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AESTRACT 

We consider a problem from the domain of real-time sys- 
tems - the preemptive scheduling of sporadic tasks on a 
uniprocessor. A task may arrive at  any time, and is charac- 
terized by a value that reflects i ts  importance, an execution 
time that is the amount of processor time needed to com- 
pletely execute the task, and a deadline by which the task 
is to complete execution. The goal is to maximize the sum 
of the values of the completed tasks. The off-line version of 
this problem - where the timing constraints of all tasks are 
given as input - is NP-hard. With respect to the more re- 
alistic on-line setting (common to red-time systems) where 
nothing is known about a task until i t  arrives (at which in- 
stant all relevant parameters are known), we design an on- 
line scheduling algorithm that achieves optimal performance 
when the system is underloaded, and provides a non-trivial 
performance guarantee when the system is Overloaded. To 
our knowledge, this is the first algorithm that achieves any 
such guarantee. We implement our algorithm using sim- 
ple data structures to run at  a cost of O(1ogn) time per 
task, where n bounds the number of tasks in the system 
at  any instant. Furthermore, we derive upper bounds on 
the best performance guarantee obtainable by any on-line 
algorithm in a variety of settings. Our experimental data 
indicate that our algorithm is comparable to a widely used 
heuristic, Locke’s best effort scheduler, in most cases, while 
guaranteeing performance even for the pathological cases 
that cripple Locke’s heuristic. 

1 Introduction 

Suppose you are building software to control processes 
within a nuclear power plant. Periodically, your control 
system will need to monitor the various parameters of 
the power plant, such as temperature and pressure, and 
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take appropriate control actions, such as increasing or 
decreasing the amount of fuel, water, etc. These con- 
trol actions or tasks need to be completed by deadlines, 
so that the system tracks the physical processes accu- 
rately. Typically, each of these tasks can be scheduled 
to completion by its deadline. Occasionally, however, 
the power plant may be overheating, requiring an over- 
whelming number of control actions to be performed. 
In such a situation, the system is likely to be overloaded 
and as such it will be impossible to schedule every such 
task to completion by its deadline. If your system re- 
sponds to such an eventuality by simply stopping, or by 
executing processes of low importance, it has ceased to 
be useful in controlling the emergency; instead, it has 
become part of the emergency. 

A software system such as the one above is called a 
real-time system, since tasks have deadlines by which 
they must complete. Real-time systems arise in appli- 
cations such as aircraft and spacecraft control, robotics 
and factory automation. Real-time systems with 
weaker requirements also arise in program trading for 
financial markets and telephone networks. 

A system is underloaded if there exists a schedule 
that will meet the deadline of every task. Scheduling 
underloaded systems is a well-studied topic, and sev- 
eral on-line algorithms have been proposed for the opti- 
mal scheduling of these systems on a uniprocessor. Ex- 
amples of such algorithms include earliest-deadline-first 
(D) and smallest-slack-time (SL). However, none of the 
proposed algorithms make performance guarantees dur- 
ing times when the system is overloaded. In fact, it 
has been experimentally demonstrated that these algo- 
rithms perform quite poorly when the system is over- 
loaded [6]. 

Practical systems are prone to intermittent overload- 
ing caused by a cascading of exceptional situations, 
often corresponding to emergencies. A good on-line 
scheduling algorithm should not only be optimal un- 
der normal circumstances, but also respond appropri- 
ately to emergency situations. Given the importance 
of scheduling overloaded systems, researchers and de- 
signers of real-time systems have devised intelligent on- 
line heuristics to handle overloaded situations [1,6,8]. 
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The most successful of these heuristics was proposed 
by Locke as part of the CMU Archons project [SI. 
Roughly, Locke’s best eflort (BE) heuristic works as 
follows. Each task in Locke’s model has a value; the 
value of a task measures its importance. If the sys- 
tem is underloaded then BE operates like algorithm 
D; if an overloaded condition is detected then BE ran- 
domly abandons some of the less important tasks in an 
attempt to bring the system back to an underloaded 
state. The complete algorithm is much more sophisti- 
cated, since it provides a policy-mechanism-separation 
by letting the user influence how some tasks are aban- 
doned. While Locke’s heuristic is widely used and has 
been shown to perform well in practice, it offers no per- 
formance guarantee. In fact, no performance guarantee 
had been provided with respect to any such on-line al- 
gorithm when we achieved our results. 

Our task model is based on the model defined by 
Locke [SI. Tasks may enter the system at any time. 
Nothing is known about a task until it arrives. When a 
task is released, its computation time, value, and dead- 
line are known precisely. The value of a task is obtained 
provided it completes by its deadline; once its deadline 
passes, there is no value to completing the task. At any 
time, a task may be preempted in favor of another task 
at no cost. 

To facilitate the presentation of our results, we define 
the valve density of a task as the ratio of its value to 
its computation time. The importance ratio, k ,  of a set 
of tasks is the ratio of the largest value density to the 
smallest value density. We will always take the small- 
est density to be one. When the importance ratio is 1, 
tasks are said to have uniform value density. 

The main contributions of this paper are listed below. 

e We formalize the notion of when a system is over- 
loaded and when it is underloaded (Section 2). 

e We devise an on-line scheduling algorithm called 
D’ , that provides the following performance guar- 
antee (Section 3). Informally2 speaking, D’ 
achieves optimal performance while the system is 
underloaded and achieves a value that is at least 
1/5 times the length of the overloaded period while 
the system is overloaded. To our knowledge, this 
is the first time that such a nontrivial performance 
guarantee has been obtained. D* is simple, effi- 
cient, and easy to implement. It can be imple- 
mented using balanced search trees, and thus runs 
at  a cost of O(1og n )  time per task, where n bounds 
the number of tasks in the system at any instant. 
The analysis of the algorithm’s performance guar- 
antee is not straightforward. 

