
Sparrow: Scalable Scheduling for Sub-Second Parallel

Jobs

Kay Ousterhout
Patrick Wendell
Matei Zaharia
Ion Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-29

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-29.html

April 10, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Sparrow: Scalable Scheduling for Sub-Second Parallel Jobs

Kay Ousterhout, Patrick Wendell, Matei Zaharia, Ion Stoica
University of California, Berkeley

Abstract

Large-scale data analytics frameworks are shifting to-
wards shorter task durations and larger degrees of par-
allelism to provide low latency. However, scheduling
highly parallel jobs that complete in hundreds of mil-
liseconds poses a major challenge for cluster schedulers,
which will need to place millions of tasks per second
on appropriate nodes while offering millisecond-level la-
tency and high availability. We demonstrate that a decen-
tralized, randomized sampling approach provides near-
optimal performance while avoiding the throughput and
availability limitations of a centralized design. We imple-
ment and deploy our scheduler, Sparrow, on a real cluster
and demonstrate that Sparrow performs within 14% of an
ideal scheduler.

1 Introduction

Today’s data analytics clusters are running ever shorter
and higher-fanout jobs. Spurred by demand for lower-
latency interactive data processing, efforts in re-
search and industry alike have produced frameworks
(e.g., Dremel [16], Spark [30], Hadapt [2], Impala [15])
that stripe work across thousands of machines or store
data in memory in order to complete jobs in seconds, as
shown in Figure 1. We expect this trend to continue with
a new generation of frameworks targeting sub-second re-
sponse times. Bringing response times into the 100ms
range will enable user-facing services to run sophisti-
cated parallel computations on a per-query basis, such
as language translation and highly personalized search.

Providing low response times for parallel jobs that
execute on thousands of machines poses a significant
scheduling challenge. Parallel jobs are composed of
many (often hundreds or thousands) of concurrent tasks
that each run on a single machine. Response time is de-
termined by the last task to complete, soeverytask needs
to be scheduled carefully: even a single task placed on a
contended machine can increase response time.

Sub-second parallel jobs amplify the scheduling chal-
lenge. When tasks run in hundreds of milliseconds,
scheduling decisions must be made at very high through-
put: a cluster containing ten thousand 16-core machines
and running 100ms tasks may require well over 1 million
scheduling decisions per second. Scheduling must also
be performed with low latency: for 100ms tasks, schedul-

10 min.
 10 sec.
 100 ms
 1 ms

2004:
MapReduce

batch job

2009: Hive
query

2010: Dremel Query

2010: In-memory
Spark query

2012: Impala query

Figure 1: Data analytics frameworks can analyze increas-
ingly large amounts of data with decreasing latency.

ing delays above tens of milliseconds represent intol-
erable overhead. Finally, as processing frameworks ap-
proach interactive time-scales and are used in customer-
facing systems, high system availability becomes a re-
quirement. These design requirements differ substan-
tially from those of batch workloads.

Designing a traditional, centralized scheduler that sup-
ports sub-second parallel tasks presents a difficult engi-
neering challenge. Supporting sub-second tasks requires
handling two orders of magnitude higher throughput
than the fastest existing schedulers (e.g., Mesos [12],
YARN [19], SLURM [14]); meeting this design require-
ment will be difficult with a design that schedules and
launches all tasks through a single node. Additionally,
achieving high availability would require the replication
or recovery of large amounts of state in sub-second time.

This paper explores the opposite extreme in the de-
sign space by asking how well a completely decentral-
ized task scheduler can perform. We propose scheduling
from a set of machines that operate autonomously and
without shared state. Such a decentralized design offers
attractive scaling and availability properties: the system
can support more requests by adding additional sched-
ulers and if a particular scheduler fails, users can direct
requests to a different scheduler. For this reason, in other
domains such as web request load balancing, decentral-
ized architectures are commonplace. Many of these ar-
chitectures [8, 10] build on the power of two choices
technique [17], in which the scheduler simply probes two
random servers and picks the less loaded one.

However, a decentralized scheduler based on the
power of two choices must address three challenges to
provide low response times forparallel jobs. First, as
we show analytically, power of two sampling performs

1

poorly as jobs become increasingly parallel. A parallel
job finishes only when its last task finishes and thus its re-
sponse time depends heavily on the tail distribution of its
task duration, which remains high even with the power of
two choices. Second, due to messaging delays, multiple
schedulers sampling in parallel may experience race con-
ditions. Third, the power of two choices requires workers
to estimate the durations of tasks in their queues, which
is notoriously difficult.

To address these challenges, we present Sparrow, a
stateless distributed task scheduler that is scalable and
highly resilient. Sparrow extends simpler sampling ap-
proaches using two core techniques:batch samplingand
virtual reservations. Batch-sampling applies the recently
developed multiple choices approach [20] to the domain
of parallel job scheduling. With batch-sampling, a sched-
uler places them tasks in a job on the least loaded of
dm randomly selected worker machines (ford > 1). We
show that, unlike the power of two choices, batch sam-
pling’s performance does not degrade as the job’s par-
allelism increases. With virtual reservations, node mon-
itors queue probes until they are ready to run the task.
This eliminates the need to estimate task durations and
eliminates race conditions due to multiple schedulers
making concurrent decisions.

