
Applying new sc
to static priority
scheduling

;heduling theory
pre-emptive

by N. Audsley, A. Burns, M. Richardson, K. Tindell and A.J. Wellings

The paper presents exact schedulability 0 all tasks are periodic.
analyses for real-time systems scheduled at
runtime with a static priority pre-emptive
dispatcher. The tasks to be scheduled are
allowed to experience internal blocking (from
other tasks with which they share resources)
and (with restrictions) to jitter, The restriction that tasks cannot interact has been

removed by the priority Ceiling protocol 13) (and other
similar protocols such as the Stack Resource Protocol 141

analysis presented is more general than that for data/remurce sharing). A method which allow spar.
previously published and subsumes, for adic tasks to be accommodated using periodic seruers
example, techniques based on the Rate has been proposed by Lehoczky et al. 151 (analysis is pro-
Monotonic approach. In addition to presenting vided which can guarantee the worst-case response time
the releMnt theory, an existing avionics case of a single sporadic task). Rajkuman IS] used external
study is described and analysed. The blocking (i.e. when a task is blocked awaiting an external
predictions that follow from this analysis are event such as a delay expiry) with the Rate Monotonic
seen to be in close agreement with the approach to model the operation of a multi-processor Pri-
behaviour exhibited during ority ceiling protocol, and provided schedulability analysis

to bound its effects. The restriction that tasks are assumed
to share a critical instant has been relaxed by Audsley 171. 1 Introduction

The final restriction that the deadline of a task must be

and sporadic tasks, and a Monotonic approach. is PerhaPS the most important
way of scheduling such tasks is by using a static restriction to lift; requiring the deadline of a task to be less

pre-emptive scheduler; at runtime the highest pri. than the period of that task is essential if jitter require
ortiy mnnable task is executed, pre-empting other lower ments are to be met (i.e. the result of a piece of computa-

tasks. xs scheme was in the Rate tion must be produced within precise intervals).
Monotonic approach defined by uU and Layland I 11, where Furthemre, when building distributed @ems, the dead-
the &tic p,.io,.ity of a task is obtained from the line of a task often needs to be shortened to allow time for

of that task; for any two tasks L and M, communication between tasks on different processors. In
=$ priori@) < p , . i o ~ ~) . hu and general, hard sporadic tasks have deadlines that are not

Layland derived a &,&dability analysis which determines related to their minimum inter-arrival time, and hence they

if a given task will ahKays meet all deadlines under all cannot be modelled as simple Periodic tasks with period
possible release conditions. The schedulabilii test given is equal to deadline.
sufficient 6.e. all task sets passing the test are guaranteed For tasks with deadlines less than (Or equal) to penodsr

failing b u n g and Whitehead 181 showed that Deadline Monotonic
to the test is not unscheddable). Sha et priority assignment is optimal'. Task priorities are now
al. 121 R~~~ Monotonic test that is both assigned in inverse order to task deadlines; a task with a

short deadline (measured relative to the release time of the sufficient and necessary.

restrictions:
Optimal in the sense that. if a task set can be scheduled by any

0 all tasks are independent of each other (e.g. they do static priority algorithm it can a h be scheduled by the badline
not interact). Monotonic algorithm.

0 no task can block waiting for an external event
0 all tasks share a common release time (called the
critical instant).
0 all tasks have a deadline equal to their Period.

as waiting for a message to arrive* The

studies.

One p r o p o d method of building a hard real-time system equal to the period has not been relaxed for the Rate
is from a number of

.,

be schedulable), but not necessary (i.e. a task

an

The original Rate Monotonic approach had several task) should have a high Priority. A task With a long period

284 Software Engineering Journal September 1993

I I
1 I

I I

1 I

0 10

Fig. 1

but short deadline would have a low priority according to
the Rate Monotonic priority assignment, but a high priority
according to the Deadline Monotonic priority assignment.
Consequently, the Rate Monotonic assignment is sub
optimal for such task sets. If two or more tasks have the
same deadline, they are assigned an arbitrary priority order
(among themselves).