2The results are more precisely stated in subsequent sections. 

0 A performance guarantee of 20% may not seem 
extremely good, but in Section 4, we show that 
one cannot do much better. We prove that, dur- 
ing an overloaded interval, no on-line scheduling 
algorithm can guarantee a value greater than 1/4 
times the length of the overloaded interval. The 
bounds of Section 4 apply in an even more general 
setting. Consider as a comparison vehicle clairvoy- 
ant on-line scheduling algorithms that know the 
arrival time, value, execution time, and deadline 
of all future task requests. One can then quan- 
tify the performance of on-line algorithms as com- 
pared to their clairvoyant counterparts. As in [4,9], 
we say that an on-line algorithm has competitive 
factor r, 0 _< r 5 1, if and only if it  is guaran- 
teed to achieve a cumulative value at  least r times 
the cumulative value achievable by the cleverest 
clairvoyant algorithm on any sequence of task re- 
quests. We prove that no on-line scheduling algo- 
rithm can have a competitive factor greater than 
l/[(l We generalize this result by consid- 
ering environments where there is an upper bound 
on the “amount” of overloading allowed within an 
interval, i.e., a bound on the loading factor4 within 
an interval. In particular, given uniform value den- 
sity, whenever the loading factor does not exceed 
one the competitive factor limitation is 1 - obvi- 
ously. As the loading factor exceeds one, we show 
that the competitive factor limitation immediately 
falls to 0.385, and as the loading factor increases 
from one to two, we show that the competitive fac- 
tor limitation falls from 0.385 to 0.250. For loading 
factors beyond two the competitive factor limita- 
tion remains at  0.250. 

0 Our experimental data indicates that D’ is com- 
parable to Locke’s BE or a wide class of environ- 
ments, while guaranteeing the bound even for the 
pathological cases that would cripple BE (Section 
5 and Appendix C). 

0 Note added in proof At the time of the submis- 
sion, D* was the only algorithm that could make 
any performance guarantee. However, its compet- 
itive factor does not match the upper bound pre- 
sented in this paper, suggesting room for further 
improvement. Two recent developments in this di- 
rection are worth mentioning. Wang and Mao at 
the University of Massachusetts a t  Amherst ex- 
plored complexity questions and subsequently in 
May 1991, have proposed an algorithm that is 1/4- 
competitive, although it is non-optimal in the un- 
derloaded case. In June 1991, we obtained an algo- 

3When k = 1,  the competitive factor is 1/4. 
‘This will be formally defined in Section 4. 
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rithm that is 1/4competitive, and optimal in the 
underloaded case. Our result will be included in 
the full paper. 

While most proofs are omitted, some of the more im- 
portant proofs are presented in the appendix. 

2 Preliminaries 

Usually, real-time systems are divided into two classes: 
hard real-time systems and sofl real-time systems (see, 
for instance, Mok's dissertation [7]). In a hard real-time 
system, deadlines must absolutely be met or the system 
will be considered to have failed; in a soft real-time sys- 
tem deadlines may occasionally be missed with only a 
degradation in performance. In this paper, we consider 
a special case of a soft real-time system, called a firm 
real-time system, in which there is no value gained for 
a task that completes after its deadline is missed, but 
there is no catastrophe either. 

As mentioned in the previous section, tasks may en- 
ter the system at any time. Their computation times 
and deadlines are known exactly at  their time of ar- 
rival. Nothing is known about a task before it appears. 
The goal is to make on-line scheduling decisions that 
will maximize the overall value of the resulting compu- 
tation, even in the presence of overload5. We note that 
obtaining a scheduler that maximizes the overall value 
is a difficult problem, even for a clairvoyant scheduler. 
The problem of finding the maximum achievable value 
for such a scheduler can be shown to be reducible from 
the knapsack problem[3], and hence NP-hard. 

2.1 Overload and Underload 

We now need to define what we mean by an overloaded 
or an underloaded system. For instance, imagine a sys- 
tem that has so many tasks entering it at  time t that 
it cannot possibly schedule all of them to completion. 
If this system throws out most of these tasks, it may 
be possible for the system to meet the deadline of ev- 
ery new task that enters the system after time t .  Is 
this system really underloaded at  t?  Intuitively, it is 
not. When does the system return to the underloaded 
state? 

We propose a definition that will not throw out old 
tasks whose deadlines are yet to pass. Suppose we 
run D (i.e., earliest-deadline-first) without throwing out 

5Note that maximizing the value may not minimize the num- 
ber of missed deadlines, since many low-valued tasks may be 
abandoned in favor of a single high-valued task. 

tasks that cannot meet their deadlines until their dead- 
lines pass. Intuitively, a transition to overload will oc- 
cur when executing one task will cause another one 
to miss its deadline. A transition to underload occurs 
when this naive D scheduler would cause tasks to meet 
their deadlines again. This is formalized below. 

During the execution of algorithm D, we take a snap- 
shot at  time t .  At time t ,  let T, be the currently running 
task, if there is one. Let the sequence of tasks Til, Z2, 
. . ., Ti,, be yet-to-be scheduled tasks (i.e., tasks with re- 
lease times earlier than the current time, with deadlines 
after the current time and that have not yet completed) 
ordered by their respective deadlines. 

We can now calculate the times at which D would 
schedule each of the above tasks, assuming that no new 
task enters the system. Each time a new task, T,, enters 
the system, the currently running task, is preempted, 
and is referred to as T,, , k = 1 or k = 2, depending on 
whether the new task has deadline before or after the 
deadline of T,. All start times are recalculated by the 
equations shown below, reflecting the newly expanded 
task set. 