We have implemented Sparrow in a working cluster
and evaluated its performance. When scheduling TPC-
H queries on a 100-node cluster, Sparrow provides re-
sponse times within 14% of an optimal scheduler and
schedules with fewer than 8 milliseconds of queueing
delay. Sparrow provides low response times for short
tasks, even in the presence of tasks that take up to 3 or-
ders of magnitude longer. In spite of its decentralized de-
sign, Sparrow maintains aggregate fair shares, and iso-
lates users with different priorities (without resorting to
preemption) such that a misbehaving low priority user in-
creases response times for high priority jobs by at most
41%. Simulation results demonstrate that Sparrow con-
tinues to perform well as cluster size increases to tens of
thousands of cores.

In summary, we make the following contributions:

• We propose Sparrow, adecentralized schedulerthat
is highly scalable and resilient.

• We introducebatch sampling, a scheduling tech-
nique that, unlike the power of two choices [17],
does not lead to larger response times as the paral-
lelism of jobs increases.

• We introducevirtual reservationsthat, together
with batch-sampling, allow Sparrow to closely ap-
proach the performance of an optimal scheduler.

• We show that in spite of its decentralized design,

Sparrow supports common global policies, such as
proportional and priority scheduling.

2 Design Goals

This paper focuses on task scheduling for low-latency,
data-intensive applications. Such applications typically
decrease latency by fanning work out over large numbers
of machines. As a result, their workload is composed
of many small, parallel tasks. This stands in contrast to
batch frameworks which acquire resources for long pe-
riods of time. The scheduler’s job is to place these tasks
expediently on worker machines. Short-task workloads
result in a set of unique scheduling requirements:

Low latency: To ensure that scheduling delay is not a
substantial fraction of job completion time, the scheduler
must provide at mostmillisecond-scale scheduling delay.

High throughput: To handle clusters with tens of thou-
sands of nodes (and correspondingly hundreds of thou-
sands of cores), the scheduler must supportmillions of
task scheduling decisions per second.

High availability: Cluster operators already go to great
lengths to increase the availability of centralized batch
schedulers. We expect that low-latency frameworks will
be used to power user-facing services, makinghigh
availability an operating requirement.

To meet these requirements, we are willing to forgo
many features of sophisticated centralized resource man-
agers. In particular, we do not design for arbitrarily long
tasks that may run for days or weeks, we do not allow
complex placement constraints (e.g., “my job should not
be run on any machines where User X’s jobs are run-
ning”), we do not perform bin packing, and we do not
support gang scheduling. To co-exist with long-running,
batch jobs, our scheduler runs tasks in a statically or dy-
namically allocated portion of the cluster that has been
allocated by a more general resource manager such as
YARN [19], Mesos [12], Omega [22], or vSphere [3].

Our key focus is on supporting a small set of features
in a way that can be easily scaled, minimizes latency, and
keeps the design of the system simple. Many applications
wish to run low-latency queries from multiple users, so
a scheduler should enforce sensible resource allocation
policies when aggregate demand exceeds capacity. We
also aim to support basic constraints over job placement,
such as task-level constraints (e.g. each task needs to
be co-resident with input data) and job-level constraints
(e.g., all tasks must be placed on machines with GPUs).
This feature set is similar to that of the Hadoop MapRe-
duce scheduler [25] and the Spark [30] scheduler.

2

Worker

Scheduler

Scheduler

Scheduler

Scheduler
Job

Task 1

Task 2

Worker

Worker

Worker

Worker

Worker

(a) Per-task sampling selects queues of length 1 and 3.

!"

Scheduler

Scheduler

Scheduler

Scheduler
Job

#"$%&'()"

*+","!-"
Worker

Worker

Worker

Worker

Worker

Worker

(b) Batch sampling selects queues of length 1 and 2.

Figure 2: Placing a parallel, two-task job. Batch sampling outperforms per-task sampling because tasks are placed in
the least loaded of the entirebatchof sampled queues.

3 Sample-Based Scheduling for Parallel
Jobs

Traditional cluster schedulers maintain a complete view
of which tasks are running on which worker machines,
and use this view to assign incoming tasks to available
workers. To support low-latency workloads, Sparrow
takes a radically different approach: schedulers maintain
no state about cluster load and instead place tasks based
on instantaneous load information acquired from worker
machines. Sparrow’s approach extends existing load bal-
ancing techniques [17, 20] to the domain of parallel job
scheduling and introduces virtual reservations to address
practical problems.

3.1 Terminology

We consider a cluster composed ofworker machinesthat
execute tasks andschedulersthat assign tasks to worker
machines. A scheduling request consists ofm tasks that
are allocated to worker machines. Scheduling requests
can be handled by any scheduler; a scheduler assigns
each task in the request to a worker machine. If a worker
machine is assigned more tasks than it can run concur-
rently, it queues new tasks until existing tasks release
enough resources for the new task to be run. We usewait
time to describe the time from when a task is submitted
to the scheduler until when the task begins executing and
service timeto describe the time the task spends execut-
ing on a worker machine.Response timedescribes the
time from when the request is submitted to the scheduler
until the last task finishes executing.

3.2 Per-Task Sampling

Sparrow’s design takes inspiration from the power of two
choices load balancing technique [17], which provides
near-optimal expected task wait times using a stateless,
randomized approach. The power of two choices tech-
nique proposes a simple improvement over purely ran-
dom assignment of tasks to worker machines: place each

task on the least loaded of two randomly selected worker
machines. Mitzenmacher demonstrated that assigning
tasks in this manner improves expected wait time expo-
nentially compared to using random placement [17].1

We first consider a direct application of the power of
two choices technique to parallel job scheduling. The
scheduler randomly selects two worker machines for
each task and sends aprobe to each of the two worker
machines, where a probe is a lightweight RPC. The
worker machines each reply to the probe with the num-
ber of currently queued tasks, and the scheduler places
the task on the worker machine with the shortest queue.
The scheduler repeats this process for each task in the
job, as illustrated in Figure 2(a). We refer to this appli-
cation of the power of two choices technique asper-task
sampling.

