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The paper presents exact schedulability 0 all tasks are periodic. 
analyses for real-time systems scheduled at 
runtime with a static priority pre-emptive 
dispatcher. The tasks to be scheduled are 
allowed to experience internal blocking (from 
other tasks with which they share resources) 
and (with restrictions) to jitter, The restriction that tasks cannot interact has been 

removed by the priority Ceiling protocol 13) (and other 
similar protocols such as the Stack Resource Protocol 141 

analysis presented is more general than that for data/remurce sharing). A method which allow spar. 
previously published and subsumes, for adic tasks to be accommodated using periodic seruers 
example, techniques based on the Rate has been proposed by Lehoczky et al. 151 (analysis is pro- 
Monotonic approach. In addition to presenting vided which can guarantee the worst-case response time 
the releMnt theory, an existing avionics case of a single sporadic task). Rajkuman IS] used external 
study is described and analysed. The blocking (i.e. when a task is blocked awaiting an external 
predictions that follow from this analysis are event such as a delay expiry) with the Rate Monotonic 
seen to be in close agreement with the approach to model the operation of a multi-processor Pri- 
behaviour exhibited during ority ceiling protocol, and provided schedulability analysis 

to bound its effects. The restriction that tasks are assumed 
to share a critical instant has been relaxed by Audsley 171. 1 Introduction 

The final restriction that the deadline of a task must be 

and sporadic tasks, and a Monotonic approach. is PerhaPS the most important 
way of scheduling such tasks is by using a static restriction to lift; requiring the deadline of a task to be less 

pre-emptive scheduler; at runtime the highest pri. than the period of that task is essential if jitter require 
ortiy mnnable task is executed, pre-empting other lower ments are to be met (i.e. the result of a piece of computa- 

tasks. xs scheme was in the Rate tion must be produced within precise intervals). 
Monotonic approach defined by uU and Layland I 11, where Furthemre, when building distributed @ems, the dead- 
the &tic p,.io,.ity of a task is obtained from the line of a task often needs to be shortened to allow time for 

of that task; for any two tasks L and M, communication between tasks on different processors. In 
=$ priori@) < p , . i o ~ ~ ) .  hu and general, hard sporadic tasks have deadlines that are not 

Layland derived a &,&dability analysis which determines related to their minimum inter-arrival time, and hence they 

if a given task will ahKays meet all deadlines under all cannot be modelled as simple Periodic tasks with period 
possible release conditions. The schedulabilii test given is equal to deadline. 
sufficient 6.e. all task sets passing the test are guaranteed For tasks with deadlines less than (Or equal) to penodsr 

failing b u n g  and Whitehead 181 showed that Deadline Monotonic 
to the test is not unscheddable). Sha et priority assignment is optimal'. Task priorities are now 
al. 121 R~~~ Monotonic test that is both assigned in inverse order to task deadlines; a task with a 

short deadline (measured relative to the release time of the sufficient and necessary. 

restrictions: 
Optimal in the sense that. if a task set can be scheduled by any 

0 all tasks are independent of each other (e.g. they do static priority algorithm it can a h  be scheduled by the badline 
not interact). Monotonic algorithm. 

0 no task can block waiting for an external event 
0 all tasks share a common release time (called the 
critical instant). 
0 all tasks have a deadline equal to their Period. 

as waiting for a message to arrive* The 

studies. 

One p r o p o d  method of building a hard real-time system equal to the period has not been relaxed for the Rate 
is from a number of 

., 

be schedulable), but not necessary (i.e. a task 

an 

The original Rate Monotonic approach had several task) should have a high Priority. A task With a long period 
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but short deadline would have a low priority according to 
the Rate Monotonic priority assignment, but a high priority 
according to the Deadline Monotonic priority assignment. 
Consequently, the Rate Monotonic assignment is sub 
optimal for such task sets. If two or more tasks have the 
same deadline, they are assigned an arbitrary priority order 
(among themselves). 

To apply the Deadline Monotonic approach, scheduling 
tests must be available that will allow deadlines to be guar- 
anteed. Such analysis is provided by Joseph and Pandya 
[9], Lehoczyk [lo], and Audsley et al. 11 11. All provide suffi- 
cient and necessary schedulability tests, differing only in 
the complexity of their computations. The basic approach 
is expanded by Audsley et al. to permit sporadic task 
deadlines to be guaranteed without the use of the sewers 
required by the Rate Monotonic approach [5]. It should be 
pointed out that Audsley et al. and Joseph and Pandya 
provide schedulability tests for a task set with any arbitrary 
priority ordering (i.e. they do not just apply to task sets with 
priorities ordered by the Deadline Monotonic scheme). 
They also have the useful property that they furnish esti- 
mations of the actual worst-case response times for each 
task The actual schedulability test is then a trivial compari- 
son of each task’s response time and deadline. The calcu- 
lation of respnse time is particularly important when 
deadline requirements are assigned to the behaviour of a 
collection of tasks (in a distributed system, for example). 
No single task has a hard ‘deadline’, but each task‘s 
response time contributes to some system-wide timing 
requirement that must be satisfied. 

