until the budget of the
X server is replenished, even if the PIX protocol is enabled.

We propose the Reserve Inheritance with X server (RIX)
protocol that specializes the reserve inheritance protocol [22]
to account and enforce the execution of the X server efficiently
in the GPU-accelerated X Window System. The protocol is
defined as follows:

1. Every time a task sends a request to the X server, the X
server inherits the reserve of the task, regardless of the
priority levels.

2. The reserve may be enforced and replenished even while
it has been inherited by the X server.

3. Every time the X server completes a task request, it re-
turns the remaining budget in the inherited reserve to the
corresponding task. Let Ci be the budget in the reserve
inherited from a task τi at some earlier point of time, C∑

be the total amount of budgets in the reserves inherited
by the X server from the tasks waiting for the X server to
respond to at the current time t, and Cx be the remaining
budget in the reserve of the X server at t. The amount C′i
of budget returned from the X server to τi is given by:

C′i =
max{min(C∑,Cx), 0} ×Ci

C∑
. (1)

While the first and second policy features are subject to the
original reserve inheritance protocol, the third feature is dif-
ferent, particularly when the X server inherits the reserve from
more than one task. Since all X requests are encapsulated by
the execution of the X server, the graphics software stack does
not recognize which request is currently being serviced by the
X server, unless an X server implementation is modified. In
other words, we cannot precisely account the execution of the
X server on a per-request basis. We therefore approximate the
amount of budget to be returned to the task by Equation (1). If
the budget Cx of the X server is no less than the total amount
C∑ of budgets in the reserves being inherited by the X server,
the same amount Ci of budget as it was inherited from a task
τi earlier is returned to τi, since this condition indicates that
the X server could complete servicing the requests within its
own reserve. Else, the X server must have used at least some
portion of the inherited budgets to service the requests. Since
exact accounting per request is not provided, the amount of
budget to be returned to τi is approximately computed so as
to be proportional to the amount of budget inherited from τi.
As mentioned in Section 3, the budget can be negative under
our GPU reservation model, and, in this case, the budget of
the next period needs to be decreased accordingly. Hence, we
bound the amount of budget to be returned by zero in case that
Cx is negative, and the overrun penalty for servicing X requests
is imposed on the X server itself later. The resource reserva-
tion bandwidth never changes, even for different reservation
periods, since exchanging the budget among tasks neither in-
creases nor decreases the total available budget.

Figure 10 shows how the RIX protocol improves response
times according to priorities for the same reservation set as
the previous example observed in Figure 9. When the high-
priority task sends a request to the X server, the reserve of the
high-priority task is inherited by the X server. The X server
can hence complete servicing Request #1 without being forced
to suspend, and it promptly responds to the high-priority task.
The budget of the X server is then returned to the high-priority
task based on Equation (1). The X server next inherits the
budget from the medium-priority task before it starts servicing
Request #3. In this case, however, the budget of the X server is
soon replenished to the amount enough to complete servicing
Request #3 without using any portion of the inherited reserve.
Hence, the same amount of budget as it was inherited is re-
turned to the medium-priority task. In contrast, since the X
server exhausts the budget inherited from the low-priority task
to service it, no budget is returned to it.

6 Implementation

We now describe how to implement the PIX and the
RIX protocols in TimeGraph. Since X requests are issued
by OpenGL applications only when the glxSwapBuffers
OpenGL function is called, the points of entry into and exit
from the X server must also be specified explicitly to use the
PIX and the RIX protocols. We therefore provide two new API
functions, enter_x_server and leave_x_server, to
be used in conjunction with the glxSwapBuffers function.
The ioctl system call is internally used to notify the graph-
ics driver of the corresponding API function calls.

In our experience, there are two conceivable approaches
to make our API functions available. One may insert our
API functions implicitly into the OpenGL library so that
the enter_x_server and the leave_x_server func-
tions are respectively called at the beginning and the end
of the glxSwapBuffers function. The other approach
may leave the decision to user applications when to call
our API functions. For instance, they may want to call the
enter_x_server and the leave_x_server functions
respectively before and after they call the glxSwapBuffers
function. From the perspective of legacy applications, modifi-
cations to the OpenGL library allow all existing OpenGL ap-
plications to take advantage of our solutions without the need
of being instrumented and recompiled. We hence adopt the
first approach that modifies the glxSwapBuffers function.