Per-task sampling improves performance compared to
random placement but still provides high tail wait times
when jobs are parallel. Intuitively, for jobs that contain
a large number of tasks, every job is expected to experi-
ence tail task wait time, making response times with per-
task sampling 2x or more worse than optimal placement.
We simulated per-task sampling and random placement
in a 10,000 node cluster running 500-task jobs where the
duration of each task is exponentially distributed with
mean 100ms. Because job response time is determined
by the last of 500 tasks to complete, the expected opti-
mal job response time (if all tasks are scheduled with no
wait time) is 680ms. We assume 1ms network RTTs, and
we model jobs arrivals as a Poisson process. As shown
in Figure 3, response time increases with increasing load,
because schedulers have increasing difficulty finding free
machines on which to place tasks. At 90% load, per-task
sampling improves performance by a factor of 5 com-

1More precisely, expected task wait time using random placement is
1/(1−ρ), whereρ represents load. Using the least loaded ofd choices,
wait time in an initially empty system over the firstT units of time is

upper bounded by∑∞
i=1 ρ

di−d
d−1 +o(1) [17].

3

 0

 500

 1000

 1500

 2000

 0 0.2 0.4 0.6 0.8 1

R
es

p
o

n
se

 T
im

e
(m

s)

Load

Random
Per-Task
Batch
Batch+Virtual Reservations

Figure 3: Comparison of random placement, per-task
sampling, batch sampling, and batch sampling with vir-
tual reservations in a simulated 10,000 node cluster run-
ning 500-task jobs. Task durations are exponentially dis-
tributed with mean 100ms; expected optimal job re-
sponse time is 680ms (shown with the black dashed line).

pared to random placement, but still adds 75% overhead
compared to an optimal scheduler.

3.3 Batch Sampling

Batch sampling improves on per-task sampling by shar-
ing information across all of the probes for a partic-
ular scheduling request. Batch sampling is similar to
a technique recently proposed in the context of stor-
age systems [20]. With per-task sampling, one pair of
probes may have gotten unlucky and sampled two heav-
ily loaded machines (e.g., Task 1 in Figure 2(a)), while
another pair may have gotten lucky and sampled two
lightly loaded machines (e.g, Task 2 in Figure 2(a)); one
of the two lightly loaded machines will go unused. Batch
sampling aggregates load information from the probes
sent for all of a job’s tasks, and places the job’sm tasks
on the least loaded of all the worker machines probed. In
the example shown in Figure 2, per-task sampling places
tasks in queues of length 1 and 3; batch sampling reduces
the maximum queue length to 2 by using both workers
that were probed by Task 2 with per-task sampling.

To schedule using batch sampling, a scheduler ran-
domly selectsdm worker machines (ford ≥ 1). The
scheduler sends a probe to each of thedm workers; as
with per-task sampling, each worker replies with the
number of queued tasks. The scheduler places one of the
job’s m tasks on each of them least loaded workers. Un-
less otherwise specificed, we used = 2; we explore the
impact ofd in §7.7.

As shown in Figure 3, batch sampling improves per-
formance compared to per-task sampling. With exponen-
tially distributed task durations, batch sampling reduces
job response time by over 10% compared to per-task
sampling. For other task duration distributions includ-

ing constant and Pareto, batch sampling improves per-
formance by a factor of two (results omitted for brevity).
Nonetheless, batch sampling adds over 50% of overhead
at 90% load compared to an optimal scheduler.

3.4 Problems with Sample-Based Scheduling

Sample-based techniques perform poorly at high load
due to two problems. First, schedulers place tasks based
on the queue length at worker nodes. However, queue
length provides only a coarse prediction of wait time.
Consider a case where the scheduler probes two work-
ers to place one task, one of which has two 50ms tasks
queued and the other of which has one 300ms task
queued. The scheduler will place the task in the queue
with only one task, even though that queue will result in a
200ms longer wait time. While workers could reply with
an estimate of task duration rather than queue length, ac-
curately predicting task durations is notoriously difficult.

Sampling also suffers from a race condition where
multiple schedulers may concurrently place tasks on
a worker that appears lightly loaded. Consider a case
where two different schedulers probe the same idle
worker machine,w, at the same time. Since the worker
machine is idle, both schedulers are likely to place a task
on w; however, only one of the two tasks placed on the
worker will arrive in an empty queue. The queued task
might have been placed in a different queue had the cor-
responding scheduler known thatw was not going to be
idle when the task arrived.

3.5 Virtual Reservations

Sparrow introducesvirtual reservationsto solve the
aforementioned problems. With virtual reservations,
workers do not reply immediately to probes and instead
place a reservation for the task at the end of an internal
work queue. When this reservation reaches the front of
the queue, the worker sends an RPC to the scheduler re-
questing a specific task. The scheduler assigns the job’s
tasks to the firstm workers to reply, and replies to the
remaining(d−1)mworkers with a no-op signalling that
all of the job’s tasks have been launched. In this manner,
the scheduler guarantees that the tasks will be placed on
themprobed workers where they will be launched soon-
est. For exponentially-distributed task durations at 90%
load, virtual reservations improve response time by 35%
compared to batch sampling, bringing response time to
within 14% of optimal (as shown in Figure 3).