In this paper, we are concerned with providing sched- 
ulability analysis to predict the Worst-case response times 
for a set of periodic and sporadic tasks under any given 
priority assignment, and scheduled by a static priority pre- 
emptive scheduler. 
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2 Computational model 

in this paper, unless explicitly mentioned, we consider the 
scheduling of tasks on a single processor. The techniques 
can also be used in a distributed environment with static 
task allocation 1121. 

A task i is assumed to consist of an infinite number of 
inoocation requests, each separated by a minimum time 
T i .  Each invocation is a request to perform a bounded 
amount of computation Ci, and to lock and unlock 
semaphores from a bounded set s(i) according to the 
Priority Ceiling Protocol [3]. Some tasks have a deadline 
requirement such that all computation for an invocation 
must‘take place before a certain time measured relative to 
the invocation request Deadlines, where required, are 
assumed to be constant and known a priori. The deadline 
requirement of a task i is denoted Di . 

The notation arriual of a task at time t is subsequently 
recognised by the runtime dispatcher, and the task is 
placed in a notational queue of runnable tasks. The task is 
then said to be released. The variability in time between a 
tasks arrival and its release is known as release jitter. In 
Section 3, this is assumed to be zero. This is the assump 
tion normally applied in scheduling theory (e.g. in the Rate 
Monotonic approach). 

A task has a static base priority assigned to it a priori 
(using the Deadline Monotonic priority assignment algo 
rithm, for example). it may also inherit a higher dynamic 
priority due to the operation of the Priority Ceiling Protocol. 
The dispatcher chooses to run the highest dynamic pri- 
ority runnable task, preempting lower priority tasks when 
necessary. 

3 Finding worst-case response times 

Before proceeding further, we introduce the following 
simple notation. All internal blocking is assumed to be the 
result of semaphore use (other synchronisation primitives 
could also be used and analysed [13D. 

Ci = the worst-case computation time required by task i 
on each release. At runtime, we assume that any computa- 
tion time from 0 to Ci could be required for a single 
invocation of i. 
Ti =the lower bound on the time between successive 
arrivals of i .  If i is a periodic task, this lower bound is also 
the upper bound (i.e. the period is fixed and equal to Q. 
Di = the deadline requirement (if defined) of task i, mea- 
sured relative to a given release of i .  Note that we require 
D;< T i .  
€3; = the worstcase blockng time task i can experience 
due to the operation of the priority ceiling protocol (or 
equivalent concurrency control protocol). Bi is normally 
equal to the longest critical section of lower priority tasks 
accessing semaphores with ceilings higher than (or equal 
to) the priority of i .  
Ji = the worst-case time task i can spend waiting to be 
released after arrival (the release jitter time). 
1; = the worst-case interference a task i can experience. 
Interference on i is defined as the time higher priority tasks 
can pre-empt and execute, and hence prevent i from 
executing. 
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& = the worst-case response time for a task i measured 
from the time the task is released. For a schedulable task, 
& < Di (if there is no deadline requirement for i, the 
analysis below must have Ri < Ti). 
hp(i) =the set of tasks of higher base priority than the 
base priority of i (these tasks could pre-empt i). 

We now consider the problem of computing the worst- 
case response time for a task i, denoted &. Initially, tasks 
are assumed to be released when they arrive. This time 
can be viewed as a computational 'window' (or busy 
period); the release of i marks the start of the window, and 
the completion of i marks the end of the window. The 
maximum width of the window is 4 .  In this window of 
duration Ri , task i must (at worst) complete an amount of 
computation equal to Ci and be delayed when locking 
semaphores by Bi at most. Additionally, task i could be 
preempted by at most. Therefore, we can say that 

(1) R, = Ci + Bi + /i 
If a task i has a deadline, then we must have 4 < Di . 

The worst-case computation time Ci is constant and is 
somehow known a priori [14,15]. The worst-case blocking 
time Bi is found according to the analysis given by Sha et 
al. [3], and is equal to the longest critical section of any 
lower priority task accessing a semaphore with ceiling of 
equal or higher priority than task i. 

