
Real-Time Syst (2010) 46: 121–151
DOI 10.1007/s11241-010-9098-1

Reduction-based schedulability analysis of distributed
systems with cycles in the task graph

Praveen Jayachandran · Tarek Abdelzaher

Published online: 30 June 2010
© Springer Science+Business Media, LLC 2010

Abstract A significant problem with no simple solutions in current real-time liter-
ature is analyzing the end-to-end schedulability of tasks in distributed systems with
cycles in the task graph. Prior approaches including network calculus and holistic
schedulability analysis work best for acyclic task flows. They involve iterative solu-
tions or offer no solutions at all when flows are non-acyclic. This paper demonstrates
the construction of the first generalized closed-form expression for schedulability
analysis in distributed task systems with non-acyclic flows. The approach is a signif-
icant extension to our previous work on schedulability in Directed Acyclic Graphs.
Our main result is a bound on end-to-end delay for a task in a distributed system with
non-acyclic task flows. The delay bound allows one of several schedulability tests to
be performed. Using the end-to-end delay bound, we extend the delay composition
algebra developed for acyclic distributed systems in prior work, to handle loops in
the task graph as well. Evaluation shows that the schedulability tests thus constructed
are less pessimistic than prior approaches for large distributed systems.

Keywords Schedulability analysis · End-to-end delay · Real-time distributed
system · Non-acyclic systems · Problem reduction

1 Introduction

Real-time applications are becoming increasingly complex in terms of system scale
and the number of resources involved. With Moore’s Law approaching saturation,

This work was funded in part by NSF grants CNS 05-53420, CNS 06-13665, and CNS 07-20513,
and ONR grant N00014-10-1-0172.

P. Jayachandran (�) · T. Abdelzaher
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA
e-mail: pjayach2@uiuc.edu

mailto:pjayach2@uiuc.edu

122 Real-Time Syst (2010) 46: 121–151

emphasis shifts towards increasing distribution. Elegant uniprocessor solutions need
to be generalized to distributed environments. Towards that goal, in previous pub-
lications, the authors explored delay composition in pipelines (Jayachandran and
Abdelzaher 2007) and distributed systems of directed acyclic task graphs (DAGs)
(Jayachandran and Abdelzaher 2008c). An algebra was described for reducing such
DAGs to equivalent uniprocessors (Jayachandran and Abdelzaher 2008a) that can
then be analyzed using existing uniprocessor schedulability tests.

This paper significantly extends the scope of applicability of past results by intro-
ducing the first reduction-based schedulability analysis technique that applies to dis-
tributed systems with non-acyclic task graphs. Informally, a task graph is non-acyclic
if task flows in the underlying distributed system include cycles. Most common types
of traffic do, in fact, have non-acyclic behavior. For example, request-response traffic
in client-server systems includes flows (of requests) from client machines to server
machines and flows (of responses) in the reverse direction. Hence, analysis of end-to-
end client-side latency entails analysis of a non-acyclic task flow. Reliability mecha-
nisms that entail transmission and processing of acknowledgments, as well as token
passing mechanisms are other examples of systems with non-acyclic task flows.

The fundamental problem in handling task graphs that contain cycles is that the
arrival pattern of jobs to a particular node in the system is directly or indirectly de-
pendent on the rate at which jobs exit the node downstream, but that downstream
pattern is in turn dependent on the load of the node under consideration and hence on
this node’s arrival pattern. This is a cyclic dependency. A common way to break this
dependency is to impose artificial deadlines on node boundaries, thereby converting
the original distributed system problem into a set of uniprocessor schedulability tests,
one per node, that ensure that local deadlines are satisfied. The artificially-introduced
intermediate deadlines, however, constitute additional requirements not present in
the original problem formulation, thereby reducing schedulability and leading to pes-
simistic solutions. Another common approach is to introduce non-work-conserving
behavior such as the use of per-node buffering or traffic regulation. For example,
regardless of when a periodic task finishes execution on one node, it may not be con-
sidered for scheduling at the next node until the beginning of its next period. This
independence from actual completion times breaks the cyclic dependency. The ap-
proach yields good results when the end-to-end deadline of the task is of the order
of the product of its period and the number of nodes traversed. It does not work well
when tasks have end-to-end deadlines that are, for example, smaller than their period.

Existing techniques to analyze end-to-end delay in distributed systems, with-
out introducing artificial deadlines or relying on non-work-conserving behavior,
include network calculus (Cruz 1991a, 1991b) and holistic analysis (Tindell and
Clark 1994), together with various extensions such as Pellizzoni and Lipari (2005).
They can accommodate buffering but do not require it. These techniques analyze
the system one node at a time. Given information regarding the arrival pattern
of jobs entering a particular node, they analyze the execution on the node to de-
termine information regarding the exit pattern of jobs leaving the node, which in
turn becomes the arrival pattern of jobs to a future node. In the absence of cy-
cles in the task graph, one can always find a partial order, in applying per-node
analysis, such that all the required information with regard to the arrival pattern

Real-Time Syst (2010) 46: 121–151 123

of jobs to a particular node (in terms of jitter and offset information for holistic
analysis techniques, or arrival curve information for network calculus) is available
when analyzing that node. However, when the task graph does contain cycles, this
technique breaks down due to the cyclic dependency. To overcome this problem,
an iterative procedure is suggested in prior literature (Palencia and Harbour 2003;
Pellizzoni and Lipari 2005) and is shown to converge, but the process becomes quite
complicated when handling many tasks and nodes.

With the principal focus of being able to easily analyze end-to-end delay and
schedulability of tasks in systems that contain cycles in the task graph, in this pa-
per, we derive a simple expression for a worst-case task delay bound in non-acyclic
systems, cast in terms of the computation times of higher priority jobs in the sys-
tem. The result provides a natural means of handling loops and does not incur addi-
tional complexity, requirements, or non-work-conserving delays when the task graph
contains cycles, unlike existing analysis techniques. By considering the system as a
whole rather than analyzing it one node at a time, the bound accurately accounts for
the concurrency in the execution of different nodes, resulting in a less pessimistic
bound on the end-to-end delay. This is especially valuable when the system is large
and when deadlines are short (e.g., not much longer than periods).

Our expression for the delay bound does not rely on periodicity assumptions and
hence is applicable to periodic as well as aperiodic scheduling. The only assumption
made is that a job has the same relative priority across all nodes on which it executes.
With this stipulation, the bound is applicable to both static and job-level dynamic pri-
ority scheduling (e.g. EDF), as it imposes no constraints on priorities among different
jobs. We provide a simple and intuitive proof for the delay bound under preemptive
scheduling. We only state the version of the bound under non-preemptive scheduling
and omit the proof as it is similar.

Being a reduction-based approach to schedulability analysis (Jayachandran and
Abdelzaher 2008c), the derived end-to-end delay bound provides a means by which
the problem of analyzing schedulability of tasks in a distributed system with cy-
cles can be reduced to that of analyzing schedulability in an equivalent hypotheti-
cal uniprocessor. Thus, well-known uniprocessor analysis techniques can be used to
analyze the schedulability of tasks in arbitrary distributed systems. A different hy-
pothetical uniprocessor is created for the schedulability analysis of each task in the
distributed system. Further, we use the new end-to-end delay bound to generalize the
Delay Composition Algebra presented in Jayachandran and Abdelzaher (2008a) to
handle non-acyclic systems, by defining a new operator called LOOP. The LOOP op-
erator permits composition of resource nodes when tasks traverse them in different
orders, or when tasks revisit a particular node. The algebra enables us to compose
together workload in different nodes, eventually reducing any arbitrary distributed
system to a single equivalent uniprocessor workload. The equivalent uniprocessor
workload can then be analyzed to infer the end-to-end delay and schedulability prop-
erties of all the tasks in the original non-acyclic distributed system. Thus, the algebra
allows the reduction for analyzing the schedulability of all the tasks in the system to
be performed simultaneously.

We envision that this new technique to analyze task graphs that contain cycles
will lend itself towards developing a general theory of understanding timing behav-
ior in distributed systems. While we have a clear understanding of which scheduling

124 Real-Time Syst (2010) 46: 121–151

policies perform well for uniprocessors, there has been little work done in analyzing
optimal (or good) scheduling policies or optimizing priority assignment for distrib-
uted tasks. As the end-to-end delay bound is estimated after the priorities of jobs
have been assigned, it can be used to optimize priority assignment based on different
metrics such as minimizing end-to-end delay or maximizing the system utility. Other
design issues such as how to optimally route tasks within the system, require an in-
depth understanding of how system topology affects end-to-end delay. We hope that
future work will address these critical issues and provide us with a better understand-
ing of timing behavior in distributed systems.

The rest of this paper is organized as follows. We review related work in Sect. 2.
We describe the system model in Sect. 3 and state and prove the end-to-end delay
bound for jobs in non-acyclic systems in Sect. 4. In Sect. 5 we briefly describe how
the end-to-end delay bound can be used to reduce the schedulability problem of tasks
in distributed systems to that of analyzing an equivalent hypothetical uniprocessor.
We illustrate the advantage of using the analysis technique presented in this paper
using an example in Sect. 6. In Sect. 7, we present simulation studies to evaluate the
delay bound. We present the extension of the Delay Composition Algebra to handle
non-acyclic systems in Sect. 8. We illustrate the algebra with an example in Sect. 9.
We conclude the paper in Sect. 10. In Appendix, we present the proof of correctness
of the algebra.

2 Related work

The problem of analyzing the schedulability of tasks in distributed systems has been
studied using various techniques in the past. However, these techniques become more
pessimistic or provide no solutions when the task graph contains cycles and when the
system is large. We lack a clear understanding of how cycles in the task graph affect
the end-to-end delay and schedulability of tasks.

Algorithms such as Xu and Parnas (1993), Fohler and Ramamritham (1997) have
been proposed to statically schedule precedence constrained tasks in distributed sys-
tems. A schedule of length equal to the least common multiple of the task periods is
constructed, that would precisely define the time intervals of execution of each job.
Clearly, these algorithms have exponential time complexity and are not suited for
large distributed systems.