The downside of virtual reservations is that workers
are idle while they are sending an RPC to request a
new task from a scheduler. All current cluster schedulers
we are aware of make this tradeoff: schedulers wait to
assign tasks until a worker signals that it has enough

4

free resources to launch the task. In our target setting,
this tradeoff leads to a 2% efficiency loss. The fraction
of time a worker spends idle while requesting tasks is
(d ·RTT)/(t +d ·RTT) (whered denotes the number of
probes per task, RTT denotes the mean network round
trip time, andt denotes mean task service time). In our
deployment on EC2 with an un-optimized network stack,
mean network round trip time was 1 millisecond. We ex-
pect that the shortest tasks will complete in 100ms and
that scheduler will use a probe ratio of no more than 2,
leading to at most a 2% efficiency loss. For our target
workload, this tradeoff is worthwhile, as illustrated by
the results shown in Figure 3, which incorporate network
delays. In other environments where network latencies
and task runtimes are the same order of magnitude, vir-
tual reservations will not present a worthwhile tradeoff.

4 Scheduling Policies and Constraints
Sparrow aims to support a small but useful set of poli-
cies within its decentralized framework. This section out-
lines support for two types of popular scheduler policies:
constraints over where individual tasks are launched and
inter-user isolation policies to govern the relative perfor-
mance of users when resources are contended.

4.1 Handling Placement Constraints

Sparrow handles two types of constraints, job-level and
task-level constraints. Such constraints are commonly re-
quired in data-parallel frameworks, for instance, to run
tasks co-resident with a machine that holds data on disk
or in memory. As mentioned in§2, Sparrow does not
support complex constraints (e.g., inter-job constraints)
supported by some general-purpose resource managers.

Job-level constraints (e.g., all tasks should be run on
a worker with a GPU) are trivially handled at a Spar-
row scheduler. Sparrow randomly selects thedm candi-
date workers from the subset of workers that satisfy the
constraint. Once thedm workers to probe are selected,
scheduling proceeds as described previously.

For jobs with task-level constraints, Sparrow uses per-
task rather than batch sampling. Each task may have a
different set of machines on which it can run, so Sparrow
cannot aggregate information over all of the probes in the
job using batch sampling. Instead, Sparrow uses per-task
sampling, where the scheduler selects the two machines
to probe for each task from the set of machines that the
task is constrained to run on.

Sparrow implements a small optimization over per-
task sampling for jobs with task-level constraints. Rather
than probing individually for each task, Sparrow shares
information across tasks when possible. For example,
consider a case where task 0 is constrained to run in ma-

chines A, B, and C, and task 1 is constrained to run on
machines C, D, and E. Suppose the scheduler probed ma-
chines A and B for task 0, which were heavily loaded,
and probed machines C and D for task 1, which were
both idle. In this case, Sparrow will place task 0 on ma-
chine C and task 1 on machine D, even though both ma-
chines were selected to be probed for task 1.

Although Sparrow cannot use batch sampling for jobs
with task-level constraints, our distributed approach still
provides near-optimal response times for these jobs. Jobs
with task level constraints can still use virtual reserva-
tions, so the scheduler is guaranteed to place each task
on whichever of two probed machines that the task will
run soonest. Because task-level constraints typically con-
strain a task to run on three machines, even an ideal, om-
niscient scheduler would only have one additional choice
for where to place each task.

4.2 Resource Allocation Policies

Cluster schedulers seek to allocate resources according
to a specific policy when aggregate demand for resources
exceeds capacity. Sparrow supports two types of policies:
strict priorities and weighted fair sharing. These policies
mirror those offered by other schedulers, including the
Hadoop Map Reduce scheduler [29].

Many cluster sharing policies reduce to using strict
priorities; Sparrow supports all such policies by main-
taining multiple queues on worker nodes. FIFO, earliest
deadline first, and shortest job first all reduce to assign-
ing a priority to each job, and running the highest pri-
ority jobs first. For example, with earliest deadline first,
jobs with earlier deadlines are assigned higher priority.
Cluster operators may also wish to directly assign prior-
ities; for example, to give production jobs high priority
and ad-hoc jobs low priority. To support these policies,
Sparrow maintains one queue for each priority at each
worker node. When resources become free, Sparrow re-
sponds to the reservation from the highest priority non-
empty queue. This mechanism trades simplicity for ac-
curacy: nodes need not use complex gossip protocols to
exchange information about jobs that are waiting to be
scheduled, but low priority jobs may run before high pri-
ority jobs if a probe for a low priority job arrives at a
node where no high priority jobs happen to be queued.
We believe this is a worthwhile tradeoff: as shown in
§7.6, this distributed mechanism provides good perfor-
mance for high priority users. Sparrow does not currently
support preemption when a high priority task arrives at a
machine running a lower priority task; we leave explo-
ration of preemption to future work.

Sparrow can also enforce weighted fair shares. Each
worker maintains a separate queue for each user, and per-

5

n Number of servers in the cluster
ρ Load (fraction non-idle slaves)
m Tasks per job
d Probes per task
t Mean task service time

ρn
mt Mean request arrival rate

Table 1: Summary of notation.