Applying modifications to the X server would enable more
precise budget usage accounting, instead of being forced to
roughly approximate it by Equation (1). However, we empha-
size that our solution targets all existing implementation of the
DRI-based X server and OpenGL applications without apply-
ing modifications. More in-depth investigation into how per-
formance isolation is improved by modifying the X server is
left open for future work.

Figure 11 illustrates the pseudo-code of our APIs functions
implementing both the PIX and the RIX protocols. Ci and Pi
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1: function enter x server(τi) do
2: if Pi > Px then
3: insert τi to Q;
4: Px ← Pi;
5: end if
6: if Ci > 0 then Cx ← Cx +Ci end if
7: reschedule the X server;
8: end function

9: function leave x server(τi) do
10: get the highest-priority task τk from Q;
11: if τk exists then Px ← Pk;
12: else Px ← Pde f ault; end if
13: if τi exists in Q then
14: C∑ =

∑
τ j∈QC j;

15: Ci = max{min(C∑,Cx), 0} ×Ci/C∑;
16: Cx ← Cx −Ci;
17: remove τi from Q;
18: end if
19: reschedule the X server;
20: end function

Figure 11. Pseudo-code of the PIX and the RIX
protocols implemented on top of TimeGraph.

denote the budget and the priority of a caller task τi respec-
tively, while Cx and Px denote those of the X server. Q is a list
of tasks whose reserves are currently inherited by the X server.
Pde f ault denotes the default priority in the system. We assume
that the priorities are statically assigned in advance, and the X
server initially has the default priority.

7 Evaluation

We now provide a quantitative evaluation of the PIX and the
RIX protocols implemented in TimeGraph, using the Linux
kernel 2.6.36 and the Gallium3D OpenGL library. Our ex-
periments perform on the Intel Xeon E5504 CPU (2.0 GHz)
and the NVIDIA GeForce 9500 GT graphics card (432 MHz),
which is the same environment as we used for our preliminary
evaluation in Section 1. Two representative Gallium3D demo
programs [8], (i) the Engine widget as a primary OpenGL ap-
plication and (ii) the Gears widget as an X client application,
are used for our evaluation. These programs are greedy, and
attempt to get as high a frame-rate as possible. We also use
MPlayer [10] as another X client application that represents a
regularly-behaved periodic graphics workload.

In our experiments, the X server is by default assigned a pri-
ority lower than OpenGL application tasks, since assigning a
higher priority to the X server would cause an unbounded per-
formance degradation of OpenGL applications, as discussed in
Section 2. Each task has the same priority level on the CPU
and on the GPU. The tasks involved in our evaluation are as-
signed real-time Linux priorities on the CPU to protect them
from being affected by other background tasks.
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Figure 12. Frame-rates of two graphics tasks.

7.1 Priority Inheritance

We first evaluate the effectiveness of the PIX protocol. Fig-
ure 12 shows the impact on prioritization among two instances
of the Engine widget executing with and without the PIX pro-
tocol, where the Engine #1 task is assigned a priority higher
than the Engine #2 task. Comparing Figure 12 (a) and (b),
we can observe that the PIX protocol improves the frame-rate
of the Engine #1 task (a higher-priority task) to 156 fps from
138 fps on average, by reducing the adverse effect from the
Engine #2 task (a lower-priority task). This illustrates that
stronger prioritization can be provided by the PIX protocol in
the GPU-accelerated X Window System.