Offline schedulability tests have been proposed that divide the end-to-end deadline
of tasks into per-stage deadlines. The end-to-end task is then considered as several
independent sub-tasks, each executing on a single stage in the system. Uniprocessor
schedulability tests are then used to analyze if each stage is schedulable. If all the
stages are schedulable, the system is deemed to be schedulable. We refer to this tech-
nique as traditional in our simulation studies. For instance, Kao and Garcia-Molina
(1997), Zhang et al. (2005) present techniques to divide the end-to-end deadline into
per-stage deadlines. While this technique does not incur any problems with handling
cycles in the task graph, it tends to be extremely pessimistic and does not accurately
account for the inherent parallelism in the execution of different stages. A technique
that combines offline and online scheduling is proposed in Natale and Stankovic

Real-Time Syst (2010) 46: 121–151 125

(1994). Here, precedence and communication constraints are converted offline into
per-stage pseudo deadlines for each task. Online scheduling is then used to efficiently
determine feasibility.

Holistic analysis was first proposed in Tindell and Clark (1994), and has since had
several extensions such as Palencia and Harbour (2003), Pellizzoni and Lipari (2005)
that propose offset-based response time analysis techniques for EDF. In addition to
the computation time and period, tasks are characterized by two other parameters,
namely the jitter and the offset. The fundamental principle behind holistic analysis
and its extensions is that, given the jitter and offset information of jobs arriving at a
stage one can compute (in a worst-case manner) the jitter and offset for jobs leav-
ing the stage, which in turn defines the arrival pattern for jobs to a subsequent stage.
By successively applying this process to each stage in the system, one can compute
a worst-case bound on the end-to-end delay of jobs. However, this technique works
only in the absence of cycles in the task graph. In the presence of cycles, the jitter
and offset of jobs at a stage (that is part of the cycle) becomes directly or indirectly
dependent on the jitter and offset of jobs leaving the stage, resulting in a cyclic de-
pendency. To overcome this problem, an iterative procedure is described in Palencia
and Harbour (2003), Pellizzoni and Lipari (2005) which is shown to converge. This
solution technique, however, becomes tedious, complicated and quite pessimistic for
large task graphs with tens of nodes.

From the networking perspective, network calculus (Cruz 1991a, 1991b) was pro-
posed to analyze the end-to-end delay of packets of flows. This was applied to the
context of real-time systems, called Real-Time Calculus first presented in Thiele et
al. (2000), and has since been extended to handle different system models such as
Jonsson et al. (2008), Wandeler et al. (2004). In approaches based on network cal-
culus, the arrival pattern of jobs of flows is characterized by an arrival curve. Given
a service curve for a node based on the scheduling policy used, one can determine
the rate at which jobs leave the node after completing execution, which in turn serve
as the arrival curve for the next stage in the flow’s path. For task graphs that contain
cycles, we are faced with the same cyclic dependency problem. In Cruz (1991b), a
general solution to this problem is presented by setting up a system of simultaneous
equations, which becomes difficult or impossible to solve for large systems. There is
no means by which the solution can be efficiently automated for arbitrary task graphs.
A comparison of holistic analysis and network calculus was conducted in Koubaa and
Song (2004), where holistic analysis was found to be less pessimistic than network
calculus in general. We show in the evaluation section that these techniques tend to
become increasingly pessimistic with system scale. In contrast, in this paper, we de-
rive a simple bound on the end-to-end delay of a job in terms of the computation times
of higher priority jobs that can delay it. It accurately accounts for parallelism in the
execution of different stages, resulting in a less pessimistic estimate of the end-to-end
delay.

A delay composition theorem that bounds the worst-case end-to-end delay of jobs
in pipelined systems under preemptive and non-preemptive scheduling was derived
in Jayachandran and Abdelzaher (2007, 2008b). This was extended to DAGs, and
also to partitioned resources (e.g., TDMA scheduling) in Jayachandran and Abdelza-
her (2008c). An algebra called Delay Composition Algebra was developed to reduce

126 Real-Time Syst (2010) 46: 121–151

acyclic distributed systems to equivalent uniprocessors for the purpose of schedula-
bility analysis in Jayachandran and Abdelzaher (2008a). In this paper, we provide an
end-to-end delay bound for tasks in distributed systems that contain cycles in the task
graph. Further, we show how the algebra presented in Jayachandran and Abdelzaher
(2008a), can be extended to handle non-acyclic systems. This is achieved by defining
a new operator in the algebra called the LOOP.

3 System model

Our model of non-acyclic distributed processing consists of a distributed system of N

nodes and a set of real-time jobs. These jobs may or may not be instances of periodic
tasks. Our proof techniques do not rely on periodicity assumptions. Each node is a
resource, which is anything that is allocated to jobs in priority order. For instance, the
resource could be a processor or a point-to-point communication link. A given job,
Jk , has the same relative priority across all resources in the distributed system. This
is not too restrictive a limitation, as this is a feasible assumption for several classes
of systems including automobile systems, performance-sensitive server farms, and
avionics. Different jobs require processing at a different sequence of nodes in the
distributed system, and may have different start and end nodes.

Since jobs may revisit nodes, it is useful to differentiate between nodes and stages
visited by a job. A stage is simply an instance of visiting a node. For example, a
job that visits nodes 1, 2, then 1 is said to have a sequence of three stages, during
which it visits the aforementioned nodes. Let the sequence of stages traversed by
job Jk be called its path, pk . In a departure from our previously published models
(Jayachandran and Abdelzaher 2007, 2008a, 2008c), the union of paths traversed by
all jobs may contain loops. For example, a job can revisit a node, or two jobs can
visit two nodes in different orders. We therefore say that the path of job Jk contains
one or more folds. A fold of Jk starting at node i is the largest sequence of nodes
(in the order traversed by job Jk) that does not repeat a node twice. The first fold
on path pk starts with the first node that Jk visits. We denote the xth fold of job Jk

by J x
k . For instance, if Jk has the path (1,2,3,1,5,6,2), it is said to have two folds,

namely (1,2,3) and (1,5,6,2), denoted by J 1
k and J 2

k respectively. If the path of a
job is acyclic, then it has only one fold that contains the whole path. The intuition for
defining folds is that when jobs revisit a node multiple times, they may delay other
jobs more than once on the same stage. In contrast, a single fold (of a job) can delay
other jobs at most once per stage. Hence, folds will simplify the presentation of our
proof. We denote the set of all folds of job Jk by Qk .

Each job Jk must complete execution on all stages along its path pk within its
prespecified end-to-end deadline. The union of all the job paths forms a task graph.
An arc in the task graph represents the direction of execution flow of a job, yielding
a precedence constraint between the execution of the sub-jobs at the head and tail
nodes of the arc. Observe that the task graph may contain cycles even if all jobs had
one fold each. For example, consider a system of two jobs that traverse a sequence
of nodes in opposite directions, such as the one shown in Fig. 1. The task graph for
this system contains a loop, as shown in Fig. 1, even though individual jobs do not.

Real-Time Syst (2010) 46: 121–151 127

Fig. 1 A task graph with a
cycle

Hence, loops in the task graph capture cyclic dependencies that may involve one or
more jobs.

Let Ck,j denote the worst-case execution time of job Jk on stage j in its path
(simply called execution-time or stage execution time in the rest of this paper), and
let Dk denote the relative end-to-end deadline of job Jk . The problem addressed in
this paper is to determine whether or not all deadlines are met.

4 Delay in non-acyclic task graphs

In this section, we present the derivation of a worst-case end-to-end delay bound for a
job in a distributed system with loops in the task graph under preemptive scheduling.
This derivation enables construction of compact schedulability tests to determine if
the system is schedulable. The worst-case end-to-end delay bound for a job is ex-
pressed in closed-form in terms of the computation times of higher priority jobs that
can preempt or delay it. Towards the end of this section, we state the end-to-end delay
bound when the scheduling is non-preemptive, and omit the proof in the interest of
brevity.

Let all jobs be numbered in priority order such that larger integers denote higher
priority. When analyzing the delay of a job, since scheduling is preemptive and there
is no blocking in our model, lower priority jobs can be ignored. Hence, without loss
of generality, let the job whose end-to-end delay we wish to bound be denoted by J1.
This job executes along a path p1 in the distributed system, where p1 may contain
one or more folds.

We ignore the precedence constraints between successive folds of each higher
priority job Ji , where i > 1. Thus, each fold of a higher priority job Ji becomes an
independent job. We denote the xth fold of job Ji by (job) J x

i . We call this process
unfolding. Observe that unfolding does not eliminate cycles in the task graph because
different folds of the same or different jobs can still visit nodes in different orders.
Unfolding ensures, however, that job J1 is delayed by any one fold (of a higher-
priority job) at most once per J1’s stage.

It is easy to show that unfolding cannot decrease the delay of job J1. Hence, if
J1 is schedulable after unfolding, then it is schedulable in the original job set. This
is because unfolding merely removes some of the (precedence) constraints between
stages of higher priority jobs. Hence, it increases the set of feasible higher-priority
task arrival patterns that one needs to consider. A bound on J1’s delay computed by
maximization over the larger set of possible arrival patterns can only be larger than
one computed by maximization over the subset that respects the removed constraints

128 Real-Time Syst (2010) 46: 121–151

Fig. 2 Three segment types

(thus erring on the safe side). In the following, we therefore consider the unfolded
job set when analyzing the delay of J1.

Note that, a fold J x
i can only preempt or delay J1 when it shares a common execu-

tion node or a common sequence of nodes with J1. Let us define a job segment J
x,s
i

as J x
i ’s execution on a sequence of consecutive nodes on the path of J x

i that is also
traversed by J1 either in the same order or exactly in reverse order. Let Segx

i be the
set of all such segments for J x

i . For example, if J1 has the path (1,2,1,3,8,11,13)

and J x
i has the path (1,3,19,13,11,8), then Segx

i = {J x,1
i , J

x,2
i }, where J

x,1
i is the

part of J x
i that executes on nodes (1,3), and J

x,2
i is the part of J x

i that executes on
nodes (13,11,8).

Consider J1 and the job segments (segments for short) that delay or preempt its
execution. Each such segment falls in one of three categories:

• Forward flow segments: Those are segments that share a consecutive set of stages
with J1 and traverse them in the same direction.