To apply the Deadline Monotonic approach, scheduling
tests must be available that will allow deadlines to be guar-
anteed. Such analysis is provided by Joseph and Pandya
[9], Lehoczyk [lo], and Audsley et al. 11 11. All provide suffi-
cient and necessary schedulability tests, differing only in
the complexity of their computations. The basic approach
is expanded by Audsley et al. to permit sporadic task
deadlines to be guaranteed without the use of the sewers
required by the Rate Monotonic approach [5]. It should be
pointed out that Audsley et al. and Joseph and Pandya
provide schedulability tests for a task set with any arbitrary
priority ordering (i.e. they do not just apply to task sets with
priorities ordered by the Deadline Monotonic scheme).
They also have the useful property that they furnish esti-
mations of the actual worst-case response times for each
task The actual schedulability test is then a trivial compari-
son of each task’s response time and deadline. The calcu-
lation of respnse time is particularly important when
deadline requirements are assigned to the behaviour of a
collection of tasks (in a distributed system, for example).
No single task has a hard ‘deadline’, but each task‘s
response time contributes to some system-wide timing
requirement that must be satisfied.

In this paper, we are concerned with providing sched-
ulability analysis to predict the Worst-case response times
for a set of periodic and sporadic tasks under any given
priority assignment, and scheduled by a static priority pre-
emptive scheduler.

Software Engineering Journal September 1993

2 Computational model

in this paper, unless explicitly mentioned, we consider the
scheduling of tasks on a single processor. The techniques
can also be used in a distributed environment with static
task allocation 1121.

A task i is assumed to consist of an infinite number of
inoocation requests, each separated by a minimum time
T i . Each invocation is a request to perform a bounded
amount of computation Ci, and to lock and unlock
semaphores from a bounded set s(i) according to the
Priority Ceiling Protocol [3]. Some tasks have a deadline
requirement such that all computation for an invocation
must‘take place before a certain time measured relative to
the invocation request Deadlines, where required, are
assumed to be constant and known a priori. The deadline
requirement of a task i is denoted Di .

The notation arriual of a task at time t is subsequently
recognised by the runtime dispatcher, and the task is
placed in a notational queue of runnable tasks. The task is
then said to be released. The variability in time between a
tasks arrival and its release is known as release jitter. In
Section 3, this is assumed to be zero. This is the assump
tion normally applied in scheduling theory (e.g. in the Rate
Monotonic approach).

A task has a static base priority assigned to it a priori
(using the Deadline Monotonic priority assignment algo
rithm, for example). it may also inherit a higher dynamic
priority due to the operation of the Priority Ceiling Protocol.
The dispatcher chooses to run the highest dynamic pri-
ority runnable task, preempting lower priority tasks when
necessary.

3 Finding worst-case response times

Before proceeding further, we introduce the following
simple notation. All internal blocking is assumed to be the
result of semaphore use (other synchronisation primitives
could also be used and analysed [13D.

Ci = the worst-case computation time required by task i
on each release. At runtime, we assume that any computa-
tion time from 0 to Ci could be required for a single
invocation of i.
Ti =the lower bound on the time between successive
arrivals of i . If i is a periodic task, this lower bound is also
the upper bound (i.e. the period is fixed and equal to Q.
Di = the deadline requirement (if defined) of task i, mea-
sured relative to a given release of i . Note that we require
D;< T i .
€3; = the worstcase blockng time task i can experience
due to the operation of the priority ceiling protocol (or
equivalent concurrency control protocol). Bi is normally
equal to the longest critical section of lower priority tasks
accessing semaphores with ceilings higher than (or equal
to) the priority of i .
Ji = the worst-case time task i can spend waiting to be
released after arrival (the release jitter time).
1; = the worst-case interference a task i can experience.
Interference on i is defined as the time higher priority tasks
can pre-empt and execute, and hence prevent i from
executing.

285

& = the worst-case response time for a task i measured
from the time the task is released. For a schedulable task,
& < Di (if there is no deadline requirement for i, the
analysis below must have Ri < Ti).
hp(i) =the set of tasks of higher base priority than the
base priority of i (these tasks could pre-empt i).

We now consider the problem of computing the worst-
case response time for a task i, denoted &. Initially, tasks
are assumed to be released when they arrive. This time
can be viewed as a computational 'window' (or busy
period); the release of i marks the start of the window, and
the completion of i marks the end of the window. The
maximum width of the window is 4 . In this window of
duration Ri , task i must (at worst) complete an amount of
computation equal to Ci and be delayed when locking
semaphores by Bi at most. Additionally, task i could be
preempted by at most. Therefore, we can say that

(1) R, = Ci + Bi + /i
If a task i has a deadline, then we must have 4 < Di .