We next evaluate the scalability in performance of the PIX
protocol by adding another instance of the Engine widget, En-
gine #3, with a priority lower than the Engine #1 and the En-
gine #2 tasks. As shown in Figure 13 (a), prioritization among
the three tasks misbehaves in a worse fashion without the PIX
protocol, since lower-priority tasks are more likely to preempt
the X server servicing the requests issued by higher-priority
tasks. On the other hand, the three tasks are correctly priori-
tized by the PIX protocol, as shown in Figure 13 (b). Specif-
ically, the the frame-rates of the Engine #1 and the Engine #2
tasks are improved to 150 fps from 98 fps and to 82 fps from
64 fps respectively on average, by preventing the Engine #3
task from interfering with them.
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(b) w/ the PIX protocol.

Figure 13. Frame-rates of three graphics tasks.

 0

 40

 80

 120

 160

 0  10  20  30  40  50  60  70  80  90  100  110  120

F
ra

m
e 

ra
te

 (
fp

s)

Elapsed time (second)

Engine #1
Engine #2
Engine #3

Figure 14. Frame-rates of three graphics tasks
in the presence of an X-client task under PIX.

We now evaluate the performance degradation of OpenGL
tasks in the presence of an X-client task competing for the
GPU resource. Figure 14 shows how the frame-rates of the
three Engine tasks are degraded, when the Gears task contends
with them as an X-client task. The Engine #1 and Engine #2
tasks have frame-rates decreased by about 20 ∼ 30 fps as com-
pared with the previous case observed in Figure 13 (b). The
Engine #3 task, on the other hand, obtains a slightly higher
frame-rate for the same reason described in Section 2 regard-
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(a) w/ the PIX protocol and w/o the RIX protocol.
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(b) w/ both the PIX and the RIX protocols.

Figure 15. Frame-rates of three graphics tasks
assigned reserves of the same size.

ing Figure 2. Comparing Figure 2 and Figure 14, however, we
can observe that the performance loss for the Engine tasks is
reduced by the PIX protocol.

7.2 Reserve Inheritance

We next evaluate the effectiveness of the RIX protocol. Fig-
ure 15 shows how the three Engine tasks, assigned reserves of
the same size of 5ms every 20ms, are isolated under the RIX
protocol, when the Gears task contends with them as an X-
client task. The X server is also assigned a reserve of 5ms
every 20ms. The PIX protocol is by default used in this setup.
As shown in Figure 15 (a), performance isolation among the
three Engine tasks is not adequate without the RIX protocol.
Since the budget of each task is simply carried over for the
next frame of itself, the Engine #1 task, assigned the highest
priority, can execute at a faster rate than the reserve period.
This reserve overrun of the Engine #1 task in turn causes the
frame-rate of the Engine #3 task, assigned the lowest priority,
to decrease below the reserve period. When the RIX proto-
col is used, however, the three Engine tasks are well-isolated
at a frame-rate of 50 fps, corresponding to a reserve period
of 20ms. Since the remaining reserves are inherited by the X
server, each task hardly executes at a faster rate than the re-
serve period. Thus, the X server is less of a bottleneck.

198



 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90  100  110  120

F
ra

m
e 

ra
te

 (
fp

s)

Elapsed time (second)

Engine #1
Engine #2
Engine #3

(a) w/ the PIX protocol and w/o the RIX protocol.
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Figure 16. Frame-rates of three graphics tasks
assigned reserves of different sizes.

Figure 16 shows the impact on performance isolation in a
setup similar to the case observed in Figure 15, except that
the three Engine tasks are assigned reserves of different sizes.
Specifically, reserves are assigned in such a way that Engine #1
runs for 5ms every 10ms, Engine #2 runs for 5ms every 20ms ,
Engine #3 runs for 5ms every 40ms, and the X server runs for
1ms every 10ms. Due to a small reserve of the X server, the
X server is likely a bottleneck without the RIX protocol in this
setup, which affects performance isolation, as shown in Fig-
ure 16 (a). However, the RIX protocol removes this bottleneck,
which results in providing sufficient performance isolation, as
shown in Figure 16 (b).