• Reverse flow segments: Those are segments that share a consecutive set of stages
with J1 and traverse them in the opposite direction.

• Cross flow segments: Those are segments composed of only one node. For exam-
ple, such a segment may result from intersection of the path of J1 with the path of
another job in one node.

Figure 2 shows an example where the path of J1 traverses five stages. Higher-
priority job segments that share parts of that path are indicated by arrows that extend
across the stages they execute on, pointing in the direction of the flow of the segment.
Cross-flow segments are indicated by vertical arrows at the node they execute on.

Consider the interval of time starting from the arrival time of J1 to the system, un-
til the finish time of J1 on its last stage. The length of this interval is the end-to-end
response time of J1, which we wish to bound. Let us now define a busy execution
trace, to mean a sequence of contiguous intervals of continuous processing on suc-
cessive stages of path p1 that collectively add up to the end-to-end delay of J1. The
intervals are contiguous in the sense that the end of a processing interval on one stage
is the beginning of another processing interval on the next stage of path p1. There
may be many execution traces that satisfy the above definition. To reduce the num-
ber of different possibilities we further constrain the definition by requiring that each
processing interval in the trace end at a job boundary (i.e., when some job’s execution
on that stage ends, which we shall call the job’s finish time at that stage). Hence, the
definition of a busy execution trace is as follows:

Real-Time Syst (2010) 46: 121–151 129

Fig. 3 An execution trace

Definition 1 A busy execution trace through path p1 is a sequence of contiguous
intervals starting with the arrival of J1 on stage 1 and ending with the finish time of
J1 on the last stage of p1, where (i) each interval represents a stretch of continuous
processing on one stage, j , of path p1, (ii) the interval on stage j ends at the finish
time of some job on stage j , (iii) successive intervals are contiguous in that the end
time of one interval on stage j is the start time of the next interval on stage j + 1,
and (iv) successive intervals execute on consecutive stages of path p1.

Figure 3 presents examples of execution traces. In this figure, J1, whose execution
is indicated in black, traverses four stages, while being delayed and preempted by
other jobs. The arrival time of J1 to the first stage and its finish time on the last stage
are indicated by J1 in and J1 out, respectively. Traces are depicted as staircase lines
where the horizontal parts represent busy intervals at successive stages of p1, and
the vertical parts represent traversals to the next stage. Trace A and Trace B, in the
figure, are examples of valid busy execution traces by our definition. Trace C does
not satisfy the definition because it ends (i.e., runs into idle time) before the finish
time of J1 on the last stage. Remember that a busy execution trace, by definition,
cannot contain idle time, since it is composed of contiguous intervals of continuous
processing, ending with the finish time of J1 on its last stage. In the following, we
shall bound the length of a valid busy trace, hence, bounding the end-to-end response-
time of J1.

Observe that given work-conserving scheduling on all nodes, at least one busy
execution trace always exists. Namely, it is the trace composed of the waiting intervals
of J1 on successive stages. This trace is indicated by Trace A in Fig. 3. We call
this trace the trace of last traversal because it ends its intervals on each stage at the
finish time of the last (i.e., lowest priority) job. Let us now define the trace of earliest
traversal as follows.

Definition 2 A trace of earliest traversal is a busy execution trace in which the end
of an interval on stage j coincides with the finish time of the first job segment on
stage j that (i) moves on to stage j + 1 next, and (ii) shares at least one future stage
k > j with J1, where both execute in the same busy period (or is J1).

130 Real-Time Syst (2010) 46: 121–151

The second condition in the definition prevents construction of invalid traces, such
as Trace C in Fig. 3, that run into idle time before the completion of J1 on the last
stage. Because of that condition, one can show by induction that if starting at the
first stage, there exists any valid execution trace from the current point on (which is
always the case), then no stage traversal in the earliest traversal trace leads to a point
that invalidates that property. Consequently, the trace of earliest traversal is always a
valid trace.

Bounding the end-to-end delay of J1 is equivalent to bounding the length of the
trace of earliest traversal. First, we bound the amount of execution time that each
types of job segments may contribute to the earliest traversal trace. For the purpose
of expressing the aforementioned bound in a compact manner, it is convenient at this
point to define C

x,s
i,max to denote the maximum single-stage execution time of segment

J
x,s
i over its joint path with J1, and define Nodej,max to denote the maximum stage

execution time of all job-segments J
x,s
i on node j . The three lemmas below bound

delays due to the three types of segments depicted in Fig. 2; namely, the forward flow
segments, reverse flow segments and cross segments. We start with the most obvious
ones first.

Lemma 1 A cross-flow segment, J
x,s
i , contributes at most one stage computation

time to the length of the earliest traversal trace (bounded by C
x,s
i,max).

Proof The lemma is trivially true since cross traffic segments, by definition, have
only one stage. �

Lemma 2 A reverse-flow segment, J
x,s
i , contributes at most one stage computation

time to the length of the earliest traversal trace (bounded by C
x,s
i,max).

Proof The lemma is true because reverse flow segments execute on the nodes of the
system in the reverse order from J1. Since the earliest traversal trace follows the path
of J1, if J

x,s
i was included in the interval of the trace at stage j , then it must have

departed stage j + 1 before the beginning of the interval of the trace on stage j + 1.
Similarly, it will arrive at stage j − 1 after the end of the interval of the trace on stage
j − 1. �

Lemma 3 The total contribution of all forward-flow segments, J
x,s
i , to the length of

the earliest traversal trace is bounded by:

∑

segments

C
x,s
i,max +

∑

forward-flow
segments

C
x,s
i,max +

∑

j∈p1

Nodej,max (1)

Proof Let us define the end stage of a forward-flow job segment as either its last
stage or the stage after which it is always separated by idle time from J1 (and hence
need not be considered further), whichever comes first. It is convenient to partition
the contribution of forward-flow segments to the length of the trace into (i) the total
length due to stage execution times of segments at their end stages, denoted by Cff1 ,

Real-Time Syst (2010) 46: 121–151 131

(ii) the total length due to stage execution times of segments that preempt other seg-
ments and execute ahead of lower priority segments that arrived earlier at the stage,
denoted by Cff2 , and (iii) the total length of stage execution times of segments not at
their end stages, and that do not preempt another segment, denoted by Cff3 .

To bound Cff1 , the total length due to stage execution times of segments at their
end stages, note that each forward-flow segment, J

x,s
i , has only one end stage. Its

length is at most C
x,s
i,max. The total of all end-stage computation times over all seg-

ments is thus given by:

Cff1 ≤
∑

forward-flow
segments

C
x,s
i,max (2)

To bound, Cff2 , note that, each segment can preempt another segment at most
once along the earliest traversal trace. Consider a segment J

x,s
i that preempts another

segment in the earliest traversal trace at stage j . By definition of the earliest traversal
trace (see Definition 2), starting from the time this preemption occurs, no segment
of lower priority than J

x,s
i can be a part of the earliest traversal trace until the end

stage of J
x,s
i . Therefore, J

x,s
i will not preempt any other segment in the earliest

traversal trace. Thus, the total length of stage execution times of segments in the
earliest traversal trace that preempt and execute ahead of lower priority segments that
arrived earlier is bounded by:

Cff2 ≤
∑

segments

C
x,s
i,max (3)

To bound Cff3 , observe that, there exists at most one execution time of a segment
at each stage of the earliest traversal trace that is not an end stage of a segment and
that does not execute ahead of a lower priority segment that arrived earlier in the
earliest traversal trace (that is, not bounded by Cff1 or Cff2). Let us assume the
contrary and suppose that there are two execution times of segments Ji and Jk at a
stage j in the earliest traversal trace that are not included in Cff1 or Cff2 . Without
loss of generality, let us also assume that Ji arrives at stage j before Jk . Now, Jk

cannot be a higher priority segment that arrives after Ji and completes execution
before Ji (covered under Cff2). Thus, Jk can start executing on stage j only after Ji

completes execution. As stage j is not the end stage of Ji , by definition, the portion of
the earliest traversal trace on stage j should end with the execution of Ji and cannot
include the execution of Jk , resulting in a contradiction. Therefore, there exists at
most one execution time of a segment at each stage of the earliest traversal trace that
is not bounded under Cff1 or Cff2 . Thus,

Cff3 ≤
∑

j∈p1

Nodej,max (4)

Adding up Cff1 , Cff2 and Cff3 , given by (2), (3), and (4), the lemma follows. �

Consider all jobs Ji , each made of a set of folds, denoted by Qi , where each fold
J x

i ∈ Qi gives rise to one or more segments, J
x,s
i , collectively called set Segx

i . The
following theorem presents the delay bound on J1 in the system.

132 Real-Time Syst (2010) 46: 121–151

Theorem 1 For a preemptive, work-conserving scheduling policy that assigns the
same priority across all stages for each job, and a different priority for different
jobs, the end-to-end delay of a job J1 following path p1 can be composed from the
execution parameters of higher priority jobs that delay or preempt it as follows:

Delay(J1) ≤
∑

i

∑

J x
i ∈Qi

∑

J
x,s
i ∈Segx

i

2C
x,s
i,max +

∑

j∈p1

Nodej,max (5)

Proof The theorem follows trivially from Lemmas 1, 2, and 3, by adding the contri-
butions of all cross-flow, reverse-flow, and forward-flow segments to the trace. �

We shall now state the theorem under non-preemptive scheduling, but omit its
proof. Let Nodej,all_max denote the maximum computation time of any job (not just
higher priority jobs) on stage j , and let Nodej,lower_max denote the maximum compu-
tation time of any lower priority job that joins the path of J1 on stage j .

Theorem 2 For a non-preemptive scheduling policy that assigns the same priority
across all stages for each job, and a different priority for different jobs, the end-to-end
delay of a job J1 following path p1 can be composed from the execution parameters
of jobs that delay it as follows:

Delay(J1) ≤
∑

i

∑

J s
i ∈Qi

∑

J
x,s
i ∈Segx

i

C
x,s
i,max +

∑

j∈p1

Nodej,all_max +
∑

j∈p1

Nodej,lower_max

(6)

The above delay bound for any job can be calculated in O(MN) time, where N is
the number of stages in the system and M is the number of tasks. Each higher priority
task’s path can be broken down into various segments and the maximum computation
time for the task on each of its segments can be calculated in O(N) time. This has to
be repeated for at most M tasks. Likewise, the maximum computation time of higher
priority tasks on a stage, Nodej,max, can be calculated in O(M) time and this needs
to be repeated for at most N stages. Therefore, the net complexity of calculating the
delay bound is O(MN). In contrast, existing techniques to calculate the end-to-end
delay bound for tasks such as holistic analysis and network calculus, have a pseudo-
polynomial time complexity as they involve an iterative solution until convergence is
reached.