S(Til) = t ,  
S(Ti j )  = F(Tij-l) (i > 11, 

where, for j 2 1, F(Ti j )  is 

min{S(Zj) + Computation- T i m e ( Z j )  , D e a d l i n e ( Z j ) } .  

Computat ion-Time(Zj)  refers to the remaining compu- 
tation time of the task that is now referred to as Tij. 
We say that' a task has positive lateness. if at the time 
of its deadline, its Computation-Time is strictly posi- 
tive. In other words, a task that did not complete by 
its deadline in the schedule of the algorithm D has pos- 
itive lateness6. We emphasize that the start and finish 
times of a task, and hence its lateness, are dynamic 
quantities that change as new tasks enter the system. 
Note that if, for all j ,  F ( Z j )  5 Deadline(Z,) ,  then all 
the deadlines are met and the system is underloaded. 
However, if at any point in time, a task has a positive 
lateness, D will never allow this task to complete by its 
deadline, irrespective of whether or not new tasks enter 
the system. 

Let us introduce some convenient notation. When 
a task T, enters the system, the quantity de de- 
notes Deadline(Te) and the quantity c,  denotes 
Computation-Time(T,). Later, when new tasks enter 
the system, Computation-Time(T,) is the remaining 

6A related concept is alack time, which roughly means the 
amount of time before its deadline that a task will complete, if 
the current schedule were to continue. Thus, a task with no slack 
time will complete at its deadline. 
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computation time of T,; however, ce continues to de- 
note the original length of computation of Te. Let us 
also call the interval starting at de - c ,  and ending at  
de the Latest starl interval of T, and denote it by Se. 
Also, for reasons that will become clear later, let us 
denote the interval starting at d ,  - 3ce and ending at 

A history of the system, H, is a set of tasks, and for 
each task, its release t ime, computation time and dead- 
line. Given such a history H, many algorithms may 
attempt to schedule it. In particular, we focus atten- 
tion on the schedule of the algorithm D, as described 
above. 

de + 2ce by Ae. 

The overloaded t ime period OL is defined by: 

Tj haa positive lateness. 
OL = U{Si} 

OL is not necessarily connected. We will call a maxi- 
mal connected component of OL an overloaded interval. 
The underloaded t ime period is the complement of the 
overloaded time period. Furthermore, we say that a 
task is in the overloaded t ime period if its deadline is in 
an overloaded interval. Otherwise, we say that the task 
i s  in the underloaded t ime period. 

3 D* and its Analysis 

The algorithm D* behaves like the algorithm D dur- 
ing the underloaded period. However, when the system 
is overloaded, the algorithm D* will abandon the cur- 
rently running task in favor of another task if and only 
if the value to be obtained by running that task is 
higher than the cumulative value of all the abandoned 
tasks7 since the last time a task successfully completed 
its execution. If the new task has “too little” value, D’ 
will simply abandon the new task, without including its 
value in the cumulative total. 

The algorithm D* requires two data structures, 
called D-Structure (Deadline Structure) and L-Structure 
(Latest-start-time Structure). D-Structure maintains 
the tasks in their deadline order. L-Structure maintains 
the tasks in the order of their latest start t imes,  denoted 
L S T ,  where 

L S T ( T )  = Deadline(T) - Computation- T ime(T) .  

Recall that Computation- T i m e ( T )  refers to the remain- 
ing computation time of T. Intuitively, L S T ( T )  is the 
latest time when T can be scheduled and still complete 
by its deadline. 

These data structures are implemented as balanced 
search trees, e.g. 2-3 trees. The 0- and L-Structures 

‘We refine this notion further below. 

support Insert, Delete and Min  operations, each taking 
O(1ogn) time for a structure with n tasks. The struc- 
tures share their leaf nodes which represent tasks. We 
will show later that our algorithm ensures that each 
task causes the structure to be accessed a constant num- 
ber of times. Thus if n bounds the number of unsched- 
uled tasks in the system at any instant then each task 
incurs only an O(1og n )  cost. 

In the algorithm described below, there are three 
kinds of events (each causing an associated interrupt) 
considered: TaskCompletion, TaskRclcase, and Timerln- 
terrupt, in order of their priorities”. 

0 The system event TaskCompletion occurs when a 
task successfully completes (and obtains its full 
value). In that case, the task with the earli- 
est deadline (i.e., the minimal element in the D- 
Structure) is removed from both the structures and 
is then executed. 

0 The external event TaskRelease occurs when a task 
is released into the system. 

0 The system event Timerlnterrupt occurs when the 
wall-clock time equals the minimal value in the L- 
Structure. This interrupt indicates an overloaded 
situation, and will not occur in the underloaded 
C a S e .  

Also, in the algorithm, the variable Current-Task de- 
notes the task that is currently executing. The accumu- 
lator Preempted-Value represents the sum of the values 
of all tasks preempted thus far since the termination of 
the last task that completed execution. 

For purposes of later comparison, the earliest- 
deadline-first algorithm ( D )  consists of the events 
TaskCompletion and TaskRelease with the small (but 
significant) change that the last “else if” condition in 
TaskRelease is replaced by a simple else. The other dif- 
ference is that TimerInterrupt is never needed in D. 