In the rest of this Section, we present the analysis to find 
ri. Note that similar analysis, cast in a different form, was 
first produced by Joseph and Pandya, 191 and later by 
Audsley et a[. [ll]. The method described below has the 
advantage of being easily extended to cover situations 
such as nonzero release jiier time. Note also that the 
analysis is not based on the notion of processor utilisation. 
Although process sets with deadlines equal to periods can 
be assessed according to their utilisation, such techniques 
are not general-purpose. For example, two tasks with 
deadlines equal to their computation time will never be 
schedulable, regardless of processor utilisation. 

To find a formula for the interference, consider the 
sequence of computations illumated in Fig. 1. Fig. 1 was 
produced by a tool called STRESS [16], written by the Real 
Time Systems Research Group at the University of York; 
the Appendix describes the notation used in these dia- 
grams. Fig. l shows part of a schedule of a system con- 
sisting of three tasks, displayed in priority order. Task 1 is 
a task with worst-case computational requirement of C, = 
1, a deadline of D, = 4 and a worst-case inter-arrival time 
of 7, = 50. The characteristics of Tasks 2 and 3 are 
defined in Table 1. Fig. 1 shows the worst-case scheduling 

Table 1 
task C T D 

task 1 1 50 4 
task2 2 9 6 
task3 5 20 12 

1 I 

I I 
task-3 1 I 

I I 
I I 
0 I 

0 10 

Rg. 2 

point described by Liu and Layland, where all tasks are 
released simultaneously (at notational time 0). 
As can be seen from Fig. 1, task 3 is prevented from 

executing by task 1 for 1 tick and by task 2 for 2 ticks, 
completing by time 8, giving R3 = 8. Task 2 can never 
pre-empt task 3 more than once as task 3 finishes before 
tasks 2 can re-anive (i.e. R3 d TJ. 

If task 3 took a l i e  longer to complete (because task 1 
executes for an extra two ticks, for example), then a first 
guess at R3 would be 8 + 2 = 10. However, now that task 
3 is a Me longer, task 2 can re-aniw and preempt task 3 
a second time, giving a worst-case interference of 4 from 
task 2. Fig. 2 shows this situation. As can be seen, the 
worst-case response time of task 3 is now 12, just meeting 
its deadline. 

In general, given prior knowledge of the worst-case 
response time R, , the interference on task i from a task j is 
nCj, where n has a value such that (n - 1)Tj < 4 Q n q .  
As 1x1 = n when n - 1 < 1x1 < n, we can say that the 
worst-case interference from a task j on task i is given by 

Note that this value for the maximal interference hdds 
regardless of whether j is periodic or sporadic. This is an 
important result as it means that runtime techniques, such 
as aperiodic servers [5], are not needed. In fact, a periodic 
task can be regarded as a sporadic task, released by a 
regular timing event 

The total interference li is given by 

where hp(i) is the set of tasks with higher base priorities. 
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Unfortunately, when eqns. 1 and 2 are combined, the 
unknown term 6 appears on both the left- and the right- 
hand sides of the equation: 

& = C i + B i +  1 [;ICj 
V j e  h p ( i )  

It is possible to solve this equation using an iterative tech- 
nique. Let K be the nth approximation to the true value of 
&. These approximations are generated from the above 
equation: 

(3) 

The iteration starts with @=O and terminates when 
y+' = K .  It can easily be shown that K" 2 K, and so 
the iteration can be halted early if either e'' > Di or if 
V" > Ti .  It can also be shown that the iteration is guar- 
anteed to converge if the processor utilisatjon is < 100% 
191. Note that if the priority of task a is greater than the 
priority of task b, then Rb > R,; thus, the task set should 
be analysed in priority order, with the starting value e set 
to R. This enables the test to be evaluated more quickly. 

In the above analysis, we have not made use of any 
information about priority assignment. Both the Rate 
Monotonic and Deadline Monotonic policies could be 
used. In more complex situations, for example in a distrib 
uted system with complex trade-offs, finding an optimal pri- 
ority ordering may be NP-Hard and other suboptimal 
techniques such as Simulated Annealing (171 are appro- 
priate 11 21. 

4 The release jitter problem 

In this Section, we show how release jitter causes prob 
lems with the analysis presented above. We also show how 
the presented analysis can be extended to allow for such 
external blocking (and indicate how this type of blocking is 
often encountered in real systems). 