5 Schedulability analysis

In the previous section, we derived the end-to-end delay bound assuming knowledge
of all higher priority jobs that are concurrently present in the system. We were not
concerned with how to determine such a set of higher priority jobs that interfere with
the job under consideration (for instance, determining the number of instances of a
higher priority periodic task that interfere with the job under consideration). It simply
proves a fundamental property of delay composition over any such set. However, for

Real-Time Syst (2010) 46: 121–151 133

the purpose of schedulability analysis, it is important to determine this set of higher
priority jobs. Trivially, in the worst case, this set will include all jobs whose active
intervals (interval between their arrival time to the system and their deadline) overlap
that of the job under consideration. By reducing the problem of schedulability analy-
sis to that of analyzing an equivalent uniprocessor, similar to the technique presented
in Jayachandran and Abdelzaher (2008c), we delegate the problem of identifying the
set of interfering higher priority jobs to the uniprocessor schedulability analysis used.

To analyze the schedulability of a job J1, the transformation is carried forth as
follows:

• Each higher priority job-segment J
x,s
i in the distributed system, is replaced by a

uniprocessor job J
x,s∗
i with computation time equal to 2C

x,s
i,max and same deadline

as Ji ;
• Job J1 is replaced by a uniprocessor job J ∗

1 with computation time equal to
C1,max + ∑

j∈p1
Nodej,max and deadline same as J1

If the uniprocessor job J ∗
1 is schedulable, so is job J1 in the original distributed

system (proof of this statement is similar to the description in Jayachandran and Ab-
delzaher 2008c). The uniprocessor is constructed such that the worst-case delay of J ∗

1
in the uniprocessor is no less than the end-to-end delay bound of J1 in the distributed
system, as derived in the previous section. If the delay of J ∗

1 on the uniprocessor is
less than its deadline (inferred using uniprocessor schedulability analysis), the delay
of J1 in the distributed system will also be less than its deadline. In the case of peri-
odic tasks, uniprocessor jobs which are invocations of the same periodic task can be
grouped together to form a periodic task on the uniprocessor. When the end-to-end
deadlines of tasks are larger than the period, then for each higher priority task Ti we
need to account for the task invocations that can be present in the system when J1
arrives, which can be bounded by �Di/Pi�. Further, if the task T1 being analyzed
has cycles in its path, then earlier invocations of T1 may delay invocations that ar-
rive later. Therefore, T1 also needs to be included in the set of higher priority tasks.
When the end-to-end deadline of tasks is lesser than the period, then T1 need not be
included as a higher priority task when analyzing its schedulability. A more detailed
description of how the reduction can be performed for periodic tasks is provided in
our earlier work (Jayachandran and Abdelzaher 2008b).

The end-to-end delay bound for non-acyclic systems derived in this paper, thus
enables any uniprocessor schedulability test to be used to analyze the schedulability
of jobs in the distributed system. If tests such as the Liu and Layland test (Liu and
Layland 1973) for periodic tasks is used as the uniprocessor test, then closed-form
expressions can be derived for analyzing the schedulability of tasks in distributed
systems that contain cycles.

6 An illustrative example

In this section, we shall illustrate using a simple example, as to how the bound derived
in this paper can result in tighter end-to-end delay estimates for non-acyclic task
systems. We consider a system consisting of four nodes or stages, namely S1, S2,

134 Real-Time Syst (2010) 46: 121–151

Fig. 4 Figure showing the
paths followed by the tasks T1
and T2 in the example

S3, and S4. We consider two tasks, T1 and T2, with T2 having a higher priority than
T1. Let the period equal to the end-to-end deadline of T2 be 10 units, and that of T1

be 12 units. Task T2 follows the path S1–S2–S3–S4, and T1 follows the path S1–S2–
S3–S4–S3–S2–S1, as shown in Fig. 4. Let the sub-job of T2 executing on stage j be
denoted as T2,j . The sub-jobs of T1 are denoted as T1,1, T1,2, . . . , T1,7 in the order in
which they execute. For simplicity, let us assume that the computation times for each
task on every stage is one unit. The objective is to estimate the end-to-end delay and
schedulability of T1.

Let us first analyze the system using holistic analysis (Tindell and Clark 1994).
The response time for each sub-task is at least as large as the computation time. So,
the initial response times R0

1,j = 1, and the jitter for all sub-jobs is set to zero J 0
1,j = 0.

We now start the iterative process of estimating new response times, and updating the
response times based on the jitter values. In the first iteration, each sub-job of T1

is delayed by one invocation of T2. Also, T1,1 and T1,7 interfere with each other as
they execute on the same node (likewise, T1,2 and T1,6, T1,3 and T1,5 interfere with
each other). Let us assume that a sub-job with a lower index has a higher priority.
We therefore obtain R1

1,1 = R1
1,2 = R1

1,3 = R1
1,4 = 2, and R1

1,5 = R1
1,6 = R1

1,7 = 3
(these sub-jobs are delayed by T2 and the lower index sub-job of T1). We now update
the jitter values as the sum of the jitter and response-time of the sub-job executing
on the previous stage. That is, J 1

1,1 = 0, J 1
1,2 = 2, J 1

1,3 = 4, J 1
1,4 = 6, J 1

1,5 = 8, J 1
1,6 =

11, J 1
1,7 = 14. We need to follow this iterative process until convergence, but even at

the first iteration the end-to-end response time of T1 exceeds its end-to-end deadline,
and T1 is declared unschedulable. One can see that this process will quickly lead to
the end-to-end response time to blow up for large systems.

Improvements to holistic analysis have been presented in Palencia and Harbour
(2003), Pellizzoni and Lipari (2005), that use the notion of offset instead of jitter.
One problem with holistic analysis is that by assuming the response time at a stage
to be the jitter for the next stage, the jitter values increase with longer path lengths.
To overcome this problem (Palencia and Harbour 2003; Pellizzoni and Lipari 2005)
set the response time at a stage to be the offset for the next stage. The offset value de-
notes the minimum time after which the sub-job is activated. This makes the analysis
more accurate, but more complicated as well. Using this analysis, we can obtain the
response times for the sub-jobs of T1 in the first iteration as R1,j = 2, for j = 1..7.
Here again we need to perform an iterative process until convergence, but just the first

Real-Time Syst (2010) 46: 121–151 135

iteration tells us that the end-to-end response time estimate of 14 units for T1 from
this analysis also exceeds the end-to-end deadline of 12 units.

The fundamental problem with the above analysis is that T2 delays a sub-job of T1
at every stage along its path from stage S1 to S4 (the response time of each sub-job is
calculated as 2 units). However, in reality this is not the case. When an invocation of
T2 delays an invocation of T1 at stage S1, as it has the highest priority, it will execute
on future stages without waiting and hence will never delay T1 on the remaining
stages. By analyzing the system one stage at a time, existing analysis techniques fail
to accurately account for the parallelism in the execution of different stages in the
distributed system. Now, let us analyze the schedulability of T1 based on the end-to-
end delay bound derived in this paper. As the end-to-end deadline of T1 is not larger
than the period, we do not have to include T1 in the set of higher priority tasks. So, T2
is the only higher priority task and has only one segment with T1. We therefore create
a uniprocessor task T ∗

2 with a computation time of 2 units (twice the maximum stage
execution time) and period of 12 units. We construct a task T ∗

1 with a computation
time of 1 + 7 = 8 time units (its own computation time of 1 unit and the sum of the
maximum execution times of any job at each of the seven stages along the path of
T1). Using the response time analysis test proposed by Audsley et al. (1993) for the
hypothetical uniprocessor, we obtain the worst-case end-to-end response time of T1
as 8 + 2 = 10 units. Thus, T1 is found to be schedulable in the original distributed
system. By analyzing the system as a whole, the end-to-end delay bound derived in
this paper is able to provide a more accurate bound on the end-to-end delay of tasks
in distributed systems with cycles in the task graph.

7 Evaluation

In this section, we evaluate the end-to-end delay bound derived in this paper for non-
acyclic systems using simulation studies for periodic tasks. We compare it with three
other analysis techniques. We call the first the traditional test, that breaks the end-to-
end deadline of each task into per-stage deadlines and analyzes each stage indepen-
dently. If all per-stage deadlines are met then the system is deemed to be schedulable.
The second test is holistic analysis applied to non-acyclic systems (Tindell and Clark
1994), that uses an iterative procedure to converge to worst-case response time values
at each stage for every task. While extensions to holistic analysis such as Palencia and
Harbour (2003), Pellizzoni and Lipari (2005) have been proposed, these techniques
also become increasingly pessimistic with system scale similar to holistic analysis,
and become complex to use for large systems with hundreds of tasks. The third test
is based on our own previous work for acyclic systems (Jayachandran and Abdelza-
her 2008c), by cutting any cycles in the system and relaxing precedence constraints
(this only causes the test to be more pessimistic as an adversary has greater flexibility
in choosing arrival times so as to cause worst-case delay). We do not compare with
network calculus (Cruz 1991a, 1991b) or its extensions such as Jonsson et al. (2008),
as the solution to handle cycles in the task graph requires that a system of simulta-
neous equations be constructed, and it may be difficult or even impossible to obtain
delay bounds for certain scenarios. Further, previous comparisons such as Koubaa

136 Real-Time Syst (2010) 46: 121–151

and Song (2004) have found holistic analysis to perform better than network calculus
approaches. For each test we construct an admission controller that would admit as
many tasks as it can deem feasible, and measure the average per stage (resource) uti-
lization achieved. Utilization of a stage or resource is defined as the fraction of time
the resource is busy serving a task. The default value of the total number of tasks
presented to the admission controllers was increased as a function of system size,
maintaining the ratio of tasks to stages to be 25.