8Thus if several interrupts happen simultaneously, then the 
TaskCompletion interrupt is handled before the TaskRelease in- 
terrupt, which in turn is handled before Timerlnterrupt. It may 
happen that a TaskCompletion event will remove the condition for 
a lower priority interrupt, e.g., by removing a task from a data 
structure. 
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On-Line Scheduling Algorithm, Do: 
D-Structure := 0; L-Structure := 0; Preempted-Value := 0; 

loop 
(* In the algorithm, the statement "Execute Current-Task" schedules the task to run; however, 
this task may be interrupted before it finishes. *) 

Taskcompletion: 
Preempted-Value := 0; 
if D-Structure is non-empty then 
(* Task T has minimum deadline in D-Structure. *) 

Remove T from the D- and L-Structures; 
Current-Task := T;  Execute Current-Task; 

end { if } 
end { Taskcompletion} 

TaskRelease: 
(* Task T is released into the system. *) 
if there is no Current-Task then 

else if Deadline(Current-Task) < Deadline (T) then 

else if Preempted-Value = 0 then 

Current-Task := T; Execute Current-Task; 

Insert T into the D- and L-Structures; 

(* Note that in the other case, i f  T has an earlier deadline than that of the current- 
task and the preempted-value is positive, i.e., the current-task was scheduled b y  
TimerInterrupt, the new task is discarded(note that T has less value than current- 
task. *) 
Preempt Current-Task; 
Insert Current-Task into the D- and L-Structures by its Deadline and 

Current-Task := T; Execute Current-Task; 
LST (= Deadline - remaining Computation-Time), respectively; 

end{if } 
end {TaskRelease} 

Timerlnterrupt: 
(* Task T has minimum LST in L-Structure. There must be a Current-Task, when this 
interrupt arrives, since, otherwise, task T must have been already scheduled. *) 
Remove T from the D- and L-Structures; 
if Current-Task has slack time then 

Preempt Current-Task; 
Insert Current-Task into the D- and L-Structures by its Deadline and 

Current-Task := T; Execute Current-Task; 

(* The Current-Task i s  overthrown *) 
Preempted-Value := Preempted-Value + value(Current-Task); 
Preempt Current-Task; 
Current-Task := T;  Execute Current-Task; 

LST (= Deadline - remaining Computation-Time), respectively; 

else if value(T) > Preempted-Value + value(Current-Task) then 

end{if } 
(* If task T has too little value then T is rejected. In this case, Preempted-Value is not 
changed. *) 

end{Timerlnterrupt} 
end{loop } 
end{D'}. 

Algorithm 1: D' : ON-LINE SCHEDULING ALGORITHM. 
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3.1 The Correctness and Bounds 

Let T, be a task that did not complete its execu- 
tion by its deadline. Hence a decision to abandon 
Ti was made at  some point in time, henceforth called 
Abandoned (Ti). The algorithm abandons a task only 
in the Timerlnterrupt and the TaskRelease routines. If 
Ti was abandoned in the Timerlnterrupt routine, then 
either Ti was the Current-Task with no slack time or 
a task whose LST had just occurred but whose value 
was not big enough to preempt the Current-Task. In 
the first case, we say that Ti was overthrown, and 
in the second case, we say that it was rejected. If 
Ti was abandoned in TaskRelease we say that Ti was 
discarded. Exactly one of the above must apply to 57. 
If was discarded or rejected and the current task at  
Abandoned (Ti) was or if Ti was overthrown by a 
Timerlnterrupt generated by Ti we will say that T, was 
abandoned due to  Ti.  

In what follows assume that a history, H, is given, 
and that at  least one task has positive lateness. Let 
OL be the overloaded period and let [ s , t ]  be the first 
overloaded interval. We know that 

[ s , t ]  = U si, 
icV 

where V corresponds to the set of tasks, each of which 
has positive lateness and deadline in [ s , t ] .  

Lemma 3.1 There is no idle t ime between s and t 
when algorithm D schedules H .  

Lemma 3.2 All tasks scheduled by D between s and t 
have deadlines at or before t .  

Now, let D* schedule the same history H. D* oper- 
ates exactly like D till the first Timerlnterrupt . (Recall 
that the TaskRelease of D* is different from that of D 
only if the preempted value is not zero, indicating that 
a Timerlnterrupt event had previously occurred). We 
now assert that the first Timerlnterrupt must occur in 
[ s , t ] .  If it occurs before s, then the task that caused 
the Timerlnterrupt event must have positive lateness. 
By the definition of the first overloaded interval, the 
Latest start interval of this task would be in the over- 
loaded interval, meaning that the first overloaded inter- 
val started before s, a contradiction. It cannot occur 
after t ,  for otherwise all tasks in V will be executed to 
completion in D. This indicated that none of them has 
positive lateness, also a contradiction. 

Lemma 3.3 All tasks with deadlines before s complete 
their execution (in P). 

Let us look at  the schedule of D* in [ s , t ] .  D’ might 
have abandoned some tasks but we assert that all such 
tasks have deadlines prior to t .  We will need the fol- 
lowing definition. 

Definition 3.1 Suppose that both D and D* sched- 
ule the same history H and let T be a task in H. We 
will say that at time t ,  T’s position in D* is no worse 
than its position in D if and only if the following holds. 
The remaining computation time at time t, under D*, 
is no larger than the remaining computation time of T 
at time t under D.’ under D 

Let T be a task with deadline after t .  Since D and 
D* behave identically up to s, we know that T has the 
same share of processor time in D and in D’ up to s. 
By Lemma 3.2, we also know that in D’s schedule, T 
does not have any execution time during [s,t]. It is, 
of course, possible that T might have some execution 
time in the schedule of D*. We conclude that if T is 
not abandoned by D* in [s,t] then its position in D* 
is no worse. Is it possible that T is abandoned? The 
following lemma shows that the answer is no. 

Lemma 3.4 In the schedule of P, if at some point x 
in [s,t] a task T has no slack t ime then its deadline is 
in [s,t]. 