The release jiier problem arises when we change the 
assumption that a task is always released as soon as it 
arrives. With release jiier, a task may be released at any 
Software Engineering Journal September 1993 

time up to a bounded time Ji after it arrives. This can 
occur if, for example, the scheduler mechanism takes a 
bounded time to recognise the arrival of a task 

The analysis presented above is not sufficient when 
tasks can experience release j ier.  Consider the task set 
defined in Table 2. 

Task T1 is of higher priority than task T2. In this 
example, we are concerned with the schedulabili of T2. 
TI experiences an external block because it needs a 
message before it can commence, for example. The 
message is sent at the same time as T1 arrives (Tl could 
be a sporadic task, for example, with the arrival triggered 
by an external event which also triggers the sending of a 
message from another processor). The message is guar- 
anteed to arrive no later than 4 ticks after the arrival of T1, 
and hence we have a release hitter of J1 = 4. 

Using our current analysis, we have (i.e. ignoring release 
jitter) 

4 = 0  

The equation has converged, and hence r, = 9. 
As r, < D,, T2 would be deemed schedulable. Fig. 3 

shows a schedule for the two tasks when both are released 
together @U and Laylands worst-case). However, when 
release jitter is taken into account, there are situations 
when I2 is not ahmy schedulable. Fig. 4 shows such a 
situation. 

Although TI arrives at time zero, it is suspended await- 
ing a message, which it receives at time 4 (this is also the 
time T2 arrives and is released). On the next release of T1, 
12 ticks later, the next message is already available, and so 
the task can be released immediately. T2 misses a dead- 
line (indicated by the black circle in Fig. 4) because of the 
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release jiier of TI. The reason is that the worst-case 
scheduling point no longer occurs at Liu and Laylands 
critical instant (where all tasks are released together), but 
at the point when T2 is released at the same time as TI 
finishes waiting. TI can then effectively re-occur in a 
shorter time than the current analysis allows for, and so 
inflict a ‘back to back hit’. 
This phenomenon is described by Rajkumad6], with ref. 

erence to external blocking when locking remote sema- 
phores in a distributed system; Rajkumar refers to this as 
an invasive effect due to deferred execution. This extra ‘hit’ 
can amount to an additional interference of C, at most 
The current analysis fails because the interference factor Ii 
is not sufficient. An upper bound on the interference to 
allow for the extra ‘hit’ might therefore be obtained by 
simple adding in an extra computation time 

In effect, we are saying here that an extra ‘hit’ occurs if 
ri + Tj > T j .  This is pessimistic, as the extra ‘hit’ is not 
certain to occur in all systems. Consider Fig. 4 again. If C, 
was 5 ticks, then r, would be 8, and all computation for R 
would be complete before T1 re-arrived and preempted 
hence 

(4) 

In Fig. 4, r, would be 9, according to eqn. 3. As r, 
+ JI > TI (or 9 + 4 > 12), R gets an extra ‘hit’. But if 
C, = 5, then r, would be 8, and as 8 + 4 < 12, no extra 
‘hit’ occurs. 

Eqn. 3 can thus be modified to allow for release jiier: 

(5) 

Recall that ri is the worst-case response time measured 
from the point at which task i is released. A more reason- 
able and useful measure might be from the time task i 

Table 2 
task C T D J 

T1 3 12 8 4 
T2 6 20 10 0 

arriws, so that the worst-case time from arrival to com- 
pletion of task i is given by 

Ji + ri (6) 
Note that eqn. 5 still allows semaphores to be locked and 
unlocked according to the Priority Ceiling Protocol. 

Having extended the scheduling analysis to handle 
release jitter, we now indicate how this can occur in a 
system, using two examples. 

4.1 Precedence-constrained distributed tasks 

A common method of representing computations in a dis- 
tributed system is as a collection of tasks with precedence 
relationships between their executions. Each task is stati- 
cally allocated to a single processor. Such task sets can be 
analysed with theory which assumes release jitter. All tasks 
are defined to arrive at the same time, but a precedence- 
constrained task on one processor can have its release 
delayed awaiting an indication of termination of all direct 
predecessors on other processors (perhaps by the arrival 
of a message, in a similar way to the earlier example). The 
worst-case release jiier of such a subtask can be com- 
puted by knowing the worst-case response times of prede- 
cessor subtasks located on other processors, and by 
knowing the worst-case communications delay. By 
assuming a best-case response time of zero for the prede- 
cessors, and that best-case message transit times are zero, 
the release jitter (i.e. the variability in release) can be said 

I I I 
I I 

I I 
I I 

I 
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to be the largest sum of the worst-case response time of 
each predecessor, computed by eqn. 6, plus the worst- 
case transit time of the message sent by that predecessor : 

Ji = mm (Jk + rk + Mk, i) 
Vksdpr'rod(i)  

where dpred(i) is the set of all tasks which are direct pre 
decessors of task i, and PIk, is the worst-case transit time 
of a message sent from task k to task i. 