The schedulability test used is assumed to be deadline monotonic scheduling. We
consider two types of non-acyclic traffic. The first reflects request-response type traf-
fic, where the request follows a sequence of execution nodes, and the response follows
the same set of nodes but in the opposite direction. The second traffic type emulates
cyclic requests, where each task follows a sequence of nodes from S1 to Sn and re-
turns in the opposite direction from Sn−1 to S1. Thus, each task executes twice at
each stage except Sn, once in the forward direction and once in the reverse direction.
In the first scenario, the request and the response are separate tasks, but in the second
scenario, a single task includes the forward and reverse paths. Note that in the second
traffic type, each task’s path contains cycles, whereas in the first scenario, the task
paths are acyclic, but with tasks going in opposite directions. The larger jitter values
due to the presence of cycles in each task’s paths causes holistic analysis to perform
worse in the second scenario (as observed in our simulation studies below), although
the two traffic types are seemingly similar to one another.

End-to-end deadlines of tasks are chosen as 10xa simulation seconds, where x

is a uniformly varying real value between 0 and DR (deadline ratio parameter), and
a = 500 · N , where N is the number of stages on which the task executes. Such a
choice of deadline values enables the deadlines of tasks to vary by a factor of 10DR.
The default value of DR is assumed to be 2.0. Task periods are assumed to be equal
to the end-to-end deadline. The execution times of tasks at each stage is chosen using
a uniform distribution with mean DT

N
, where D is the end-to-end deadline, and T is

called the task resolution parameter. The task resolution is defined as the ratio of the
sum of computation times of the task over all stages to the end-to-end deadline. The
default value of T is chosen as 1 : 50. The stage execution times were chosen within
a range up to 10% on either side of the mean. The response time analysis technique
presented by Audsley et al. (1993) is used as the schedulability test for the composed
hypothetical uniprocessor for the end-to-end bound presented in this paper and the
delay bound for acyclic systems in Jayachandran and Abdelzaher (2008c).

Each point in the figures below represent average values obtained from 100 exe-
cutions, with each execution consisting of 80000 task invocations of all tasks in the
system taken together. For the purpose of comparing different admission controllers,
each admission controller was allowed to execute on the same 100 task sets. The 95%
confidence interval for all the values presented is within 1% of the mean value, and
is not plotted for the sake of legibility.

In Fig. 5, we compare the average per-stage utilization of the four schedulability
tests for different number of nodes in the system for request-response type traffic. So,
for each task there are other tasks that traverse the system in the same direction as
well as in the opposite direction. The end-to-end delay bound presented in this paper
is able to ensure nearly the same per-stage utilization regardless of the number of

Real-Time Syst (2010) 46: 121–151 137

Fig. 5 Comparison of average
per stage utilization for different
number of stages in the system
for request-response type traffic

Fig. 6 Comparison of average
per stage utilization for different
deadline ratio parameter values
for request-response type traffic

stages in the system. In contrast, all the other tests become increasingly pessimistic
with system scale. The acyclic bound after cutting loops performs poorly as for each
job that traverses the system in the opposite direction, the cycles are broken by cutting
the job at every link creating N independent sub-jobs. These sub-jobs can therefore
arrive independently of each other in a worst-case manner so as to delay the lower
priority job at every stage. Holistic analysis and the traditional test analyze the system
one stage at a time and fail to accurately account for the parallelism in the execution
of different stages. For large systems, the jitter for downstream sub-jobs becomes
large as the jitter increases with increasing number of nodes in the task path, causing
holistic analysis to perform poorly for large system sizes.

For the same traffic pattern, for a system of 10 stages, we vary the deadline ratio
parameter and plot the results in Fig. 6. A larger value of the deadline ratio parameter
implies that the range of deadline values is larger. This allows lower priority tasks
with large deadlines to execute in the background of higher priority tasks with shorter
deadlines, increasing the overall utilization of the system. This trend is observed for
all the four schedulability tests. The new bound significantly outperforms the other

138 Real-Time Syst (2010) 46: 121–151

Fig. 7 Comparison of average
per stage utilization for different
values of the number of tasks
presented to the admission
controllers

Fig. 8 Comparison of average
per stage utilization for different
number of stages in the system
for the cyclic requests traffic
type

tests for all deadline ratio parameter values and experiences a similar (seemingly
linear) improvement with increasing DR values as the holistic and traditional tests.

For a system with 15 stages and a deadline ratio parameter of 2, we vary the
number of tasks presented to the admission controllers. We plot the average per stage
utilization as a function of the number of tasks in Fig. 7. For a small system load of
100 tasks, we notice that all the schedulability tests admit all the tasks, except the
test that cuts cycles and relaxes precedence constraints. As the offered load increases,
we notice that our new analysis technique is able to admit more tasks than the other
schedulability tests and achieve a higher average per-stage utilization. There is no
increase in the average per-stage utilization beyond 400 tasks, as no more tasks can
be admitted. This demonstrates that the test performs well regardless of the load
offered to the system.

For the cyclic requests traffic type, where each task traverses the stages in the
system in the forward direction and then in the reverse direction, we plot the aver-
age per stage utilization for increasing number of stages in the system in Fig. 8. As
observed in Fig. 5, the new bound is able to achieve nearly the same per stage utiliza-
tion regardless of system size. Also note that holistic analysis and the traditional test

Real-Time Syst (2010) 46: 121–151 139

Fig. 9 Comparison of average
per stage utilization for different
deadline ratio parameter values
for the cyclic requests traffic
type

perform poorly for this traffic scenario compared to their achieved utilization under
request-response type traffic shown in Fig. 5. For holistic analysis, the jitter values
increase considerably due to the presence of cycles in the task path and the large path
length causing the analysis to be extremely pessimistic. The traditional test breaks
the end-to-end deadline into per-stage deadlines, which works poorly when the path
length is long, as the delay experienced by tasks at different stages is not uniform.

Figure 9, presents a comparison of the four schedulability tests for different dead-
line ratio parameter values for the cyclic requests traffic type scenario in a system
with 10 stages. As observed in Fig. 8, holistic analysis and the traditional test perform
poorly for this traffic scenario. The utilization values are observed to increase with
increasing deadline ratio parameter values, as low priority jobs with large deadlines
are able to execute in the background of higher priority jobs with short deadlines,
thereby increasing the overall utilization of each stage. The new bound significantly
outperforms the other schedulability tests for such systems with long path lengths.

8 Delay composition algebra: handling loops

In Jayachandran and Abdelzaher (2008a), we developed delay composition algebra
for acyclic distributed systems. The operands of the algebra represented workload
of individual resource nodes or composed sub-systems. By systematically applying
a set of operators on the operands, the algebra enabled the reduction of an acyclic
distributed system workload into an equivalent hypothetical uniprocessor workload
for the purposes of schedulability analysis. The algebra enables the reduction process
in the schedulability analysis of all tasks in the system to be performed concurrently.
Using the delay composition theorem derived in this paper, we can generalize the
delay composition algebra to handle loops in the task graph. This is done by intro-
ducing a new operator called the LOOP and modifying the definition of the SPLIT
operator. Also, the representation of the workload at each resource stage needs to be
augmented to account for the fact that a job may visit a stage multiple times. We de-
scribe our operand representation in Sect. 8.1. Next we define operators in Sect. 8.2,

140 Real-Time Syst (2010) 46: 121–151

to systematically compose together workloads on resource nodes in the task graph,
until only a single node remains. The workload on this node represents a uniprocessor
job set, which can be studied using any traditional uniprocessor analysis to infer the
schedulability of jobs in the original distributed system. For a proof that the algebra
indeed computes the worst-case delay as per the delay composition theorem, readers
are referred to Appendix.

8.1 Operand representation

The operand representation is similar to the representation in Jayachandran and Ab-
delzaher (2008a). The operand is an n × n array of delay terms, with the (i, k)th ele-
ment denoting the delay that job Ji causes job Jk . As motivated in Jayachandran and
Abdelzaher (2008a), the delay that each job Ji causes another job Jk is maintained as
two terms—a max-term and an accumulator-term. Accordingly, each element (i, k) is
a two-tuple (qi,k, ri,k), where the first term qi,k denotes the max-term and the second
term ri,k denotes the accumulator-term. The max-term qi,k denotes the worst-case
interference that the current segment of Ji (the segment that includes the node under
consideration) causes Jk . The accumulator-term ri,k denotes the worst-case interfer-
ence due to all previous segments of Ji (segments earlier in the path of Ji than the
current segment). The matrix has an additional row, in which the kth element sk rep-
resents the stage-additive component of the delay of job Jk that is independent of the
number of jobs in the system and is only dependent on the number of stages on which
Jk executes.

The matrix for a single stage j is constructed similar to the description in Jay-
achandran and Abdelzaher (2008a). Without loss of generality, let jobs be indexed in
order of priority and i < k imply that Ji has a higher priority than Jk . Consider a job
Jk and the column corresponding to it. The accumulator term ri,k is set to zero, for
all i. If Jk does not execute at stage j , then qi,k and sk are set to zero, for all i. If Jk

executes at stage j , but a job Ji does not or if it has a lower priority than Jk , then qi,k

is set to zero. If Ji executes on stage j exactly once, then qi,k is set to Ci,j . If Ji visits
stage j multiple times, then qi,k is set to the maximum computation time of Ji over
all its visits to stage j . The stage-additive component, sk is defined as the maximum
computation time of any higher priority job on stage j , counted as many times as Jk

visits the stage. Suppose that Jk visits the stage p times, then sk = p × maxi≤k Ci,j .
Under non-preemptive scheduling, the matrix is constructed in a very similar

manner, except for the stage-additive component sk , which is defined as the sum
of two terms. The first term is the maximum computation time of any job (not
just higher priority jobs) on stage j , and the second term is the maximum com-
putation time of any lower priority job on stage j , each counted p times. That is,
sk = p(maxi Ci,j + maxi>k Ci,j).

8.2 Definition of operators

The algebra consists of three main operators, namely PIPE, SPLIT, and LOOP. The
operators ensure that in the resultant operand matrix, every term (qi,k, ri,k) accurately
represents the max-term and accumulator-term of the worst-case delay that job Ji

causes Jk over the set of stages the operand represents.