Random Placement (1−ρ)m

Per-Task Sampling (1−ρd)m

Batch Sampling ∑d·m
i=m(1−ρ)iρd·m−i

(d·m
i

)

Table 2: Probability that a job will experience zero wait
time under three diffelacement approaches.

forms weighted fair queuing [9] over those queues. This
mechanism provides cluster-wide fair shares in expec-
tation: two users using the same worker will get shares
proportional to their weight, so by extension, two users
using the same set of machines will also be assigned
shares proportional to their weight. We choose this sim-
ple mechanism because more accurate mechanisms (e.g.,
Pisces [23]) add considerable complexity; as we demon-
strate in §7.5, Sparrow’s simple mechanism provides
near-perfect fair shares.

5 Analysis

Before delving into our experimental evaluation, we
use mathematical analysis to prove that batch sampling,
the key technique underlying Sparrow, achieves near-
optimal performance,regardless of the task duration dis-
tribution. Section 3 demonstrated that Sparrow performs
well, but only under one particular workload; this section
generalizes those results to all workloads. Batch sam-
pling’s good performance comes in contrast to the per-
formance of per-task sampling: the performance of per-
task sampling decreases exponentially with the number
of tasks in a job, making it perform poorly for parallel
workloads.

To analyze the performance of batch and per-task sam-
pling, we examine the probability of placing all tasks in
a job on idle machines, or equivalently, providing zero
wait time. Because an ideal, omniscient scheduler could
place all jobs on idle machines when the the cluster is un-
der 100% utilized, quantifying how often our approach
places jobs on idle workers provides a bound on how
Sparrow performs compared to an optimal scheduler.

We make a few simplifying assumptions for the pur-
poses of this analysis. We assume zero network delay, an
infinitely large number of servers, and that each server
runs one task at a time. Our experimental evaluation eval-
uates results in the absence of these assumptions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r(

ze
ro

 w
ai

t
ti
m

e)

Load

10 tasks/job

Random Per-Task

 0 0.2 0.4 0.6 0.8 1
Load

100 tasks/job

Batch

Figure 4: Probability that a job will experience zero wait
time in a single-core environment, using random place-
ment, sampling 2 servers/task, and sampling 2m ma-
chines to place anm-task job.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r(

ze
ro

 w
ai

t
ti
m

e)
Load

10 tasks/job

Random Per-Task

 0 0.2 0.4 0.6 0.8 1
Load

100 tasks/job

Batch

Figure 5: Probability that a job will experience zero wait
time in a system of 4-core servers.

Mathematical analysis corroborates the results in§3
demonstrating that per-task sampling performs poorly
for parallel jobs. The probability that a particular task
is placed on an idle machine is one minus the probabil-
ity that all probes hit busy machines: 1− ρd (whereρ
represents cluster load andd represents the probe ratio;
Table 1 summarizes notation). The probability thatall
tasks in a job are assigned to idle machines is(1−ρd)m

(as shown in Table 2) because allm sets of probes must
hit at least one idle machine. This probability decreases
exponentially with the number of tasks in a job, render-
ing per-task sampling inappropriate for scheduling par-
allel jobs. Figure 4 illustrates the probability that a job
experiences zero wait time (equivalent to the probability
that all of a job’s tasks are placed in idle queues) for both
10 and 100-task jobs, and demonstrates that the proba-
bility of experiencing zero wait time for a 100-task job
drops to less than 2% at just 20% load.

Batch sampling can place all of a job’s tasks on idle
machines at much higher loads than per-task sampling.
In expectation, batch sampling will be able to place allm
tasks in empty queues as long asd ≥ 1

1−ρ . Crucially, this
expression does not depend on the number of tasks in a
job (m)! Figure 4 illustrates this effect: for both 10 and
100-task jobs, the probability of experiencing zero wait

6

Sparrow Node Monitor

App X
Executor

Slave

Sparrow Scheduler

Spark
Frontend

App X
Frontend

Sparrow Scheduler

Spark
Frontend
!"

Spark
Executor

Sparrow Node Monitor

Slave

Spark
Executor

Sparrow Node Monitor

App X
Executor

Slave

!"

Figure 6: Frameworks that use Sparrow are decom-
posed into frontends, which generate tasks, and execu-
tors, which run tasks. Frameworks schedule jobs by com-
municating with any one of a set of distributed Sparrow
schedulers. Sparrow node monitors run on each slave
machine and federate resource usage.

time drops from 1 to 0 at 50% load.2

Our analysis thus far has considered machines that can
run only one task at a time; however, today’s clusters typ-
icaly feature multi-core machines. Multicore machines
significantly improve the performance of batch sampling.
Consider a model where each server can run up toc tasks
concurrently without degraded performance compared to
running the task on an idle machine. Because each server
can run multiple concurrent tasks, each probe implicitly
describes load onc processing units rather than just one,
which increases the likelihood of finding an idle process-
ing unit on which to run each task. To analyze perfor-
mance in a multicore envirionment, we make two simpli-
fying assumptions: first, we assume that the distribution
of idle cores is independent of whether the cores reside
on the same machine; and second, we assume that the
scheduler places at most 1 task on each machine, even
if multiple cores are idle. Based on these assumptions,
we can replaceρ in Table 2 withρc to obtain the re-
sults shown in Figure 5. These results improve dramati-
cally on the single-core results: for batch sampling with
4 cores per machine and 100 tasks per job, batch sam-
pling achieves near perfect performance (99.9% of jobs
experience zero wait time) at up to 79% load. This result
demonstrates that batch sampling performs wellregard-
less of the distribution of task durations.

6 Implementation
We implemented Sparrow to evalute its performance in
a running cluster. The Sparrow code, including scripts to
replicate our experimental evaluation, is publicly avail-
able athttp://github.com/radlab/sparrow.