Note that the above equation only holds if all the prede 
cessors of task i are on a different processor hom task i; 
to allow predecessors to be on the same processor, other 
analysis must be developed. For example, one approach is 
to assign a lower priority to task i than the local prede- 
cessors to ensure that task i never runs before a prede- 
cessor, and to assign a release jitter of task i such that it is 
greater than or equal to the release jiier of local direct 
predecessors (so that whenever a higher prioriiy prede 
cessor is deferred awaiting a message arrival, task i is also 
deferred, and hence prevented from running). 

A more detailed analysii of diwbuted precedence 
constrained tasks is beyond the scope of this paper and is 
the subject of current research. 

4.2 Tick-dnuen scheduling 

The implementation of a priority scheduler can also intro- 
duce release j i i r .  Consider a single processor where 
periodic and sporadic tasks are scheduled by a scheduler 
which is invoked by a periodic clock interrupt, the socalled 
tickdriven scheduling. 

Assume the period of the scheduler is Ttkk and that the 
scheduler, once invoked, takes no more than C,i, compu- 
tation time. Consider the following sequence of events; the 
scheduler is released at time t = 0 and looks to see if the 
sporadic task s is to be released (in a real tick-driven 
system the scheduler might poll an VO register for the 
condition for the release of s). Assume the condition for 
the arrival is not true and the scheduler continues execut- 
ing (ultimately terminating after taking time Crick). Just 
after the time the scheduler has polled, the sporadic s 

Software Engineering Journal September 1993 

arrives (i.e. the condition becomes true). However, s cannot 
be released until the scheduler is next invoked at time t = 
Tick. Hence, the sporadic task is deferred for a maximum 
time T,, , awaiting the timer which invokes the scheduler. 
Fig. 5 illustrates how a sporadic task is deferred by a tick- 
driven scheduler. 

The tickdriven scheduler executes for C,, = 1, with 
T,,, = 7. The worst-case execution time of the sporadic 
task is 3 time units. As can be seen, the sporadic task is 
deferred for 7 time units. 
Tasks that always arrive as the scheduler is released do 

not experience external blocking. In the case study 
desaibed later, all periodic tasks have periods which are 
exact multiples of T,, , with release times measured in 
scheduler ticks, and hence these tasks can be considered 
to always arrive as the scheduler is released. However, a 
periodic task experiences release j i e r  if its period is not an 
integer multiple of the clock period. 

5 Sporadically repeating tasks 

Another illustration of the strength of our analytical 
approach is to adapt the scheduling analysis to more 
accurately describe the behaviour of socalled sporadically 
repeating tasks. Very often a task arrives at a particular 
time, excecutes and then rearrives periodically a fixed 
number of times. This behaviour is then repeated sporadi- 
cally during the execution of the @em (Fig. 6). 

The task illustrated has an 'inner' period of 4 ticks, a 
minimum 'outer' period of 15 ticks and a worst-case 
execution time of 1 tick The task arrives periodically 3 
times for each outer arrival. In Fig. 6 these occur at times 
0, 15 and 40. This behaviour is quite common in real 
systems; a task is initiated in response to a particular 
event, and then for a short period of time periodically mon- 
itors or controls a part of the system. 

The model also caters for bursty sporadic tasks. An 
interrupt that releases a sporadic task may be defined as 
having a very short minimum anival time, but have a 
maximum number of arrivals over a larger intend; the 
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maximum, beiig much lower than the minimum, i n t e d  
would dictate. For example, in a satellite control system (to 
which this scheduling model has been applied 118) bus 
interrupts can occur every 960 p, but only 4 such inter- 
rupts can occur every 10 ms. 

If the analysii developed so far is applied to these situ- 
ations, the predictions would be pessimistic as the theory 
has to assume that the task executed continually. This 
might result in a higher assumed interference than could 
actually occur. Hawever, the general analytical approach is 
well suited to extending the current analysis to remove this 
pessimism. 