The previous lemma implies that a task T with dead- 
line after t cannot be rejected or overthrown in [s,t] since 
both imply that T has no slack time when abandoned. 
Is it possible that T is discarded? When a task is 
discarded , the preempted value is greater than 0, hence 
the Current-Task reached its LST in [s,t] and T had an 
earlier deadline than Current-Task. Hence (again by 
lemma 3.4) T’s deadline is before t .  We conclude that 
no task with deadline after t is abandoned by D* in 

Imagine that D* schedules the system up to time t 
and at time t the control is handed over to algorithm 
D. Call this history H‘. The history H’ for D is differ- 
ent from history H; t is the start time with every task 
currently in the system having computation time equal 
to the “remaining” computation time in the schedule 
of D*. 

Let OL’ be the overloaded period of the schedule of D 
for H’. We assert that OL’ OL (i.e. the overloaded 
period resulting from using D* until time t is contained 
in the overloaded period resulting from using D until 
time t ) .  This holds because at  time t the task set for 

[%tI. 

91n particular, the above holds, if T already completed at time 
t under D’. 
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D' is a subset lo of the task set for D and for each 
task the remaining computation time in D* is less than 
or equal to the remaining computation time in D. Let 
[S I ,  t'] be the first overloaded interval in D's schedule of 
HI. All previous claims will hold with [s',t'] playing 
the role of [s,t]. The process can now go on inductively, 
thus yielding the following lemma. 

Lemma 3.5 All tasks in  the underloaded period are ex- 
ecuted to completion in  P. 

In all that follows let C be an overloaded interval, 
and let T1,Tz.. .Tq be the tasks with deadlines in C. 
The definition of the overloaded period implies that 
C C u:==,6i. Also, let S c {1 ,2 , .  . . q }  be the set of 
indices of those tasks that successfully complete execu- 
tion. 

We now state the following two lemmas without 
proofs. In Lemma 3.6, a task executes nontrivially if 
it  executes for some strictly positive amount of time". 

Lemma 3.6 Suppose T, was abandoned. Let T be the 
the first task t o  complete after Abandoned (Ti). All 
tasks that execute nontrivially from Abandoned (Ti) t o  
the completion of T have no slack tame at  the time that 
they are scheduled for execution. 

Lemma 3.7 Suppose Ti was abandoned. Let T 
be the the first task that completed execution after 
Abandoned (Ti). Then T has its deadline in C hence 
there is an element k E S for which T = T k .  

We now come to the following crucial technical 
lemma, whose proof is in Appendix A. 

Lemma 3.8 Suppose Ti was abandoned in C.  Let 
T k  be the the first task that completed execution after 
Abandoned (T,) then l2 6i E At .  

Please see Appendix A. 0 
PROOF. 

We are now ready to state our performance guarantee 
for D'. 

l0We just proved that no task with deadline after t is aban- 
doned in [s,t]. It is possible, however, that some tasks with dead- 
line after t already executed to completion under D*. 

"A task can execute trivially for 0 time units if a 
Timerlnterrupt event preempts the task as soon as it is scheduled. 

'*Recall that for a task Ti, di denotes Deadline(Ti) and ci 
denotes the initial Compa~ation-Time(Ti). Also, 6i denotes the 
interval starting at di - ci and ending at di ,  Ai is the interval 
between di - 3ci and di + 2ci. 

Theorem 3.9 The algorithm P schedules to comple- 
tion every task whose deadline is in the underloaded 
time period. In  addition, P obtains a value that is at 
least one-fifth the length of the overloaded period from 
all tasks in the overloaded period. 

The first part of the theorem deals with the underloaded 
case, and is covered by Lemma 3.5. 

Let C be an overloaded interval, and let TI ,  T2 . . . Tq 
be the tasks with deadlines in C. Let S { 1,2 , .  . . q }  
be the set of indices of those tasks that successfully 
complete execution. 

We know that C E Ui::6i. Lemma 3.7 assert that 
for every j E {1 ,2 , .  . . q }  there is a k E S such that 
bj Ak. 

The value V obtained by D* then satisfied3 the fol- 
lowing: 

PROOF. 

This is the desired result. 0 

3.2 The Complexity 

Theorem 3.10 If n bounds the number of unscheduled 
tasks in the system at any instant then each task incurs 
only an O(1ogn) cost. 

4 Upper Bounds on the Com- 
petitive Factor 

In this section, we examine the limitations to the power 
of any on-line algorithm under a variety of settings. The 
proofs of some lemmas in this section are contained in 
Appendix B. 

Lemma 4.1 There does not exist an on-line schedul- 
ing algorithm that obtains, for tasks in  the overloaded 
period, a value greater than 114 times the length of the 
overloaded period. Furthermore, given uniform value 
density, there does not exist an on-line scheduling algo- 
rithm with a competitive factor greater than 1/4. 

In deriving the bound above, an adversary argument 
was used wherein the malevolent adversary was allowed 
to introduce new tasks at will; thus the amount of over- 
loading is unbounded. A natural question to ask at this 

13)  . I means the length of the interval. 

106 



stage would be: is the amount of overloading permitted 
by the environment related to the best competitive fac- 
tor that may be guaranteed by an on-line algorithm? 
To answer this question, let us quantify the notion of 
overloading. 

We say a sporadic real-time environment has a load- 
ing factor b iff it is guaranteed that there will be 
no interval of time [ t t , t y )  such that the sums of the 
execution-times of all task-requests making requests 
- and having deadlines within this interval is greater than 
b .  (tv - t o ) .  It is easily observable that a system can 
never become overloaded if it has a loading factor no 
greater than 1. 