The worst-case computation time Ci is constant and is
somehow known a priori [14,15]. The worst-case blocking
time Bi is found according to the analysis given by Sha et
al. [3], and is equal to the longest critical section of any
lower priority task accessing a semaphore with ceiling of
equal or higher priority than task i.

In the rest of this Section, we present the analysis to find
ri. Note that similar analysis, cast in a different form, was
first produced by Joseph and Pandya, 191 and later by
Audsley et a[. [ll]. The method described below has the
advantage of being easily extended to cover situations
such as nonzero release jiier time. Note also that the
analysis is not based on the notion of processor utilisation.
Although process sets with deadlines equal to periods can
be assessed according to their utilisation, such techniques
are not general-purpose. For example, two tasks with
deadlines equal to their computation time will never be
schedulable, regardless of processor utilisation.

To find a formula for the interference, consider the
sequence of computations illumated in Fig. 1. Fig. 1 was
produced by a tool called STRESS [16], written by the Real
Time Systems Research Group at the University of York;
the Appendix describes the notation used in these dia-
grams. Fig. l shows part of a schedule of a system con-
sisting of three tasks, displayed in priority order. Task 1 is
a task with worst-case computational requirement of C, =
1, a deadline of D, = 4 and a worst-case inter-arrival time
of 7, = 50. The characteristics of Tasks 2 and 3 are
defined in Table 1. Fig. 1 shows the worst-case scheduling

Table 1
task C T D

task 1 1 50 4
task2 2 9 6
task3 5 20 12

1 I

I I
task-3 1 I

I I
I I
0 I

0 10

Rg. 2

point described by Liu and Layland, where all tasks are
released simultaneously (at notational time 0).
As can be seen from Fig. 1, task 3 is prevented from

executing by task 1 for 1 tick and by task 2 for 2 ticks,
completing by time 8, giving R3 = 8. Task 2 can never
pre-empt task 3 more than once as task 3 finishes before
tasks 2 can re-anive (i.e. R3 d TJ.

If task 3 took a l i e longer to complete (because task 1
executes for an extra two ticks, for example), then a first
guess at R3 would be 8 + 2 = 10. However, now that task
3 is a Me longer, task 2 can re-aniw and preempt task 3
a second time, giving a worst-case interference of 4 from
task 2. Fig. 2 shows this situation. As can be seen, the
worst-case response time of task 3 is now 12, just meeting
its deadline.

In general, given prior knowledge of the worst-case
response time R, , the interference on task i from a task j is
nCj, where n has a value such that (n - 1)Tj < 4 Q n q .
As 1x1 = n when n - 1 < 1x1 < n, we can say that the
worst-case interference from a task j on task i is given by

Note that this value for the maximal interference hdds
regardless of whether j is periodic or sporadic. This is an
important result as it means that runtime techniques, such
as aperiodic servers [5], are not needed. In fact, a periodic
task can be regarded as a sporadic task, released by a
regular timing event

The total interference li is given by

where hp(i) is the set of tasks with higher base priorities.

Software Engineering Journal September 1993 286

I I I I

Rg. 3

Unfortunately, when eqns. 1 and 2 are combined, the
unknown term 6 appears on both the left- and the right-
hand sides of the equation:

& = C i + B i + 1 [;ICj
V j e h p (i)

It is possible to solve this equation using an iterative tech-
nique. Let K be the nth approximation to the true value of
&. These approximations are generated from the above
equation:

(3)

The iteration starts with @=O and terminates when
y+' = K . It can easily be shown that K" 2 K, and so
the iteration can be halted early if either e'' > Di or if
V" > Ti . It can also be shown that the iteration is guar-
anteed to converge if the processor utilisatjon is < 100%
191. Note that if the priority of task a is greater than the
priority of task b, then Rb > R,; thus, the task set should
be analysed in priority order, with the starting value e set
to R. This enables the test to be evaluated more quickly.

In the above analysis, we have not made use of any
information about priority assignment. Both the Rate
Monotonic and Deadline Monotonic policies could be
used. In more complex situations, for example in a distrib
uted system with complex trade-offs, finding an optimal pri-
ority ordering may be NP-Hard and other suboptimal
techniques such as Simulated Annealing (171 are appro-
priate 11 21.

4 The release jitter problem

In this Section, we show how release jitter causes prob
lems with the analysis presented above. We also show how
the presented analysis can be extended to allow for such
external blocking (and indicate how this type of blocking is
often encountered in real systems).