Real-Time Syst (2010) 46: 121–151 141

8.2.1 The PIPE operator

The PIPE operator can be applied to two nodes to compose them into a single node,
whenever the upstream node has exactly one outgoing arc. The PIPE operator is de-
fined as follows:

Definition (PIPE operator) For any two neighboring nodes in the resource graph,
represented by operand matrices A and B , if the upstream node has exactly one out-
going arc, the two nodes can be composed into a single node represented by matrix
C using the PIPE operator. C = A PIPE B is obtained as follows:

1. ∀i, k: qC
i,k = max(qA

i,k, q
B
i,k)

2. ∀i, k: rC
i,k = rA

i,k + rB
i,k

3. ∀k: sC
k = sA

k + sB
k

8.2.2 The SPLIT operator

The SPLIT operator is used on a node that has more than one outgoing arc to break it
into multiple nodes one for each outgoing arc. The definition of the SPLIT operator
is similar to the description in Jayachandran and Abdelzaher (2008a), except that we
relax the precondition that the node being split, say node j , should have no incoming
arcs. We replace this precondition with the condition that an individual outgoing arc
l can be split (creating a separate node) as long as all the jobs traversing the arc in
question have node j as their start node (they should not be traversing any incoming
arc of node j). Outgoing arcs from node j that do not satisfy this condition cannot
be split. The load matrix A of node j is split into two matrices, one for node j and
one for the new node j ′ that is created. The resultant matrix for the new node j ′
is obtained by replicating matrix A and zeroing out all columns corresponding to
jobs that do not traverse arc l, and the matrix for node j is obtained by zeroing out
all columns corresponding to jobs that traverse arc l. Further, for any job Jk and a
higher priority job Ji , if the two jobs follow different outgoing arcs from node j , the
accumulator term of Jk (in the output matrix containing Jk) is updated by replacing
the element (qi,k, ri,k) with (0, qi,k + ri,k).

Definition (SPLIT operator) Let matrix A denote node j and let l be an outgoing
arc of node j , such that all jobs X1 traversing arc l have node j as their start stage.
Let X2 denote the set of jobs that do not traverse arc l. The resultant matrices Ax ,
x = 1,2, are obtained as follows:

∀Jk :

1. if Jk ∈ Xx :
s
Ax

k = sA
k ; ∀i: if Ji ∈ Xx : q

Ax

i,k = qA
i,k , r

Ax

i,k = rA
i,k , else q

Ax

i,k = 0, r
Ax

i,k = qA
i,k + rA

i,k .
2. if Jk /∈ Xx :

s
Ax

k = 0; ∀i: q
Ax

i,k = 0, r
Ax

i,k = 0.

142 Real-Time Syst (2010) 46: 121–151

8.2.3 The LOOP operator

Any situation where a PIPE or SPLIT operation cannot be applied to any arc in the
graph, implies that a loop exists in the task graph (for a proof of this statement, refer to
the proof of liveness in Jayachandran and Abdelzaher (2008a)). Consider an outgoing
arc l from a node j that is part of a loop. Let X denote the set of jobs that traverse
arc l. If the set of jobs that traverse the other outgoing arcs from node j is a subset
of X, then the LOOP operator can be applied to arc l. This condition ensures that
there is no job whose path is splitting away from the jobs traversing arc l on which
the LOOP operator is applied. Like the PIPE operator, the LOOP composes the two
nodes A and B at the ends of link l together into a single node. It takes the maximum
of corresponding max-terms and the sum of the corresponding accumulator terms
in the two operand matrices. If composing the two nodes marks the end of a higher
priority task segment, say for task i (all other arcs in the segment have been composed
together), then the corresponding resultant max-term qi,k is added to the accumulator
ri,k , and the max-term is reset to the maximum computation time of Ji on the stage
(A or B) from which its next segment starts. Further, if the higher priority task Ji

traverses both the forward and the reverse link (that is, traverses the link from A to
B as well as the link from B to A), then we add twice the resultant max-term to
the accumulator term to account for the interference due to both the forward and
reverse flow segments. If a loop is traversed by two tasks Ji and Jk p times (the same
sequence of links), then we account for p times the delay component to be added to
the accumulator term.

Definition (LOOP operator) When a PIPE or a SPLIT operation cannot be per-
formed, and node j has an outgoing arc l that is part of a loop, such that the set
of all jobs that traverse other outgoing arcs from node j is a subset of the set of jobs
that traverse the outgoing arc l from node j , then the LOOP operator can be applied
to arc l. Let A and B represent the operand matrices of the nodes that arc l connects,
and let C be the resultant operand matrix. C = A LOOP B , is obtained as follows:

1. ∀i, k: qC
i,k = max(qA

i,k, q
B
i,k); rC

i,k = rA
i,k + rB

i,k

2. ∀i, k: If end of higher priority segment of Ji (Ji and Jk traverse loop p times):
2.1 If Ji traverses both the arc from A to B as well as the arc from B to A, then

rC
i,k = rC

i,k + 2p × qC
i,k

else rC
i,k = rC

i,k + p × qC
i,k

2.2 If Ji has outgoing arc from node corresponding to A, then qC
i,k = qA

i,k

else if Ji has outgoing arc from node corresponding to B , then qC
i,k = qB

i,k

else qC
i,k = 0

3. ∀k: sC
k = sA

k + sB
k

8.2.4 The CUT operator

When the LOOP operator cannot be performed as well, then the CUT operator as
defined in Jayachandran and Abdelzaher (2008a) needs to be performed to break a
loop in the task graph. Such a situation might arise as the LOOP operator can only

Real-Time Syst (2010) 46: 121–151 143

be applied to a link l if the set of jobs traversing link l is a superset of the set of jobs
traversing other outgoing arcs from the node at the head of link l.

The CUT operation breaks each job traversing the arc being cut into two indepen-
dent jobs, one for the part before the cut and one for the part after. As explained in
Jayachandran and Abdelzaher (2008a), this operation only relaxes constraints on the
arrival times of jobs, allowing jobs to arrive in a manner that can cause worst-case
delay (an adversary has greater freedom in choosing the arrival times of jobs to cause
a worst-case delay). This decreases the schedulability of the task set and performs a
transformation that is safe.

Definition (CUT operator) When the directed resource graph contains a cycle and
when a PIPE, SPLIT, or LOOP operation cannot be performed, a CUT operation
can be performed on one of the arcs forming the cycle. Each job crossing that arc is
thereby replaced by two independent jobs; one for the part before the cut and one for
the part remaining. Each new job will have a separate row and column in the operand
matrices for stages on which they execute.

The definition of the operators are the same regardless of whether the scheduling is
preemptive or non-preemptive. By successively applying the operators of the algebra,
the distributed system can be reduced to a single equivalent uniprocessor. Note that
as the max and sum operations are commutative and associative, the PIPE and LOOP
operators are commutative and associative as well.

The proof of liveness, that is to show that repeatedly applying the operators of the
algebra always reduces the graph to a single node, follows from the liveness property
of the PIPE and SPLIT operators proved in Jayachandran and Abdelzaher (2008a).
When the graph has loops, then either the LOOP operator can be applied, or the CUT
operator can be applied to break the loop.

8.3 Analyzing the equivalent uniprocessor

Upon reducing the distributed system to a single node, the end-to-end delay and
schedulability of a job Jk can be inferred from the kth column in the load matrix.
For each i, k, the term (qi,k, ri,k) is translated into (0, qi,k + ri,k). The transformation
is similar to the description in Jayachandran and Abdelzaher (2008a), and is carried
forth as follows:

• Each task Ti , i 	= k in the original distributed system is transformed to task T ∗
i on a

uniprocessor, with a computation time C∗
i = ri,k , if scheduling is non-preemptive,

or C∗
i = 2ri,k , if scheduling is preemptive (the reason for which is explained in the

proof in Appendix). The period Pi (if Ji is periodic) or minimum inter-arrival time
(if it is sporadic) remains the same (i.e., P ∗

i = Pi).
• Task Tk , for which schedulability analysis is performed, is transformed to task T ∗

k

with C∗
k = rk,k plus an extra task of computation time sk . The period or minimum

inter-arrival time for both, remains that of Tk .

We prove in Appendix that if T ∗
k meets its deadline on the uniprocessor when

scheduled together with this hypothetical task set, then Tk meets its deadline in the
original distributed system. Any uniprocessor schedulability test can be used to ana-
lyze the schedulability of T ∗

k . Note that a separate test is needed per task.

144 Real-Time Syst (2010) 46: 121–151

Fig. 10 (a) Example system to be composed. (b) Composed system after step 1. (c) Composed system
after step 2. (d) After step 3. (e) After step 4. (f) After step 5

9 Example illustrating the algebra

We now illustrate how the algebra can be applied to a distributed system to reduce
it to a single equivalent hypothetical uniprocessor for the purpose of analyzing the
end-to-end delay and schedulability of jobs in the original distributed system. We
consider a system of four resource stages shown in Fig. 10(a), and three periodic
tasks T1, T2, and T3, in decreasing priority order. T1 follows the path S1–S2–S3–
S1–S4, T2 follows S1–S2–S3–S4, and T3 follows S1–S2–S4. Each task invocation re-
quires one unit of computation time at each resource along its path, and the relative
end-to-end deadline is assumed to be the same as the task period. T1 has a period of
10 units, and T2 and T3 have a period of 20 units. We do not need to create a virtual
finish node as all task routes end at the same finish node (S4).

Let Ai denote the operand matrix for stage Si . The initial operand matrices are
constructed as shown below. As task T1 executes twice on stage S1, the stage-additive

Real-Time Syst (2010) 46: 121–151 145

component s1 of A1 is two, while all other stage-additive component values are one.

A1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

T1 T2 T3

T1 (1,0) (1,0) (1,0)

T2 (0,0) (1,0) (1,0)

T3 (0,0) (0,0) (1,0)

.
2 1 1

⎞

⎟⎟⎟⎟⎟⎟⎠

A2 = A4 =

⎛

⎜⎜⎜⎜⎜⎜⎝

T1 T2 T3

T1 (1,0) (1,0) (1,0)

T2 (0,0) (1,0) (1,0)

T3 (0,0) (0,0) (1,0)

.
1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎠

A3 =

⎛

⎜⎜⎜⎜⎝

T1 T2

T1 (1,0) (1,0)

T2 (0,0) (1,0)

.