The on-line algorithm knows a priori what the load- 
ing factor for the environment is, and may use this in- 
formation in making on-line scheduling decisions. Con- 
sider, as an example, on-line scheduling in an envi- 
ronment which is known to have a loading factor no 
larger than 1 (i.e., a non-overloaded environment). Der- 
touzos [2] has shown that the algorithm D is optimal in 
such an environment. D is, therefore, an on-line sched- 
uler with a competitive factor of 1 in sporadic real-time 
environments with a loading factor no larger than 1. 
At the other extreme, Lemma 4.1 proves that no on- 
line scheduler can offer a competitive factor larger than 
0.250 in environments where the loading factor may be 
arbitrarily largeI4. 

The following lemma quantifies the relationship be- 
tween the loading factor and the upper bound on the 
competitive factor of an on-line algorithm in environ- 
ments where the loading factor is between 1 and 2. 

Lemma 4.2 Given uniform value density, no on-line 
scheduling algorithm operating in an environment with 
a loading factor b, 1 < b 5 2, can have a competitive 
factor greater than p, where p satisfies 

4(1- ( b  - 1 ) ~ ) ~  = 27p2 

The next question to address is: how does the impor- 
tance ratio k affect the best possible guarantee? Un- 
fortunately, the guarantees that can be made by an 
on-line algorithm in such an environment is even less 
than 0.250, as the following lemma states: 

Lemma 4.3 Let imax (imin) be the largest (smallest) 
value density a task may have in an environment. No 
on-line scheduling algorithm operating in this environ- 
ment can have a competitive factor greater than 

1 
(1 + &)2 

"Actually, the proof of Lemma 4.1 requires a loading factor of 
2 + c, where L is an arbitrary small  positive number. 

where k = ( imax/imin)  i s  the importance ratio of the 
environment. 

A couple of points worth noting: 

The quantity 1/( 1 + fi)2 decreases rather rapidly 
as the importance ratio k increases. For k = 1, this 
value is .250; for k = 2, it falls to .172; for k = 3, 
it is .134; for k = 5, it is .095; and for k = 10, it is 
as low as .028. 

From Lemma 4.3 it follows that, in an environ- 
ment where the importance ratio is not a priori 
bounded from above (i.e., imin and i m ,  are not a 
priori bounded from below and above respectively) 
no on-line algorithm can have a competitive factor 
greater than 0. 

The proof of Lemma 4.3 above made no assumptions 
regarding the loading factor of the environment. An 
analysis similar to the one made for Lemma 4.1 would 
reveal that the loading factor in this case would need 
to be greater than 2. The following lemma relates the 
loading factor and the importance ratio of an environ- 
ment to an upper bound on the competitive factor of 
any on-line scheduler operating in this environment. 

Lemma 4.4 Consider an environment with a loading 
factor b, 1 < b 5 2, and an importance ratio k .  Let 
q = k - ( b  - 1). If q 2 1, then no on-line scheduling 
algorithm can have a competitive factor greater than 
1/(1 + a2, whereas if q < 1, no on-line scheduling 
algorithm can have a competitive factor greater than p, 
where p satisfies 4(1 - ~ p ) ~  = 27p2. 

For environments with 1 < b 5 2, Lemma 4.4 provides 
an upper bound for the competitive factor of on-line 
algorithms, while Lemma 4.3 provides an upper bound 
for the competitive factor of on-line algorithms in en- 
vironments where b > 2. These results are summarized 
in the following theorem: 

Theorem 4.5 Let k be the importance ratio of an en- 
vironment, and b its loading factor. Let q = k - ( b  - 1). 
For b 5 1, there exist on-line schedulers which have a 
competitive factor of 1.0. For 1 < b 5 2, Lemma 4.4 
defines an upper bound on the competitive factor of any 
on-line scheduler, and for b > 2, no on-line scheduler 
can have a competitive factor greater than p, where p 
satisfies 4(1- k ~ ) ~  = 27p2. 

5 Performance Results 
We have implemented our algorithm and Locke's Best 
Effort algorithm and have run simulations to accumu- 
late empirical data. These results are further described 
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in Appendix C. We would like to thank Mr. Robert 
Kagel for implementing the two algorithms and  running 
the simulation studies tha t  produced these experimen- 
tal results. 
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Appendix 

A. Proof of Lemma 3.8 

First let US show that di - C i  2 dk - 3ck. 
Let r be the Preempted-Value when Tk completes its ex- 

ecution (this must be at dk since Tk starts execution at its 
LST, by Lemma 3.6 ). Let TO be the preempted value im- 
mediately before Abandoned (Ti ) .  

We begin with the case where Ti is overthrown. In this 
case, c,  is added to so. Furthermore, all the tasks that exe- 
cute until Tk must also be overthrown and hence their values 
will be added to Preempted-Value. The sum of these values 
is exactly ( r - ( r o + c i ) ) .  The total amount of processor time 
these tasks used cannot be greater than this value. Hence 
the length of the time interval between Abandoned (Ti) and 

the point where Tk starts its execution is at most ( r  - (TO + 
c i ) ) .  We also know that Abandoned (Ti) - ( d ,  - c , )  5 c; 
(a task can be overthrown only in its Lotest start interval ) 
and that C k  2 r (otherwise Tk could not be scheduled by 
Timerlnterrupt). Hence, 

d,  - ci 2 Abandoned (Ti) - ci 

2 
2 

(dk - ck - ( r  - (TO + C i ) ) )  - C i  

dk - C k  - r 2 dk - 2Ck. 