Our general approach to ascertaining the schedulabillty 
of a task is to determine the interference over a given 
window (usually the worst-case response time of a task). 
This interference is summed, and the window widened if 
necessary. We require that a wider window always leads to 
a higher interference. Hence, to ascertain the schedulabii 
of a task i in the presence of higher priority sporadically 
periodic tasks, we need to find an upper bound on the 
interference over a window of size ri . We adopt the follow. 
ing additional notation: 

n, = the number of times task j executes for each ‘outer’ 
arrival (in Fig. 6, n = 3). 
tj = the ‘inner‘ period of task j (in Fig. 6, t = 4). 
Ti = the ‘outer’ period of task j (in Fig. 6, T = 15). 
C, = the worst-case computation time required by the 
‘inner’ task (in Fig. 6, C = 1). 

For the moment, we assume that tasks do not experience 
release jier. The number of full outer periods completing 
within the window of size ri is bounded by 

The total interference due to full outer arrivals is therefore 
bounded by 

n.  5 cj ’ 1 1  Ti 

and lies in the range (0 . . . q]. We shall denote this value 
by Qij .  The interference over this remaining time is 
bounded by 

The above equation assumes that task j executes as a con- 
tinual periodic task (with period tj) over the remaining 
interval. However, task j cannot execute for more than nj 
periods in this interval (since the interval covers only a par- 
tially complete outer arrival), and another bound can be 
obtained: 

nj Cj (9) 

The least upper bound can therefore be used: 

(10) 

Combining eqns. 10 and 7, and summing over all higher 
priority tasks, we obtain 

If a task j is not sporadically periodic, then we choose 
n, = 1 and ti = Tj. As a check for eqn. 11, we assume 
that all tasks are not sporadically periodic, and hence for 
all tasks) n, = 1 and tj = 7j. From eqn. I1,we have 

At most, one partially complete outer arrival can interfere 
over the remaining part of the window not already 
accounted for by whole arrivals. This remaining time 
amounts to 

= V l e h p ( i )  r5lCj TI 

which is equal to eqn. 2. Hence, eqn. 11 is a generalisation 
of eqn. 2. 

We now Mum to the problem of release jitter. There are 
two potential places where release jiier could occur; on an 

ri - Ti:] 
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outer arrival (where the first arrival of a succession of nj 
inner arrivals of a taskj is deferred), and on an inner arrival 
(where each of the nj arrivals could experience delay). For 
simplicity, we assume that the outer arrival jitter and the 
inner arrival jitter are the same. For a taskj, we assume 
that this jiier is denoted Jj  . Following the same argument 
as for the derivation of jiier in eqn. 5, we can modify eqn. 
11 to include release jitter: 

1, = 1 
V j e  h p ( i )  

(12) 

As with eqn. 3, an iterative equation to find ri can be for- 
mulated. The worst-case response time of a task mea- 
sured from arrival to termination, is again given by J, + r, . 

6 Discussion and case study 

In this Section, we analyse and discuss the task set of a 
small avionics case study undertaken by Locke et al. 1191. 

Several mostly periodic tasks implement an avionics 
weapons management subsystem. There is a single spor- 
adic task and a single task where the deadline of the task 
is less than the period (for reduced outer ‘jiier’ 
requirements). Task priorities are assigned according to 
the Deadline Monotonic policy. Originally, the tasks were 
analysed using the Rate Monotonic schedulabili analysis 
derived by Sha et al. 121. In the case study [lQ], M e  et 
al. report that, using this analysii, only the 8 highest pri- 
ority tasks out of a set of 18 tasks could be guaranteed to 
meet their deadlines. In simulations, nearly all tasks were 
found to meet their timing requirements (two tasks were 
reported as missing their deadlines). 

Eqn. 5 was applied to the task set described by k k e  et 
al. [lQ], using the given priority assignment. For the single 
sporadic task, a release jitter of 1000 p was assumed, to 
account for the worst-case delay due to the operation of 
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the tickdriven scheduler (see the above discussion of 
induced jiier from tick-driven scheduling). The other tasks 
are all periodic, with periods that are multiples of Tfkt = 
1000 p, and hence do not experience release jiier. Table 
3 lists the tasks in priority order (task 1, the tickdriven 
scheduler, is the highest priority task), and supplies the 
attributes and the derived response times of the tasks 
using eqn. 5. All times are given in microseconds b). 
As can be seen from Table 3, our analyss predicts that 

all deadlines can be met except for task 11. Locke et al. 
found that task 11 did indeed miss its deadline 
occasionally. They also found that task 16 missed a dead- 
line once. This discrepancy can be explained if the sched- 
uler implementation does not exactly agree with the 
assumptions made in this paper. 