2With the larger, 100-task job, the drop happens more rapidlybe-
cause the job uses more total probes, which decreases the variance in
the proportion of probes that hit idle machines.

Application
Frontend

Scheduler

Node

Monitor

Application
Executor

submitRequest()

enqueueReservation()

getTask()

launchTask()

reserve time

get task
time

queue time

Time

taskComplete
()

service
time

taskComplete
()
taskComplet

e()

Figure 7: RPCs (parameters not shown) and timings as-
sociated with launching a job. Sparrow’s external inter-
face is shown in bold text.

6.1 System Components

As shown in Figure 6, Sparrow schedules from a dis-
tributed set of schedulers that are each responsible for
assigning tasks to slaves. Because batch sampling does
not require any communication between schedulers, ar-
bitrarily many schedulers may operate concurrently, and
users or applications may use any available scheduler
to place jobs. Schedulers expose a cross-platform Thrift
service [1] (illustrated in Figure 7) to allow frameworks
to submit scheduling requests. Each scheduling request
includes a list of task specifications; the specification for
a task includes a task description and a list of constraints
governing where the task can be placed.

A Sparrow node monitor runs on each slave, and fed-
erates resource usage on the slave by enqueuing vir-
tual reservations and requesting task specifications from
schedulers when resources become available. Node mon-
itors run tasks in a fixed number ofslots; slots can be
configured based on the resources of the underlying ma-
chine, such as CPU cores and memory.

Sparrow performs task scheduling for one or more
concurrently operating frameworks. As shown in Fig-
ure 6, frameworks are composed of long-livedfrontend
and executorprocesses, a model employed by many
systems (e.g., Mesos [12]). Frontends accept high level
queries or job specifications (e.g., a SQL query) from
exogenous sources (e.g., a data analyst, web service,
business application, etc.) and compile them into paral-
lel tasks for execution on workers. Frontends are typi-
cally distributed over multiple machines to provide high
performance and availability. Executor processes are re-
sponsible for executing tasks, and are long-lived to avoid
startup overhead such as shipping binaries or bringing
large datasets into cache. Executor processes for multi-
ple frameworks may run co-resident on a single machine;
the node monitor federates resource usage between co-
located frameworks. Sparrow requires executors to ac-

7

cept alaunchTask() RPC from a local node moni-
tor, as shown in Figure 7; thelaunchTask() RPC in-
cludes a task description (opaque to Sparrow) provided
by the application frontend.

6.2 Spark on Sparrow

In order to test batch sampling using a realistic workload,
we have ported Spark [30] to Sparrow by writing a Spark
scheduling plugin that uses the Java Sparrow client. This
plugin is 132 lines of Scala code.

The execution of a Spark job begins at a Spark fron-
tend, which compiles a functional query definition into a
multi-phase parallel job. The first phase of the job is typ-
ically constrained to execute on machines that contain
partitions of the cached input data set, while the remain-
ing phases (which read data shuffled over the network)
can execute anywhere. The Spark frontend passes a list
of task descriptions (and any associated placement con-
straints) for the first phase of the job to a Sparrow sched-
uler, which assigns the tasks to slaves. Because Sparrow
schedulers are lightweight, we run a scheduler along-
side each Spark frontend to ensure minimum schedul-
ing latency. When the Sparrow scheduler assigns a task
to a slave, it passes the task description provided by
the Spark frontend to the Spark executor running on the
slave, which uses the task description to launch the task.
When one phase completes, Spark requests scheduling
of the tasks in the subsequent phase.

6.3 Fault Tolerance

Because Sparrow schedules from multiple schedulers,
the design is inherently fault tolerant: if a scheduler
becomes unavailable, an application can direct its re-
quests to one of many alternate schedulers. When ini-
tializing a Sparrow client, applications pass a list of
schedulers to connect to. When a scheduler fails, the
Sparrow clients using it re-connect to the next avail-
able scheduler and trigger a callback at the application.
This approach lets frameworks decide how to handle
tasks which were in-flight during the scheduler failure.
In some cases, they may want to simply ignore failed
tasks. Other frameworks might want to re-launch them
or determine whether they have run once already. Spark’s
approach to failure tolerance is discussed further in§7.3.

7 Experimental Evaluation
We evaluate Sparrow by performing a variety of exper-
iments on 110 node 16-core EC2 clusters. Unless oth-
erwise specified, we use a probe ratio of 2. First, we
use Sparrow to schedule tasks for a TPC-H workload,
which features heterogeneous analytics queries. We pro-
vide fine-grained tracing of the exact overhead that Spar-

row incurs and quantify its performance in comparison
with an optimal scheduler. Second, we evaluate Spar-
row’s ability to isolate users from one another in accor-
dance with cluster-wide scheduling policies. Finally, we
perform a sensitivity analysis of key parameters in Spar-
row’s design.

7.1 Performance on TPC-H Workload

To evaluate Sparrow against a realistic workload, we
measure Sparrow’s performance scheduling TPC-H
queries. The TPC-H benchmark is representative of ad-
hoc queries on business data, which are a common use
case for low-latency data parallel frameworks.

We use Shark [11], a large scale data analytics plat-
form built on top of Spark, to execute the TPC-H bench-
mark queries. Shark lets users load working sets into
memory on several parallel machines and analyze them
using a SQL-based query language. Our experiment fea-
tures several users concurrently using Shark to run ad-
hoc analytical queries in a 100-node cluster. The data set
and queries are drawn from the TPC-H OLAP database
benchmark.