The release jiier problem arises when we change the
assumption that a task is always released as soon as it
arrives. With release jiier, a task may be released at any
Software Engineering Journal September 1993

time up to a bounded time Ji after it arrives. This can
occur if, for example, the scheduler mechanism takes a
bounded time to recognise the arrival of a task

The analysis presented above is not sufficient when
tasks can experience release j ier. Consider the task set
defined in Table 2.

Task T1 is of higher priority than task T2. In this
example, we are concerned with the schedulabili of T2.
TI experiences an external block because it needs a
message before it can commence, for example. The
message is sent at the same time as T1 arrives (Tl could
be a sporadic task, for example, with the arrival triggered
by an external event which also triggers the sending of a
message from another processor). The message is guar-
anteed to arrive no later than 4 ticks after the arrival of T1,
and hence we have a release hitter of J1 = 4.

Using our current analysis, we have (i.e. ignoring release
jitter)

4 = 0

The equation has converged, and hence r, = 9.
As r, < D,, T2 would be deemed schedulable. Fig. 3

shows a schedule for the two tasks when both are released
together @U and Laylands worst-case). However, when
release jitter is taken into account, there are situations
when I2 is not ahmy schedulable. Fig. 4 shows such a
situation.

Although TI arrives at time zero, it is suspended await-
ing a message, which it receives at time 4 (this is also the
time T2 arrives and is released). On the next release of T1,
12 ticks later, the next message is already available, and so
the task can be released immediately. T2 misses a dead-
line (indicated by the black circle in Fig. 4) because of the

207

n r -

release jiier of TI. The reason is that the worst-case
scheduling point no longer occurs at Liu and Laylands
critical instant (where all tasks are released together), but
at the point when T2 is released at the same time as TI
finishes waiting. TI can then effectively re-occur in a
shorter time than the current analysis allows for, and so
inflict a ‘back to back hit’.
This phenomenon is described by Rajkumad6], with ref.

erence to external blocking when locking remote sema-
phores in a distributed system; Rajkumar refers to this as
an invasive effect due to deferred execution. This extra ‘hit’
can amount to an additional interference of C, at most
The current analysis fails because the interference factor Ii
is not sufficient. An upper bound on the interference to
allow for the extra ‘hit’ might therefore be obtained by
simple adding in an extra computation time

In effect, we are saying here that an extra ‘hit’ occurs if
ri + Tj > T j . This is pessimistic, as the extra ‘hit’ is not
certain to occur in all systems. Consider Fig. 4 again. If C,
was 5 ticks, then r, would be 8, and all computation for R
would be complete before T1 re-arrived and preempted
hence

(4)

In Fig. 4, r, would be 9, according to eqn. 3. As r,
+ JI > TI (or 9 + 4 > 12), R gets an extra ‘hit’. But if
C, = 5, then r, would be 8, and as 8 + 4 < 12, no extra
‘hit’ occurs.

Eqn. 3 can thus be modified to allow for release jiier:

(5)

Recall that ri is the worst-case response time measured
from the point at which task i is released. A more reason-
able and useful measure might be from the time task i

Table 2
task C T D J

T1 3 12 8 4
T2 6 20 10 0

arriws, so that the worst-case time from arrival to com-
pletion of task i is given by

Ji + ri (6)
Note that eqn. 5 still allows semaphores to be locked and
unlocked according to the Priority Ceiling Protocol.

Having extended the scheduling analysis to handle
release jitter, we now indicate how this can occur in a
system, using two examples.

4.1 Precedence-constrained distributed tasks

A common method of representing computations in a dis-
tributed system is as a collection of tasks with precedence
relationships between their executions. Each task is stati-
cally allocated to a single processor. Such task sets can be
analysed with theory which assumes release jitter. All tasks
are defined to arrive at the same time, but a precedence-
constrained task on one processor can have its release
delayed awaiting an indication of termination of all direct
predecessors on other processors (perhaps by the arrival
of a message, in a similar way to the earlier example). The
worst-case release jiier of such a subtask can be com-
puted by knowing the worst-case response times of prede-
cessor subtasks located on other processors, and by
knowing the worst-case communications delay. By
assuming a best-case response time of zero for the prede-
cessors, and that best-case message transit times are zero,
the release jitter (i.e. the variability in release) can be said

I I I
I I

I I
I I

I
Flg. 4

288 Software Engineering Journal September 1993

1 1

I I I I

0 -3 10

Fig. 5

to be the largest sum of the worst-case response time of
each predecessor, computed by eqn. 6, plus the worst-
case transit time of the message sent by that predecessor :

Ji = mm (Jk + rk + Mk, i)
Vksdpr'rod(i)

where dpred(i) is the set of all tasks which are direct pre
decessors of task i, and PIk, is the worst-case transit time
of a message sent from task k to task i.