The second case is when Ti is rejected by Tj. In this case, 
Ti’s value is not added to Preempted-Value. However we 
know that c,  5 cj + TO. We also know that c; 5 Ck since 
Tk was scheduled by Timerlnterrupt after Tj (or Ti = TJ) .  
Hence we have that c,  5 cj +TO <_ C k  + 70. As before the 
length of the time interval between Abandoned (T,) and the 
point where Tk starts its execution is at most (7 - 70) and 
Abandoned (Ti) - (di - c , ) )  <_ ci and that Ck 2 r.  Hence, 

d,  - c, 2 Abandoned (Ti) - ci 

2 
2 
2 

(dk - C k  - ( r  - To) )  - C i  

(dk - Ck - r + To) - (ck + To) 

dk - 2Ck - T 2 dk - 3Ck. 

Lastly, we have to consider the case in which T, is 
discarded by Tj. Tj can have no slack time since Preempted- 
Value is greater than 0, hence 6i E 61. If j = t ,  the 
proof is complete. If j # k ,  then Tj is overthrown. Re- 
placing i by j in the above arguments, we conclude that 

Next, we now show that d,  5 dk + 2Ck. It always 
holds that dk 2 Abandoned (Ti) 2 di - ci. Assume that 
di - dk > 2Ck then ci 2 d,  - dk > 2Ck 2 Ck + r.  Under these 
conditions the value of Ti is too big for it to be abandoned 
in the first place 15. 

In conclusion 6, 

B. Proofs for Section 4 Lemmas 
In proving bounds such as those in Section 4,  one usually 
refers to the on-line algorithm under consideration as the 
player. The bounds are best described as a game between 
a player and an adversary who makes up part of the task 
set, observes the player’s response to it, and then extends 
the history by creating a new task. This process is repeated 
until the entire task set is complete. At the end of this 
process, the adversary indicates its schedule, the optimal 
off-line schedule. 

The tasks created by the adversary are of two kinds: 

di - C i  >_ d; - C j  >_ dk - 3Ck. 

Ak holds in every case. 

0 major tasks, which have no slack time. In other 
words, the time between a major task’s release time 
and its deadline corresponds exactly to its computa- 
tion time. It is easily observed that if the release time 
of a major task is between the release time and dead- 
line of another, a t  most one of the two can complete. 

15Suppose Ti was Abandoned by T j .  c, 2 C k  + r 2 c, +TO 
implies that Ti could not be rejected or overthrown . If Ti was 
discarded then Tj can have no slack time since Preempted-Value 
is greater than 0, hence c, < cJ , a contradiction. 
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0 associated tasks, which may or may not have slack 
time. 

The adversary uses the following device to force the hand 
of the player. For a major task S i  of length L i ,  with re- 
lease time T i  and deadline d i ,  the adversary may also create 
a sequence of associated tasks of length E ,  each one being 
released at the deadline of the previous one of the sequence. 
Clearly any algorithm that schedules any one task of this 
associated task sequence cannot schedule S i .  This sequence 
of associated tasks stops the moment the player chooses to 
abandon S i  in favor of a task of the sequence. Otherwise, 
the sequence continues until d i  is reached. If the player 
chose to abandon S i  in favor of a task of the sequence, the 
value obtained by the player is E rather than L i .  The ad- 
versary chooses E to be arbitrarily small compared to L i .  A 
major task S i  that has associated tasks as above is called a 
bait. Otherwise it is simply called normal. 

Time is divided into epochs. In each epoch, the adversary 
starts off by first creating a major task TO of length t o  = 1. 
In general, after releasing major task T i  of length t i ,  the 
adversary releases a major task T i t 1  of length at time 
E before the deadline of T i .  If the player ever chooses to 
schedule an associated task the epoch ends with the release 
of T i + l .  If the player chooses to abandon T i  in favor of 
T i + l ,  this process continues, otherwise the epoch ends with 
the release of T i + l .  In the above description, all tasks except 
T i t 1  are baits; T i t 1  is normal. At any rate, no epoch con- 
tinues beyond the release of T,, where m is a finite positive 
integer . 

We note that the player never abandons a bait for one of 
its associated tasks, since in doing so the value obtained by 
the player during the epoch is negligible - i.e., E. Thus, 
during an epoch the player either schedules only T i ,  i < m 
to completion, or the player only schedules T, to comple- 
tion. 
Lemma 4.1 PROOF. 
For this proof, the associated tasks have no slack time, and 
the length of task T i t 1  is computed according to 

j=O 

(where c is a constant whose exact value will be specified 
later in this proof). If the player scheduled only T i ,  i < m 
to completion, the player’s value is t i ,  whereas the adver- 
sary obtains value t j  (by performing the associated 
tasks for TO,. . . ,Ti and then performing & I ) .  In this case 
the player’s value is l / c  times the adversary’s value. If the 
player scheduled only T’ to completion, the player’s value 
is t,, while the adversary’s value is t j .  If c and m can 
be chosen such that the ratio tm/  t j  is no larger than 
I/c, then in either case the player obtains no more than 
1/c times the adversary’s value. In attempting to provide 
the tightest bound on the competitive factor of an on-line 
algorithm, therefore, our attempt is to find the smallest 1/c 
(equivalently, the largest c) such that the series defined by 
the recurrence relation 

8 

t o  = 1 and t i t l  = c . t i  - Etj 
j=O 

satisfies the property 

standard techniques from the theory of difference equations 
can be used to show that the property is satisfied when 
c < 4, and that the property is not satisfied when c 2 4. 
it therefore follows that 1/4 = 0.250 is an upper bound 
on the competitive factor that can be made by any on-line 
scheduling algorithm in an overloaded environment. 
lemma 4.2 PROOF. 
in this proof, it follows from the restriction on the load- 
ing factor that the associated tasks have to have some slack 
time - specifically, for loading factor b, each associated task 
has deadline E and computation time ( b  - 1 ) ~ .  executing all 
the associated tasks corresponding to task t i  (of length t i )  

therefore yields a value (a - 1)ti. the length of task ti+] is 
computed according to the following rule 