The query corpus features four TPC-H queries, with
2, 3, 3, and 5 phases respectively. The queries operate
on a denormalized in-memory copy of the TPC-H in-
put dataset (scale factor 2.5). Each frontend queries a
distinct data-set that is striped over 90 of the 100 ma-
chines: this consists of 30 three-way replicated partitions.
Each Shark query breaks down into multiple phases.
For example, for query 3, the first phase scans and
filters records, the second aggregates data into groups
(via a shuffle) and the third sorts by a group-related
value. These phases are each scheduled through Spar-
row’s submitRequest RPC.

In the experiment, each of 10 users launches random
permutations of the TPC-H queries continuously for 30
minutes. The queries are launched at an aggregate rate of
approximately 30 per second in order to keep the cluster
65% utilized, on average. Queries are launched through
10 Sparrow schedulers, which use a sample ratio of 2 to
assign tasks to worker machines.

Shark queries are compiled into multiple Spark [30]
stages that each trigger a scheduling request to Sparrow.
The response time of a Shark query is dictated by the
accumulated response time of each sub-phase. The dura-
tion of each phase is not uniform, instead varying from a
few tens of milliseconds to several hundred. The phases
in this workload have heterogeneous numbers of tasks,
corresponding to the amount of data processed in that
phase. The queries require a mix of constrained and un-
constrained scheduling requests.

Figure 8 plots the median, 5th, and 95th percentile re-

8

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

q3 q12 q4 q6

R
es

po
ns

e
T

im
e

(m
s)

Random

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

q3 q12 q4 q6

R
es

po
ns

e
T

im
e

(m
s)

Batch Sampling

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

q3 q12 q4 q6

R
es

po
ns

e
T

im
e

(m
s)

Batch Sampling w/ Virtual Res.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

q3 q12 q4 q6

R
es

po
ns

e
T

im
e

(m
s)

Offline Optimal

8035 13693 9915 6934

Figure 8: Median, 5th, and 95th percentile response times
for TPC-H queries with several placement strategies.

sponse times for each TPC-H query across all frontends
during a 2 minute sampled period in the middle of the
experiment. Approximately 4000 queries are completed
during this window, resulting in around 12TB of in-
memory table scans (the first phase of each query scans
the entire table). The figure compares response time us-
ing Sparrow to response time with three alternatives. The
first alternative, random placement, places each task on a
randomly selected machine. The second strategy imple-
ments batch sampling and uses queue-length estimations.
The third group represents the full Sparrow algorithm,
which includes virtual reservations.

As shown in Figure 8, Sparrow improves the median
query response time by 2-3×, and the 95th by up to 130×
compared to naı̈ve randomized techniques. In addition to
improving on existing techniques, Sparrow also provides
good absolute performance: response times using Spar-
row are within 14% of an offline optimal. To determine
the offline optimal, we take each query and calculates the
response time of the query if all tasks were launched im-
mediately; that is, with zero wait time. This offline op-
timal calculation is conservative—it does not take into
account task launch delay or queuing that is unavoid-
able due to small utilization bursts—both of which are
inevitable even with an omniscient scheduler. Even so,
Sparrow performs within 14% of the offline optimal.

7.2 Scheduling Latency

Figure 9 deconstructs Sparrow scheduling latency from
the proceeding TPC-H experiment into four components.
These describe a complete trace of 21,651 requests. Four
lines are plotted, each characterizing the latency of a par-
ticular phase of the Sparrow scheduling algorithm. These
phases are depicted in Figure 7.EnqueueRes plots
the time it takes for the scheduler to enqueue a given
task reservation on a slave node.GetTask describes the
time it takes for the slave to fetch and run a new task.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
u
m

u
la

ti
ve

 P
ro

b
ab

ili
ty

Milliseconds

EnqueueRes
GetTask

Queue Time
Service Time

Figure 9: Latency distributions for each stage in the Spar-
row scheduling algorithm. Note that control plane mes-
sages are much shorter than task durations.

This includes time spent asking for “null” tasks which
were already launched elsewhere.ServiceTime and
QueueTime reflect the amount of time individual tasks
spent running or queued on the slave nodes. The mes-
saging in Sparrow is fast, requiring only a handful of
milliseconds to enqueue and dequeue individual tasks.
The majority of this time is spent shipping the task in-
formation itself, a component ofGetTask, which is
an unavoidable overhead. Sparrow achieves good perfor-
mance because it keeps queue time low relative to ser-
vice time. The long enqueue reservation 99th percentile
latency does not affect performance: workers that take a
long time to receive or response to a reservation are sim-
ply not assigned a task.

7.3 How do scheduler failures impact job response
time?

Sparrow is resilient to scheduler failure, providing auto-
matic client failover between schedulers. Figure 10 plots
the response time for ongoing TPC-H queries in an ex-
periment parameterized exactly as in§7.1. This experi-
ment features 10 Shark frontends which submit continu-
ous queries. The frontends are each initialized with a list
of several Sparrow schedulers and initially connect to the
scheduler resident on the same node. At timet=20, we
terminate the Sparrow scheduler on Node 1. The fron-
tend is programmed to fail over to a scheduler on Node
2, so we plot that node as well.