Note that the above equation only holds if all the prede
cessors of task i are on a different processor hom task i;
to allow predecessors to be on the same processor, other
analysis must be developed. For example, one approach is
to assign a lower priority to task i than the local prede-
cessors to ensure that task i never runs before a prede-
cessor, and to assign a release jitter of task i such that it is
greater than or equal to the release jiier of local direct
predecessors (so that whenever a higher prioriiy prede
cessor is deferred awaiting a message arrival, task i is also
deferred, and hence prevented from running).

A more detailed analysii of diwbuted precedence
constrained tasks is beyond the scope of this paper and is
the subject of current research.

4.2 Tick-dnuen scheduling

The implementation of a priority scheduler can also intro-
duce release j i i r . Consider a single processor where
periodic and sporadic tasks are scheduled by a scheduler
which is invoked by a periodic clock interrupt, the socalled
tickdriven scheduling.

Assume the period of the scheduler is Ttkk and that the
scheduler, once invoked, takes no more than C,i, compu-
tation time. Consider the following sequence of events; the
scheduler is released at time t = 0 and looks to see if the
sporadic task s is to be released (in a real tick-driven
system the scheduler might poll an VO register for the
condition for the release of s). Assume the condition for
the arrival is not true and the scheduler continues execut-
ing (ultimately terminating after taking time Crick). Just
after the time the scheduler has polled, the sporadic s

Software Engineering Journal September 1993

arrives (i.e. the condition becomes true). However, s cannot
be released until the scheduler is next invoked at time t =
Tick. Hence, the sporadic task is deferred for a maximum
time T,, , awaiting the timer which invokes the scheduler.
Fig. 5 illustrates how a sporadic task is deferred by a tick-
driven scheduler.

The tickdriven scheduler executes for C,, = 1, with
T,,, = 7. The worst-case execution time of the sporadic
task is 3 time units. As can be seen, the sporadic task is
deferred for 7 time units.
Tasks that always arrive as the scheduler is released do

not experience external blocking. In the case study
desaibed later, all periodic tasks have periods which are
exact multiples of T,, , with release times measured in
scheduler ticks, and hence these tasks can be considered
to always arrive as the scheduler is released. However, a
periodic task experiences release j i e r if its period is not an
integer multiple of the clock period.

5 Sporadically repeating tasks

Another illustration of the strength of our analytical
approach is to adapt the scheduling analysis to more
accurately describe the behaviour of socalled sporadically
repeating tasks. Very often a task arrives at a particular
time, excecutes and then rearrives periodically a fixed
number of times. This behaviour is then repeated sporadi-
cally during the execution of the @em (Fig. 6).

The task illustrated has an 'inner' period of 4 ticks, a
minimum 'outer' period of 15 ticks and a worst-case
execution time of 1 tick The task arrives periodically 3
times for each outer arrival. In Fig. 6 these occur at times
0, 15 and 40. This behaviour is quite common in real
systems; a task is initiated in response to a particular
event, and then for a short period of time periodically mon-
itors or controls a part of the system.

The model also caters for bursty sporadic tasks. An
interrupt that releases a sporadic task may be defined as
having a very short minimum anival time, but have a
maximum number of arrivals over a larger intend; the

289

I I
I

I
Fig. 6

maximum, beiig much lower than the minimum, i n t e d
would dictate. For example, in a satellite control system (to
which this scheduling model has been applied 118) bus
interrupts can occur every 960 p, but only 4 such inter-
rupts can occur every 10 ms.

If the analysii developed so far is applied to these situ-
ations, the predictions would be pessimistic as the theory
has to assume that the task executed continually. This
might result in a higher assumed interference than could
actually occur. Hawever, the general analytical approach is
well suited to extending the current analysis to remove this
pessimism.