1 1

⎞

⎟⎟⎟⎟⎠

All nodes have 2 out-going arcs, and no PIPE or SPLIT operations can be per-
formed. A loop exists, and we apply the LOOP operator to arc S1–S2.

Step 1: A1 LOOP A2 = A1′
We take the maximum of the corresponding max-terms and the sum of the corre-

sponding accumulator terms and the stage-additive components. The arc under con-
sideration does not mark the end of T1’s segment when considering the delay of T2.
But, it marks the end of the segment of T1 that interferes with T3. As T3 executes on
only one of the arcs and does not traverse an arc from S2 to S1, it contributes only
one unit of delay, which is added to the accumulator term. We obtain A1′ as,

A1′ =

⎛

⎜⎜⎜⎜⎜⎜⎝

T1 T2 T3

T1 (1,0) (1,0) (1,1)

T2 (0,0) (1,0) (1,0)

T3 (0,0) (0,0) (1,0)

.
3 2 2

⎞

⎟⎟⎟⎟⎟⎟⎠

The resultant task graph is as shown in Fig. 10(b). Now, stage S1′ is the start
stage for T3, and T3 is the only job that traverses the arc from S1′ to S4 (note that T1

traverses a different arc from S1′ to S4). We can therefore apply the SPLIT operator
to split T3 along that arc creating nodes S11 and S12, whose operand matrices are as
follows:

146 Real-Time Syst (2010) 46: 121–151

Step 2: SPLIT(S1′ , {T3}) => A11,A12

A11 =

⎛

⎜⎜⎜⎜⎜⎜⎝

T1 T2

T1 (1,0) (1,0)

T2 (0,0) (1,0)

T3 (0,0) (0,0)

.

3 2

⎞

⎟⎟⎟⎟⎟⎟⎠
, A12 =

⎛

⎜⎜⎜⎜⎜⎜⎝

T3

T1 (0,2)

T2 (0,1)

T3 (1,0)

.

2

⎞

⎟⎟⎟⎟⎟⎟⎠

Figure 10(c) shows the updated task graph. S12 can now be piped with S4 to
give S4′ .

Step 3: A12 PIPE A4 = A4′

A4′ =

⎛

⎜⎜⎜⎜⎜⎜⎝

T1 T2 T3

T1 (1,0) (1,0) (1,2)

T2 (0,0) (1,0) (1,1)

T3 (0,0) (0,0) (1,0)

.
1 1 3

⎞

⎟⎟⎟⎟⎟⎟⎠

The resultant task graph is shown in Fig. 10(d). Again nodes have more than one
out-going arc and no PIPE or SPLIT operations can be performed. We perform a
LOOP operation on the arc S11–S3 to merge the nodes into a single node S3′ . This
operation marks the end of the task segment of T1 that delays T2, and T1 traverses
the arc from S11 to S3, as well as the arc from S3 to S11. T1 can delay T2 both in the
forward as well as reverse directions, and we need to account for two units of delay,
which is added to the accumulator term.

Step 4: A11 LOOP A3 = A3′

A3′ =

⎛

⎜⎜⎜⎜⎜⎜⎝

T1 T2

T1 (1,0) (1,2)

T2 (0,0) (1,0)

T3 (0,0) (0,0)

.

4 3

⎞

⎟⎟⎟⎟⎟⎟⎠

This leaves us with two nodes S3′ and S4′ with two arcs connecting them, one
traversed by T1 and the other by T2, as shown in Fig. 10(e). We can now split node
S3′ into two nodes S31 and S32 one for each of the out-going arcs from S3′ .

Step 5: SPLIT(S3′ , {T1}) => A31,A32

A31 =

⎛

⎜⎜⎜⎜⎜⎜⎝

T1

T1 (1,0)

T2 (0,0)

T3 (0,0)

.

4

⎞

⎟⎟⎟⎟⎟⎟⎠
, A32 =

⎛

⎜⎜⎜⎜⎜⎜⎝

T2

T1 (0,3)

T2 (1,0)

T3 (0,0)

.

3

⎞

⎟⎟⎟⎟⎟⎟⎠

Real-Time Syst (2010) 46: 121–151 147

This leaves us with the task graph shown in Fig. 10(f). We can now independently
PIPE S31 and S32 with S4′ , to get Sfinal.

Step 6: A31 PIPE A4′ = A4′′ , A32 PIPE A4′′ = Afinal

Afinal =

⎛

⎜⎜⎜⎜⎜⎜⎝

T1 T2 T3

T1 (1,0) (1,3) (1,2)

T2 (0,0) (1,0) (1,1)

T3 (0,0) (0,0) (1,0)

.
5 4 3

⎞

⎟⎟⎟⎟⎟⎟⎠

Adding the max-terms to the accumulator-terms, we get,

Afinal =

⎛

⎜⎜⎜⎜⎜⎜⎝

T1 T2 T3

T1 (0,1) (0,4) (0,3)

T2 (0,0) (0,1) (0,2)

T3 (0,0) (0,0) (0,1)

.
5 4 3

⎞

⎟⎟⎟⎟⎟⎟⎠

With this final equivalent single stage matrix, we can construct a uniprocessor
task set and use any uniprocessor schedulability test to analyze the schedulability of
a task in the distributed system. The reduction process and schedulability analysis is
similar to the description in Jayachandran and Abdelzaher (2008a), and is omitted in
the interest of brevity.

10 Conclusion

In this paper, we derive an end-to-end delay bound for tasks in distributed systems
with cycles in the task graph. The bound allows one of several schedulability tests
to be performed, enabling the construction of the first generalized closed form ex-
pression for analyzing the schedulability of non-acyclic flows in distributed systems.
This is in contrast to existing analysis techniques that involve iterative solutions or
provide no solutions at all when tasks are non-acyclic. Further, we introduced an op-
erator called the LOOP to extend the Delay Composition Algebra developed in prior
work, to handle non-acyclic distributed systems as well. We show using simulation
studies that the schedulability tests constructed in this paper are less pessimistic com-
pared to existing analysis techniques for large systems. We envision that this result
will foster more research and a better understanding of timing behavior in distributed
systems.

Appendix: Proof of correctness of the algebra

We now prove the correctness of the delay composition algebra. That is, if the job is
schedulable in the final equivalent uniprocessor task set, then the corresponding job

148 Real-Time Syst (2010) 46: 121–151

in the original distributed system is also schedulable. We show that by successively
applying the operators of the algebra, the final single stage operand computes the
expression for the end-to-end delay bound as per the delay composition theorem.
We extend the proof in Jayachandran and Abdelzaher (2008a) for this purpose. The
delay composition theorem applied to a job Jk and the set S of higher priority job-
segments J s

i that share a sequence of consecutive common execution stages with Jk

is as follows:

Delay(Jk) ≤
∑

i

∑

J s
i ∈S

2Cs
i,max +

∑

j∈pk

Nodej,max (7)

The above inequality can be rewritten as follows:

Delay(Jk) ≤
∑

i

2r∗
i,k + s∗

k (8)

r∗
i,k =

∑

J s
i ∈S

Cs
i,max; s∗

k =
∑

j∈pk

Nodej,max (9)

Let rM
i,k denote the (i, k)th element in the final single stage matrix derived using the

algebra. Since delays due to higher priority jobs are additive on a uniprocessor, the de-
lay that the transformed job Jk , called J ∗

k , experiences on the hypothetical uniproces-
sor is precisely Delay(J ∗

k) = ∑
i 2rM

i,k + sM
k (after multiplying rM

i,k by 2 as per rules in

Sect. 8.3). If rM
i,k = r∗

i,k and sM
k = s∗

k , it follows that Delay(Jk) ≤ Delay(J ∗
k). Thus, if

J ∗
k is schedulable on the uniprocessor, so is Jk in the original distributed system. In

the case of periodic tasks, as observed in Jayachandran and Abdelzaher (2008a), find-
ing the actual number of invocations, Invoci , for each higher priority periodic task, Ti ,
that delays Jk , is not the responsibility of the algebra or the reduction process. This is
handled by the uniprocessor analysis used. The number of invocations, Invoci , as de-
termined by the uniprocessor analysis will at least be as large as the number of actual
invocations of Ti that delay Jk in the distributed system. The reason is because, every
invocation of T ∗

i that arrives before J ∗
k completes execution will delay J ∗

k on the
uniprocessor, but the corresponding invocations of Ti may never catch-up with Jk to
preempt it in the distributed system, as they may be executing on different resources.

We shall now show that in the final matrix, rM
i,k = r∗

i,k and sM
k = s∗

k . It is safe to
assume that all necessary CUT operations are performed first, as any CUT operation
only relaxes precedence constraints and performs a safe transformation of the system
that does not improve schedulability. Now, consider the entire sequence of PIPE,
SPLIT, and LOOP operations performed to reduce the distributed system to a single
node. Let us denote each arc using an unique identifier, and let the set of all arcs in
the original distributed system be denoted by L0. Note that SPLIT operations neither
add nor remove arcs from L0. PIPE operations remove precisely one arc from L0,
and LOOP operations may remove at most two arcs (connecting the same two nodes)
from L0.

In order to compute rM
i,k , consider the path of Jk . Let L0

k denote the subset of arcs

in L0 that lie on the path of Jk (including arcs in the opposite direction as Jk). As
in the proof presented in Jayachandran and Abdelzaher (2008a), all PIPE operations

Real-Time Syst (2010) 46: 121–151 149

can be classified under three categories: path PIPEs (applied to an arc in L0
k), incident

PIPEs (applied to an arc that shares one node with an arc in L0
k), and detached PIPEs

(applied to an arc that shares no nodes with arc in L0
k). SPLIT operations can be

classified into two categories: path SPLITs (applied to a node with an arc in L0
k) and

detached SPLITs (the rest). Likewise, LOOP operations can be classified into path,
incident, and detached LOOPs. Trivially, only path PIPEs, path SPLITs, and path
LOOPs affect elements in column k of the operand matrices, that is, the components
of the delay of job Jk .