3=1 j=O 

(where c is a constant whose exact value will be specified 
later in this proof). as before, note that the player either 
scheduled only t i ,  i < m to completion, or the player only 
scheduled t, to completion. in the first case, the player’s 
value is t i ,  whereas the adversary obtains value 

w z i  LiDJ 

t i t 1  + t i+1-2j  + ( b  - 1) t i - z j  

j = 1  j=O 

(by performing tasks t i + l , t , - l , t i - 3 , .  . ., and the associated 
tasks for t i , t i - z , t i - 4 , .  . .). in this case the player’s value 
is 1/c times the adversary’s value. in the second case, the 
player’s value is t,, while the adversary’s value is 

j = O  j = I  

(by performing tasks t m , t m - 2 , t m - 4  ,..., and the associ- 
ated tasks for t m - - l , t m - 3 , t m - 5  ,... ). if c and m can be 
chosen such that the ratio t,/(xjcrJ t m - z j  + ( b  - 1) 

t m t l - z j )  is no larger than l /c,  then in either case 
the player obtains no more than l / c  times the adversary’s 
value. in attempting to provide the tightest bound on the 
competitive factor of an on-line algorithm, therefore, our 
attempt is to find the smallest l / c  (equivalently, the largest 
c) such that the series defined by the recurrence relation 

t l  = 1 
r i /2 l  

j=1 j=O 
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satisfies the property that there is an m 1 0 with Consider a situation in which tasks enter in bursts. Each 
burst consists of several short tasks arriving simultaneously 
with a relatively long task that completes before the next 
burst arrives. Long tasks have zero slack time and short 

tm 1 < -. 
(Cj::’ h - 2 j  + ( b  - 1) El::’ tm+1-2j) - 

We have implemented our algorithm and Locke’s Best 
Effort algorithm and have run simulations to accumulate 
empirical data. Thus far, we have run many separate ex- 
periments, while varying several parameters: e.g., the com- 

Short Tasks’ Duration VI of D’ VI of BE 
5 time units 68.7 3.3 
10 time units 53.5 5.0 
25 time units 33.2 7.0 

, 50 time units 22.5 8.3 

Since computing the maximum value obtainable by a 
clairvoyant algorithm is a hard problem, we have instead 
used a rather simplistic upper bound on this maximum 
value, which is obtained by summing up the value of all 
tasks; this quantity will be referred to as UB (Upper 
Bound). (Note that even a clairvoyant algorithm may not 
achieve such a high value.) We compare the value obtained 
by our algorithm, D’, with the value obtained by Locke’s 
best effort scheduler, BE, using the following parameter: 

VI = Percentage of UB value obtained 

We classify our environment into three categories based 
on how much overloading is expected: eztreme (small inter- 
arrival time, large execution time, and small slack time), 

The effect of varying slack-times is significant. In the fol- 
lowing table we summarize the cases where the maximum 
slack time for short tasks (each of duration 5 units) varies in 
a range between 0 and 10 units. As in the earlier simulation, 
the long tasks last for 100 units; the simulation executes for 
approximately 50 bursts and executed for 5000 time units. 

Short Tasks’ # Short VI of D’ VI of BE 
SlackTime Tasks 

3 time units 
5 time units 68.7 
10 time units 67.4 8.5 

normal (average inter-arrival time, large execution time, 

average execution time, and average slack time). 

suming a uniform arrival rate: 

Table 3: PERFORMANCE COMPARISON-BURSTY MODE 
and small slack time) and mild (average inter-arrival time, WITH SLACK. 

(# Short Tasks = 10, # Long Tasks = 1, Short Tasks’ Dura- 
tion = 5-50 units, hng Tasks7 ~~~~i~~ = units, Short 
Tasks’ Slack Time = 3 units,  Long Tasks’ Slack Time = 0 

The following table summarizes our empirical data as- 

0 Environment 1 VI of D’ I VI of BE fl 
Extreme 
Normal 
Mild 91.5 89.7 

0 Environment 1 VI of D’ I VI of BE fl 
Extreme 17.5 17.6 
Normal 32.6 35.6 
Mild 91.5 89.7 

U 

unit, # Bursts = 50, Simulation Time = 5000 units.) 

An explanation of the phenomena observed in the last 
two experiments can be given in terms of the following sim- 
ple example. Assume that a long task arrives 6 (0 < < 10) 
time units after a short task and that the lone task has no 

Y 

Table 1: PERFORMANCE COMPARISON-UNJFORM MODE. 
(# Tasks = 1O00, # Runs = 3M)-loOO.) 

slack time. The BE heuristic then observes that the short 
task has a value density of > 1, whereas the long task 
has a value density of 1 and decides to continue with the 
short task. However, D’ abandons the short task in fa- 
vor Of the long task, since the long task has a value much 

higher than the cumulative preempted value so far (which 
is < 10). In the Process, the algorithm D’ obtains a n ~ c h  
higher value during each burst period, in comparison to the 

’ 

This shows that the algorithms are comparable. Since 
the Best Effort algorithm is a heuristic that cannot guaran- 
tee any performance bound, it is not hard to come up with 
cases where Locke’s heuristic exhibits pathological behavior. 
While it is not surprising that our algorithm would behave 
better in these situations, the magnitude of the difference is 
instructive. BE heuristics. 
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