Our general approach to ascertaining the schedulabillty
of a task is to determine the interference over a given
window (usually the worst-case response time of a task).
This interference is summed, and the window widened if
necessary. We require that a wider window always leads to
a higher interference. Hence, to ascertain the schedulabii
of a task i in the presence of higher priority sporadically
periodic tasks, we need to find an upper bound on the
interference over a window of size ri . We adopt the follow.
ing additional notation:

n, = the number of times task j executes for each ‘outer’
arrival (in Fig. 6, n = 3).
tj = the ‘inner‘ period of task j (in Fig. 6, t = 4).
Ti = the ‘outer’ period of task j (in Fig. 6, T = 15).
C, = the worst-case computation time required by the
‘inner’ task (in Fig. 6, C = 1).

For the moment, we assume that tasks do not experience
release jier. The number of full outer periods completing
within the window of size ri is bounded by

The total interference due to full outer arrivals is therefore
bounded by

n. 5 cj ’ 1 1 Ti

and lies in the range (0 . . . q]. We shall denote this value
by Qij . The interference over this remaining time is
bounded by

The above equation assumes that task j executes as a con-
tinual periodic task (with period tj) over the remaining
interval. However, task j cannot execute for more than nj
periods in this interval (since the interval covers only a par-
tially complete outer arrival), and another bound can be
obtained:

nj Cj (9)

The least upper bound can therefore be used:

(10)

Combining eqns. 10 and 7, and summing over all higher
priority tasks, we obtain

If a task j is not sporadically periodic, then we choose
n, = 1 and ti = Tj. As a check for eqn. 11, we assume
that all tasks are not sporadically periodic, and hence for
all tasks) n, = 1 and tj = 7j. From eqn. I1,we have

At most, one partially complete outer arrival can interfere
over the remaining part of the window not already
accounted for by whole arrivals. This remaining time
amounts to

= V l e h p (i) r5lCj TI

which is equal to eqn. 2. Hence, eqn. 11 is a generalisation
of eqn. 2.

We now Mum to the problem of release jitter. There are
two potential places where release jiier could occur; on an

ri - Ti:]

290 Software Engineering Journal September 1993

I I I
I I I

0 5 10

Ag. 7

outer arrival (where the first arrival of a succession of nj
inner arrivals of a taskj is deferred), and on an inner arrival
(where each of the nj arrivals could experience delay). For
simplicity, we assume that the outer arrival jitter and the
inner arrival jitter are the same. For a taskj, we assume
that this jiier is denoted Jj . Following the same argument
as for the derivation of jiier in eqn. 5, we can modify eqn.
11 to include release jitter:

1, = 1
V j e h p (i)

(12)

As with eqn. 3, an iterative equation to find ri can be for-
mulated. The worst-case response time of a task mea-
sured from arrival to termination, is again given by J, + r, .

6 Discussion and case study

In this Section, we analyse and discuss the task set of a
small avionics case study undertaken by Locke et al. 1191.

Several mostly periodic tasks implement an avionics
weapons management subsystem. There is a single spor-
adic task and a single task where the deadline of the task
is less than the period (for reduced outer ‘jiier’
requirements). Task priorities are assigned according to
the Deadline Monotonic policy. Originally, the tasks were
analysed using the Rate Monotonic schedulabili analysis
derived by Sha et al. 121. In the case study [lQ], M e et
al. report that, using this analysii, only the 8 highest pri-
ority tasks out of a set of 18 tasks could be guaranteed to
meet their deadlines. In simulations, nearly all tasks were
found to meet their timing requirements (two tasks were
reported as missing their deadlines).

Eqn. 5 was applied to the task set described by k k e et
al. [lQ], using the given priority assignment. For the single
sporadic task, a release jitter of 1000 p was assumed, to
account for the worst-case delay due to the operation of

Software Engineering Journal September 1993

the tickdriven scheduler (see the above discussion of
induced jiier from tick-driven scheduling). The other tasks
are all periodic, with periods that are multiples of Tfkt =
1000 p, and hence do not experience release jiier. Table
3 lists the tasks in priority order (task 1, the tickdriven
scheduler, is the highest priority task), and supplies the
attributes and the derived response times of the tasks
using eqn. 5. All times are given in microseconds b).
As can be seen from Table 3, our analyss predicts that

all deadlines can be met except for task 11. Locke et al.
found that task 11 did indeed miss its deadline
occasionally. They also found that task 16 missed a dead-
line once. This discrepancy can be explained if the sched-
uler implementation does not exactly agree with the
assumptions made in this paper.