Consider a job Ji of higher priority than Jk . Let us denote the set of arcs in Segi,k

(those arcs traveled by both Ji and Jk) as L0
i,k . Path PIPEs and path LOOPs that

reduce arcs not traveled by Ji simply propagate qi,k of the downstream node, and the
sum of the ri,k’s of the upstream and downstream nodes to the resultant matrix. This
is because, as Ji does not travel the reduced arc it does not execute on the upstream
node and qi,k of the upstream node must be zero. The ri,k values in the upstream and
downstream nodes denote the delay of independent job-segments of Ji which need to
be added together. Further, SPLITs of nodes with no arcs traveled by Ji do not alter
qi,k and ri,k , since Ji could not have parted Jk at the split node. Hence, we now need
to only consider PIPE, LOOP, and SPLIT operations involving arcs traveled by both
jobs (that is, in Segi,k).

Consider a segment s ∈ Segi,k . Let Es be the last node in the segment. Initially,
each node j ∈ s has qi,k set to the maximum computation time of Ji over all its visits
to stage j . To reduce each arc in the segment, a PIPE or LOOP operation must have
been performed, producing qi,k to be equal to the maximum of all the computation
times of Ji over all the stages in the segment. Recall that a LOOP operation is per-
formed on an arc only when the set of jobs that traverse the arc is a super set of the set
of jobs that traverse other outgoing arcs from the node. This ensures that there are no
jobs that split from the path of jobs following the arc on which the LOOP operation is
performed. Further, note that for each stage, by taking qi,k to be the maximum com-
putation time of Ji over all its visits to the stage, we overestimate the delay of Jk as
compared to the delay composition theorem. This is essential, as there is no informa-
tion stored in the operand matrix with regard to which visit of Ji corresponds to the
current segment, and it is safe to consider the maximum computation time over all
the visits to the stage. Any SPLIT operation performed on nodes j ∈ s, other than the
last node and involving Ji , does not affect qi,k or ri,k , as Jk and Ji did not part ways
at stage j . Only LOOP and SPLIT operations involving Es affect the value of ri,k .

A LOOP operation that involves Es and marks the end of the segment s (i.e., re-
moves the last arc that is part of segment s from the task graph), causes ri,k to be
updated by adding qi,k to it, which by now equal to the maximum of all the compu-
tation times of Ji over all the stages in the segment. If Ji traverses both the forward
and reverse arc between the two nodes, then Ji could potentially delay Jk twice, and
twice the value of qi,k needs to be added to ri,k . If Ji loops back and a new segment
begins at one of the two nodes involved, then qi,k is reset to denote the maximum
computation time of Ji on that node. At node Es , any SPLIT operation that splits
Ji from Jk can be performed only when there is no incoming arc into Es that is tra-
versed by Ji . This implies that all PIPE and LOOP operations have been applied over
all the other nodes in the segment. Hence, at Es , qi,k ≥ Cs

i,max (qi,k may be larger than

150 Real-Time Syst (2010) 46: 121–151

Cs
i,max as the maximum computation time of Ji over all visits on all stages is taken for

each stage operand matrix). The SPLIT would then add qi,k to ri,k . As noted before,
subsequent operations propagate ri,k to the result node. When all the segments have
been reduced, Cs

i,max for each segment s is added on to ri,k , resulting in
∑

Cs
i,max

over all job-segments J s
i . In other words, rM

i,k = r∗
i,k . (Observe that, if Jk and Ji have

the same end node, there would be no SPLIT for the last segment and its max-term
would still be stored in qi,k ; this is why we need to compensate for the missing SPLIT
and manually add qM

i,k and rM
i,k at the end.)

Similarly, to compute sM
k , observe that initially for each node j on path pk , s

j
k =

Nodej,max. Since SPLITs do not affect sk and PIPEs and LOOPs add it, when all arcs

on L0
k are reduced, sM

k = ∑
j∈pk

Nodej,max = s∗
k .

References

Audsley AN, Burns A, Richardson M, Tindell K (1993) Applying new scheduling theory to static priority
pre-emptive scheduling. Softw Eng 284–292

Cruz R (1991a) A calculus for network delay, part I: Network elements in isolation. IEEE Trans Inf Theory
37(1):114–131

Cruz R (1991b) A calculus for network delay, part II: Network analysis. IEEE Trans Inf Theory 37(1):132–
141

Fohler G, Ramamritham K (1997) Static scheduling of pipelined periodic tasks in distributed real-time
systems. In: Euromicro workshop on real-time systems, June 1997, pp 128–135

Jayachandran P, Abdelzaher T (2007) A delay composition theorem for real-time pipelines. In: ECRTS,
July 2007, pp 29–38

Jayachandran P, Abdelzaher T (2008a) Delay composition algebra: A reduction-based schedulability alge-
bra for distributed real-time systems. In: RTSS, December 2008, pp 259–269

Jayachandran P, Abdelzaher T (2008b) Delay composition in preemptive and non-preemptive real-time
pipelines. Real-Time Syst J 40(3):290–320. Special Issue on ECRTS’07

Jayachandran P, Abdelzaher T (2008c) Transforming acyclic distributed systems into equivalent uniproces-
sors under preemptive and non-preemptive scheduling. In: ECRTS, July 2008, pp 233–242

Jonsson B, Perathoner S, Thiele L, Yi W (2008) Cyclic dependencies in modular performance analysis.
In: ACM international conference on embedded software (EMSOFT), October 2008, pp 179–188

Kao B, Garcia-Molina H (1997) Deadline assignment in a distributed soft real-time system. IEEE Trans
Parallel Distrib Syst 8(12):1268–1274

Koubaa A, Song Y-Q (2004) Evaluation and improvement of response time bounds for real-time applica-
tions under non-preemptive fixed priority scheduling. Int J Prod Res 42(14):2899–2913

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment.
J ACM 20(1):46–61

Natale MD, Stankovic JA (1994) Dynamic end-to-end guarantees in distributed real-time systems. In: Proc.
real-time systems symposium, December 1994, pp 216–227

Palencia J, Harbour M (2003) Offset-based response time analysis of distributed systems scheduled under
EDF. In: Euromicro conference on real-time systems, July 2003, pp 3–12

Pellizzoni R, Lipari G (2005) Improved schedulability analysis of real-time transactions with earliest dead-
line scheduling. In: RTAS, March 2005, pp 66–75

Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems. In:
IEEE international symposium on circuits and systems, vol 4, May 2000, pp 101–104

Tindell K, Clark J (1994) Holistic schedulability analysis for distributed hard real-time systems. Micro-
process Microprogram 40(2–3):117–134

Wandeler E, Maxiaguine A, Thiele L (2004) Quantitative characterization of event streams in analysis of
hard real-time applications. In: IEEE real-time and embedded technology and applications sympo-
sium (RTAS), May 2004, pp 450–459

Real-Time Syst (2010) 46: 121–151 151

Xu J, Parnas D (1993) On satisfying timing constraints in hard real-time systems. IEEE Trans Softw Eng
19(1):70–84

Zhang Y, Lu C, Gill C, Lardieri P, Thaker G (2005) End-to-end scheduling strategies for aperiodic tasks in
middleware. Technical Report WUCSE-2005-57, University of Washington at St. Louis, December
2005

Praveen Jayachandran received his B.Tech and M.Tech dual degree
in Computer Science from the Indian Institute of Technology, Madras,
India in 2005. He is currently a PhD student at the University of Illinois
at Urbana-Champaign, USA. His research interests include real-time
and distributed systems, sensor networks, and wireless networks. He is
a recipient of the Andrew and Shana Laursen fellowship awarded by the
University of Illinois at Urbana-Champaign, the Vodafone fellowship,
the best student paper award at the Euromicro Conference on Real-
Time Systems in 2007, and the best paper award at the same conference
in 2009. He has received the C.L. and Jane Liu award in 2008, and
the Feng Chen Memorial award in 2010, both from the Department of
Computer Science at the University of Illinois at Urbana-Champaign.

Tarek Abdelzaher received his B.Sc. and M.Sc. degrees in Electrical
and Computer Engineering from Ain Shams University, Cairo, Egypt,
in 1990 and 1994 respectively. He received his Ph.D. from the Uni-
versity of Michigan in 1999 on Quality of Service Adaptation in Real-
Time Systems. He has been an Assistant Professor at the University
of Virginia, where he founded the Software Predictability Group. He
is currently an Associate Professor at the Department of Computer
Science, the University of Illinois at Urbana Champaign. He has au-
thored/coauthored three book chapters and more than 80 refereed pub-
lications in leading conferences and journals in several fields including
real-time computing, distributed systems, sensor networks, and control.
He is Editor-in-Chief of the Journal of Real-Time Systems, an Asso-
ciate Editor of the IEEE Transactions on Mobile Computing, IEEE
Transactions on Parallel and Distributed Systems, ACM Transaction on
Sensor Networks, the International Journal of Embedded Systems and

the Ad Hoc Networks Journal, as well as Editor of ACM SIGBED Review. He also held several conference
organization positions including Program Chair of RTAS 2004, General Chair of RTAS 2005, Program
Chair of RTSS 2006, General Chair of IPSN 2007, General Chair of RTSS 2007, General Chair of Sensys
2008, and General Chair of DCoSS 2008. Abdelzaher’s research interests lie broadly in understanding and
controlling the temporal properties of software systems in the face of increasing complexity, distribution,
and degree of embedding in an external physical environment. Tarek Abdelzaher is a member of IEEE and
ACM.

	Reduction-based schedulability analysis of distributed systems with cycles in the task graph
	Abstract
	Introduction
	Related work
	System model
	Delay in non-acyclic task graphs
	Schedulability analysis
	An illustrative example
	Evaluation
	Delay composition algebra: handling loops
	Operand representation
	Definition of operators
	The PIPE operator
	The SPLIT operator
	The LOOP operator
	The CUT operator

	Analyzing the equivalent uniprocessor

	Example illustrating the algebra
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	Step 5:
	Step 6:

	Conclusion
	Appendix: Proof of correctness of the algebra
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