We have so far studied the impact on OpenGL tasks. We
now consider a likely scenario where users are watching
videos, while 3-D browser and desktop widgets are running
in the background. To test this scenario, we run MPlayer as an
X-client task, playing a H264-compressed video with a frame
size of 1920×800 and a frame-rate of 24 fps, when three En-
gine tasks contend with the MPlayer task. The same setup as
the case observed in Figure 16 is applied for the reserve of each
task. The MPlayer task is not assigned a reserve, since it ac-
cesses the GPU through the X server. Unfortunately, MPlayer
does not synchronize with the X server, meaning that it can
start the next frame before the previous frame is blitted to the

screen. As a result, the delay of frame rendering cannot be ob-
served inside the MPlayer task, but can only be recognized in
the X server. We therefore measure the total amount of time
consumed from the beginning to the end of video playback,
and compute the average frame-rate. According to our mea-
surement, the average frame-rate achieved by MPlayer is 12.7
fps without the RIX protocol, while it is maintained at 23.9 fps
by using the RIX protocol. This result illustrates that the RIX
protocol plays an important role in providing not only OpenGL
tasks but also X-client tasks with isolation.

8 Related Work

Windowing Systems: CPU scheduling for windowing sys-
tems has been studied in the real-time systems literature [5, 7,
18, 28]. Although these previous work considered prioritiza-
tion and/or isolation for better windowing server management,
resource sharing among the windowing server and application
tasks was not the focus of study, and modifications to the win-
dowing server itself were required. On the other hand, our
solutions focus on GPU resource-sharing problems to provide
reliable prioritization and isolation in the X Window System,
without modifications to the X server.

Resource-Sharing Protocols: Resource sharing has been
a primary concern for real-time systems. The priority in-
heritance protocol [29] addressed the priority inversion prob-
lem for resource-sharing fixed-priority systems. This pro-
tocol was extended as the reserve inheritance protocol [22]
to incorporate the resource reservation [26] strategy. The
same set of resource-sharing problems was also addressed for
dynamic-priority systems [2, 13]. Our goal is to further extend
these protocols as the PIX and the RIX protocols for GPU-
accelerated windowing systems. In fact, the RIX protocol is
similar to reservation reclaiming approaches [4, 11, 15, 20]
in that the remaining reserve capacity is distributed to other
tasks. However, our contribution is distinguished, since our
approach is specialized to improve the responsiveness of the
X server shared among tasks, while the previous reclaiming
approaches aimed for improving the total reserve usage.

GPU Resource Management: GERM [3] provided GPU
resource management primitives for fairness. While GERM is
useful for multi-tasking environments, prioritization and iso-
lation are not supported. WDDM [25] was developed as a
graphics driver model for the Microsoft Windows to provide
abstraction for GPU resource management. However, resource
management policies are not explicitly exposed to user ap-
plications. VMGL [12], GViM [9], and VMware’s Virtual
GPU [6] enabled virtualization on the GPU. However, these
work do not provide mechanisms to schedule GPU commands.
TimeGraph [27] has been developed as a real-time GPU sched-
uler that provides prioritization and isolation support for multi-
tasking environments. In this paper, we use TimeGraph as the
underlying GPU driver for design and implementation of the
PIX and the RIX protocols to address resource-sharing prob-
lems in the GPU-accelerated X Window System.
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9 Concluding Remarks

We have presented two resource-sharing protocols for the
GPU-accelerated X Window System, Priority Inheritance with
X server (PIX) and Reserve Inheritance with X server (RIX),
which address the priority inversion problem introduced on
the GPU. We have also designed and implemented these pro-
tocols in TimeGraph without applying any modifications to
the X server and user applications to support as many existing
systems as possible. Our evaluation using an NVIDIA graph-
ics card demonstrated that the PIX protocol significantly im-
proved the frame-rates of high-priority OpenGL tasks, while
the RIX protocol provided reliable isolation among competing
OpenGL and X-client tasks. To the best of our knowledge,
this is the first piece of work that addressed resource-sharing
problems for GPU-accelerated windowing systems.

In future work, we would like to address resource-sharing
problems across the CPU and GPU. We are also interested in
the analysis of blocking time introduced by the PIX and the
RIX protocols to use them in hard(er) real-time environments.
Generalization of our solution beyond the X Window System
is a further challenging issue.
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