The case study was implemented in Ada. Most Ada 
runtime systems make use of two queues; a run-queue 
which holds all runnable tasks and a delayqueue which 
holds all (periodic) task that are waiting for their wit 
release. At any particular tick, the number of tasks to be 
moved from the delay queue to the run-queue varies 
between none and sixteen. A standard runtime system will 
not undertake this at a constant cost (in computation 
time); hence, the value of C, of 51 p is potentially an 
underestimation. Furthermore, the costs of context 
switches must be accounted for accurately, along with any 
blocking factors due to the operation of the system (for 
example, calls to the Ada runtime in most implementa- 
tions are generally not pre-emptible, and hence can induce 
a blocking factor on all tasks). It is therefore unlikely that 
E,, is actually zero. Eqn. 5 predicts a worst-case response 
time for task 16 of 145446 p, which seems a long way 
from its deadline of 200000 p. However, if the above 
factors could increase the responses time by only 3.2%, 
then this would push it over 15oooO p, at which point it 
would suffer increased interference from tasks 3, 4, 6 and 
7, and subsequently tasks 5,Q and 10. This is sufficient for 
it to miss its deadline in the worst case. Without details of 
the exact implementation, no fair comparison of the 
results of experiments and analysis can be made. In 

Table 3 
i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

51 
3OOo 
2000 
5000 
1000 
3OOo 
5Ooo 
8ooo 
goo0 

2000 
5000 
1000 
3OOo 
loo0 
loo0 
3OOo 
loo0 
loo0 

T# 

1000 
200000 
25000 
25000 
4oooo 
50000 
50000 
59000 
80000 
80000 

100000 
2ooMx) 

200000 
200000 
200000 
200000 

lWOOOO 
lWOOOO 

D,  

1000 
5000 

25000 
25000 
40000 
50000 
50000 
59000 
60000 
Boo00 

100000 
2ooMx) 

2w000 
200000 
200000 
200000 

1WOOOO 
1000000 

R. 

51 
3504 
5906 

11512 
13064 
16217 
20821 
36637 
47798 
48949 

l l 5 W  
137488 
140641 
141692 
143694 
145446 
146497 
147546 

B, 

0 
300 
600 
900 

1350 
1350 
750 
750 

1350 
450 

1050 
450 
450 
450 

1350 
0 
0 
0 

J, - 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1000 
0 
0 
0 
0 
0 
0 
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general, however, our analysis agrees with the observed 1101 EH-, J.P.: ‘Fied priority scheduling of periodic task 
behaviour. Moreover, matches the behaviour sets with arbiary deadlines’. PrW. 11th 1- Real-lime 

Systems Symp., Lake Buena V i ,  Florida, 5-7 December more closely that the original Rate Monotonic analysis. 
1990, pp. 201-209 

1111 AUDSLEY, N.C.. BURNS, A., RICHARDSON, MF., and 
WELUNGS. AJ.: ‘Hard real-time scheduling: the dealine 7 Summary and conclusions 
monotonic approach. Proc. 8th IEEE Workshop on Real- 

we  have presented results which provide simple exact Tme systems and sobare, G ~ ~ ~ ~ ,  
analysis for systems scheduled at runtime with a static pri- 15-17  ay 1991 
ority preemptive dispatcher. The analysis has been 1121 TINDELL, K., BURNS, A., and WELUNGS, A: ’Allocating 
extended to include release jitter, allowing tasks to arrive real-time tasks (an NP-hard problem made easy)’, Real-Time 
and then be deferred for a bounded amount of time. The Syst., 1992.4, (2), pp. 145-165 
analysis has been fulther extended to permit sporadically 1131 AUDSLEY, N.C.: ‘Resource control for hard real-time 
repeating tasks to be analysed exactly. A case study [19], system: a review.’ Report YCS 159, DePament Of Com- 
already analysed according to Rate Monotonic scheduling puter Science, university Of yo* 
theory, has bee., reanalysed using wB theory. me basis of 1141 PARK, C.Y., and SHAW AC.: ’Experiments with a program 
the analysis is the development of formulae which predict ~ ~ ~ u k ~ ~ g g ~ ~ ,  ( ~ p p ~ ~ ~ e ’  timing schema’7 
the worst-case interference a task can suffer from higher 1151 p., and c,: the 
priority tasks; utilisation-based analysis is not used as this time of real.time Real.nme syst., 
cannot cater for systems which contain tasks with dead- 1989,1, (2), pp. 159-176 
lines less than periods. 1161 AUDSLEY, N.C., BURNS, A., RICHARDSON, ME, and 

The most important aspects of our scheduling theory WELUNGS, AJ.: ‘STRESS: a simulator for hard real-time 
are that older scheduling theory can be considered a system.‘ Report KTRG/91/106, Real-lime Research Group, 
special case of the analysis presented in this paper Department of Computer Science, Univew of York 
(systems previously analysed by the Rate Monotonic october1991 
approach can now be reanalysed using more powerful 
techniques), and that the analysis presented here can be misation by simulated annealing’, science. 1983. (2.W PP. 