The case study was implemented in Ada. Most Ada
runtime systems make use of two queues; a run-queue
which holds all runnable tasks and a delayqueue which
holds all (periodic) task that are waiting for their wit
release. At any particular tick, the number of tasks to be
moved from the delay queue to the run-queue varies
between none and sixteen. A standard runtime system will
not undertake this at a constant cost (in computation
time); hence, the value of C, of 51 p is potentially an
underestimation. Furthermore, the costs of context
switches must be accounted for accurately, along with any
blocking factors due to the operation of the system (for
example, calls to the Ada runtime in most implementa-
tions are generally not pre-emptible, and hence can induce
a blocking factor on all tasks). It is therefore unlikely that
E,, is actually zero. Eqn. 5 predicts a worst-case response
time for task 16 of 145446 p, which seems a long way
from its deadline of 200000 p. However, if the above
factors could increase the responses time by only 3.2%,
then this would push it over 15oooO p, at which point it
would suffer increased interference from tasks 3, 4, 6 and
7, and subsequently tasks 5,Q and 10. This is sufficient for
it to miss its deadline in the worst case. Without details of
the exact implementation, no fair comparison of the
results of experiments and analysis can be made. In

Table 3
i

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

51
3OOo
2000
5000
1000
3OOo
5Ooo
8ooo
goo0

2000
5000
1000
3OOo
loo0
loo0
3OOo
loo0
loo0

T#

1000
200000
25000
25000
4oooo
50000
50000
59000
80000
80000

100000
2ooMx)

200000
200000
200000
200000

lWOOOO
lWOOOO

D,

1000
5000

25000
25000
40000
50000
50000
59000
60000
Boo00

100000
2ooMx)

2w000
200000
200000
200000

1WOOOO
1000000

R.

51
3504
5906

11512
13064
16217
20821
36637
47798
48949

l l 5 W
137488
140641
141692
143694
145446
146497
147546

B,

0
300
600
900

1350
1350
750
750

1350
450

1050
450
450
450

1350
0
0
0

J, -
0
0
0
0
0
0
0
0
0
0
0

1000
0
0
0
0
0
0

291

general, however, our analysis agrees with the observed 1101 EH-, J.P.: ‘Fied priority scheduling of periodic task
behaviour. Moreover, matches the behaviour sets with arbiary deadlines’. PrW. 11th 1- Real-lime

Systems Symp., Lake Buena V i , Florida, 5-7 December more closely that the original Rate Monotonic analysis.
1990, pp. 201-209

1111 AUDSLEY, N.C.. BURNS, A., RICHARDSON, MF., and
WELUNGS. AJ.: ‘Hard real-time scheduling: the dealine 7 Summary and conclusions
monotonic approach. Proc. 8th IEEE Workshop on Real-

we have presented results which provide simple exact Tme systems and sobare, G ~ ~ ~ ~ ,
analysis for systems scheduled at runtime with a static pri- 15-17 ay 1991
ority preemptive dispatcher. The analysis has been 1121 TINDELL, K., BURNS, A., and WELUNGS, A: ’Allocating
extended to include release jitter, allowing tasks to arrive real-time tasks (an NP-hard problem made easy)’, Real-Time
and then be deferred for a bounded amount of time. The Syst., 1992.4, (2), pp. 145-165
analysis has been fulther extended to permit sporadically 1131 AUDSLEY, N.C.: ‘Resource control for hard real-time
repeating tasks to be analysed exactly. A case study [19], system: a review.’ Report YCS 159, DePament Of Com-
already analysed according to Rate Monotonic scheduling puter Science, university Of yo*
theory, has bee., reanalysed using wB theory. me basis of 1141 PARK, C.Y., and SHAW AC.: ’Experiments with a program
the analysis is the development of formulae which predict ~ ~ ~ u k ~ ~ g g ~ ~ , (~ p p ~ ~ ~ e ’ timing schema’7
the worst-case interference a task can suffer from higher 1151 p., and c,: the
priority tasks; utilisation-based analysis is not used as this time of real.time Real.nme syst.,
cannot cater for systems which contain tasks with dead- 1989,1, (2), pp. 159-176
lines less than periods. 1161 AUDSLEY, N.C., BURNS, A., RICHARDSON, ME, and

The most important aspects of our scheduling theory WELUNGS, AJ.: ‘STRESS: a simulator for hard real-time
are that older scheduling theory can be considered a system.‘ Report KTRG/91/106, Real-lime Research Group,
special case of the analysis presented in this paper Department of Computer Science, Univew of York
(systems previously analysed by the Rate Monotonic october1991
approach can now be reanalysed using more powerful
techniques), and that the analysis presented here can be misation by simulated annealing’, science. 1983. (2.W PP.