67 1-680 -nded in a * a w f o m r d  manner to allow more 

The Olympus attitude and orbital control system: a case complex and powerful systems to be investigated. 
study in hard real-time system &gn and implementation.’ 

8 Acknowledgments hoc. 12th Ada-Europe Conf., Paris (Lect. Notes Comp. 
&i., Springer-Verlag) 

The authors would like to thank the authors of the case 1191 LOCK€, CD., VOGEL D.R, and MESLER TJ.: ‘Building a 
study for help with its analysis and for comments on an predictable avionics platform in Ada: a case study‘. Proc. 
earlier draft of this paper. IEEE 12th Real lime Systems Symp., San Antonio, Decem- 

ber 1991 

1991 

1171 KlFXPATWK S.9 Gmm, CJX and ECCW MP.: ‘OPti- 

[18] BURNS, A, WJJXS, kJ., BAlLEy, CM, FyFE, 

9 References 
10 Appendix: a brief description of STRESS 

111 LIU, C.L. and LAYLAND, J.W.: ‘Scheduling algorithms for diagrams 
multiprogramming in a hard real-time environment’, JACM, STRESS diagrams illustrate the =don of tasks under 
1973.20, (l), pp. 46-61 the STRESS simulator. In these diagrams, time increases 

121 LEHOCZKY, J.P., SHq L, and DING, V.: ‘The rate monot- from 
onic sheduling algorithm: exact characterization and 
average case behavior,, Technical Department of Task e x d o n  is represented by boxes. A task which is 

131 SHA, L, R A J K ~  R, and E H O ~ ,  J,P,: y ~ ~ ~ r i ~  the boxes; a task which is deferred is shown by a line at 
inheritance protocols: an approach to real-time synchro- the level Of the top Of the boxes. These States are annotat. 
nisation’, ed by a mriq of symbols. 

141 BAKER, T.P.: ‘Stack-based scheduling of realtime pro- Task release is marked by an open low-level circle, and 
cesses’, Real-Time Syst., 1991, 3, (I), 67-99 successful task completion by an open high-level circle. If 

151 LEHOCU<Y, J.P., SHq L, and SmOSNIDER J.K.: ‘Enha- a task fails to meet its deadline, or otherwise fails to com- 
ang aperiodic responsiveness in hard real-time environ- Kgh.level circle is used. Task deadnes 

An example is shown in Fig. 7 task-0 and task-1 are California, December 1987 
161 R A J K W  R: ‘ReaLtime synchronisation protocols for released at times and o, have at 

shared memory multiprocessors’. Proc. loth IEEE Int Conf. 
on Di-uted Computing system, Paris, France, 28 fimeS 10 and 8, r e s e e k  and require 6 and 3 compu- 
June 1990 tation ticks, respectively. task1 is deferred for 4 ticks, exe 

[-/1 AUDSLEY, N.C.: ‘Optimal priority assignment and feasibility Cutes for 3 further ticks and then COmPld= taSk-0 
of static priority tasks with arbiiary start times.’ Report YCS executes for 2 ticks, before being pre-empted at tick 4 and 
164, Department of Computer Science, University of York, resumed at tick 7; it fails to meet its deadline and is killed. 
December 1991 

181 LEUNG, J.Y.T., and WHITEHEAD, J.: ‘On the complexity of The paper was first received 15 April 1992 and in revised form 9 
fixed-priority scheduling of periodic, real-time tasks’, February1993. 
Perform. Eua. (Netherlands), 1982.2, (4), pp. 237-250 

191 JOSEPH, M, and PANDYA, P.: ‘Finding response times in a 
real-time system’, Comput. J., 1986,29, (5). pp. 390-395 

to right 

statjstics, ~ ~ ~ ~ ~ ~ l l ~ ~  university, Pittsburgh, 1987 pre-empted is shown by a line at the level of the bottom of 

Trans., 1990, C-39, (9). pp. I 175-1 185 

then a 
ment’. 8th 1EEE Real-Time systems SymPv San Jose, are marked by a vetjc-1 line with a A mark at the bottom. 

The authors are with the Department of Computer Science, 
University of York, Heslington, York YO1 5DD, OK. 

292 Software Engineering Journal September 1993 