67 1-680 -nded in a * a w f o m r d manner to allow more

The Olympus attitude and orbital control system: a case complex and powerful systems to be investigated.
study in hard real-time system &gn and implementation.’

8 Acknowledgments hoc. 12th Ada-Europe Conf., Paris (Lect. Notes Comp.
&i., Springer-Verlag)

The authors would like to thank the authors of the case 1191 LOCK€, CD., VOGEL D.R, and MESLER TJ.: ‘Building a
study for help with its analysis and for comments on an predictable avionics platform in Ada: a case study‘. Proc.
earlier draft of this paper. IEEE 12th Real lime Systems Symp., San Antonio, Decem-

ber 1991

1991

1171 KlFXPATWK S.9 Gmm, CJX and ECCW MP.: ‘OPti-

[18] BURNS, A, WJJXS, kJ., BAlLEy, CM, FyFE,

9 References
10 Appendix: a brief description of STRESS

111 LIU, C.L. and LAYLAND, J.W.: ‘Scheduling algorithms for diagrams
multiprogramming in a hard real-time environment’, JACM, STRESS diagrams illustrate the =don of tasks under
1973.20, (l), pp. 46-61 the STRESS simulator. In these diagrams, time increases

121 LEHOCZKY, J.P., SHq L, and DING, V.: ‘The rate monot- from
onic sheduling algorithm: exact characterization and
average case behavior,, Technical Department of Task e x d o n is represented by boxes. A task which is

131 SHA, L, R A J K ~ R, and E H O ~ , J,P,: y ~ ~ ~ r i ~ the boxes; a task which is deferred is shown by a line at
inheritance protocols: an approach to real-time synchro- the level Of the top Of the boxes. These States are annotat.
nisation’, ed by a mriq of symbols.

141 BAKER, T.P.: ‘Stack-based scheduling of realtime pro- Task release is marked by an open low-level circle, and
cesses’, Real-Time Syst., 1991, 3, (I), 67-99 successful task completion by an open high-level circle. If

151 LEHOCU<Y, J.P., SHq L, and SmOSNIDER J.K.: ‘Enha- a task fails to meet its deadline, or otherwise fails to com-
ang aperiodic responsiveness in hard real-time environ- Kgh.level circle is used. Task deadnes

An example is shown in Fig. 7 task-0 and task-1 are California, December 1987
161 R A J K W R: ‘ReaLtime synchronisation protocols for released at times and o, have at

shared memory multiprocessors’. Proc. loth IEEE Int Conf.
on Di-uted Computing system, Paris, France, 28 fimeS 10 and 8, r e s e e k and require 6 and 3 compu-
June 1990 tation ticks, respectively. task1 is deferred for 4 ticks, exe

[-/1 AUDSLEY, N.C.: ‘Optimal priority assignment and feasibility Cutes for 3 further ticks and then COmPld= taSk-0
of static priority tasks with arbiiary start times.’ Report YCS executes for 2 ticks, before being pre-empted at tick 4 and
164, Department of Computer Science, University of York, resumed at tick 7; it fails to meet its deadline and is killed.
December 1991

181 LEUNG, J.Y.T., and WHITEHEAD, J.: ‘On the complexity of The paper was first received 15 April 1992 and in revised form 9
fixed-priority scheduling of periodic, real-time tasks’, February1993.
Perform. Eua. (Netherlands), 1982.2, (4), pp. 237-250

191 JOSEPH, M, and PANDYA, P.: ‘Finding response times in a
real-time system’, Comput. J., 1986,29, (5). pp. 390-395

to right

statjstics, ~ ~ ~ ~ ~ ~ l l ~ ~ university, Pittsburgh, 1987 pre-empted is shown by a line at the level of the bottom of

Trans., 1990, C-39, (9). pp. I 175-1 185

then a
ment’. 8th 1EEE Real-Time systems SymPv San Jose, are marked by a vetjc-1 line with a A mark at the bottom.

The authors are with the Department of Computer Science,
University of York, Heslington, York YO1 5DD, OK.

292 Software Engineering Journal September 1993