The speed of failover recovery makes the interruption
almost unnoticeable. Because Sparrow schedulers main-
tain no session state, the process of failing-over reduces
to timing out and connecting to another node. The Spar-
row client library detects failures with a fixed 100ms
timeout. On failure, it triggers an application-layer fail-
ure handler which has the option of resubmitting in-flight
tasks. In the case of Spark, that handler instantly re-
launches any phases which were in-flight. In this exper-
iment, detecting the failure took 100ms, connecting to a
new scheduler took less than 5ms, and re-launching out-

9

 0

 1000

 2000

 3000

 4000

 0 10 20 30 40 50 60
Time (s)

 0

 1000

 2000

 3000

 4000

Failure
Node 1

Node 2

Figure 10: TPC-H response times for two frontends sub-
mitting queries to a 100-node cluster. Node 1 suffers
from a scheduler failure at 20 seconds.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50

R
u
n
n
in

g
T

as
k
s

Time (s)

User 0
User 1

Figure 11: Cluster share used by two users that are each
assigned equal shares of the cluster. User 0 submits at a
rate to utilize the entire cluster for the entire experiment
while user 1 adjusts its submission rate each 10 seconds.
Sparrow assigns both users their max-min fair share.

standing tasks took less than 15ms. Only a small number
of queries (2) have tasks in flight during the failure; these
queries suffer some overhead.

7.4 Synthetic Workload

The remaining sections evaluate Sparrow using a syn-
thetic workload composed of 10 100ms tasks, unless oth-
erwise specified. Each task runs floating-point multipli-
cations to fully utilize a single CPU for 100ms. In this
workload, ideal job completion time is always 100ms,
which helps to isolate the performance of Sparrow from
application-layer variations in service time. As in previ-
ous experiments, these experiments run on a cluster of
110 EC2 servers, with 10 schedulers and 100 workers.

7.5 How well can Sparrow’s distributed fairness en-
forcement maintain fair shares?

Figure 11 demonstrates that Sparrow’s distributed fair-
ness mechanism enforces cluster-wide fair shares and
quickly adapts to changing user demand. Users 0 and 1
are both given equal shares in a cluster with 400 slots.
Unlike other experiments, we use 100 4-core EC2 ma-
chines; Sparrow’s distributed enforcement works better
as the number of cores increases, so to avoid over stating

HP LP HP Response LP Response
Load Load Time Time
0.25 0 106 (111) N/A
0.25 0.25 108 (114) 108 (115)
0.25 0.5 110 (148) 110 (449)
0.25 0.75 136 (170) 40202 (46191)
0.25 1.75 141 (226) 254896 (269661)

Table 3: Median and 95th percentile (shown in paren-
theses) response times for a high priority (HP) and low
priority (LP) user running jobs composed of 10 100ms
tasks in a 100-node cluster. Sparrow successfully shields
the high priority user from a low priority user.

performance, we evaluate it under the smallest number of
cores we would expect in a cluster today. User 0 submits
at a rate to fully utilize the cluster for the entire dura-
tion of the experiment. User 1 changes her demand every
10 seconds: she submits at a rate to consume 0%, 25%,
50%, 25%, and finally 0% of the cluster’s available slots.
Under max-min fairness, each user is allocated her fair
share of the cluster unless the user’s demand is less than
her share, in which case the unused share is distributed
evenly amongst the remaining users. Thus, user 1’s max-
min share for each 10-second interval is 0 concurrently
running tasks, 100 tasks, 200 tasks, 100 tasks, and finally
0 tasks; user 1’s max-min fair share is the remaining re-
sources. Sparrow’s fairness mechanism lacks any central
authority with a complete view of how many tasks each
user is running, leading to imperfect fairness over short
time intervals. Nonethess, as shown in Figure 11, Spar-
row quickly allocates enough resources to User 1 when
she begins submitting scheduling requests (10 seconds
into the experiment), and the cluster share allocated by
Sparrow exhibits only small fluctionations from the cor-
rect fair share.

7.6 How much can low priority users hurt response
times for high priority users?

Table 3 demonstrates that Sparrow provides response
times with 40% of optimal for a high priority user in the
presence of a misbehaving low priority user. The high
priority user submits jobs at a rate to fill 25% of the clus-
ter, while the low priority user increases her submission
rate to well beyond the capacity of the cluster. Without
any isolation mechanisms, when the aggregate submis-
sion rate exceeds the cluster capacity, both users would
experience infinite queueing. As described in§4.2, Spar-
row node monitors run all queued high priority tasks be-
fore launching any low priority tasks, allowing Sparrow
to shield high priority users from misbehaving low prior-
ity users. While Sparrow prevents the high priority user

10

 0

 50

 100

 150

 200

 250

0.7 0.8 0.9 0.95

R
es

po
ns

e
T

im
e

Cluster Load

571

Probe Ratio 1.5
Probe Ratio 2.0

Probe Ratio 3.0

Figure 12: Effect of probe ratio on median response time.
Error bars depict 5th and 95th percentile performance.

from experiencing infinite queueing, the high priority ex-
periences 40% worse response times when sharing with a
demanding low priority user than when running alone on
the cluster. Because Sparrow does not use preemption,
high priority tasks may need to wait to be launched until
low priority tasks (that are running when the higher pri-
ority task arrives) complete. In the worst case, this wait
time may be as long as the longest running low-priority
task. Exploring the impact of preemption is a subject of
future work.

7.7 Probe Ratio Sensitivity Analysis

This section seeks to answer two questions: first, if Spar-
row reduces messaging by using a probe ratio less than 2,
how does it perform; and second, how much can a larger
probe ratio improves Sparrow’s performance? Figure 12
illustrates response time at increasing load in a system
running our synthetic workload. We use 4-core nodes
for this experiment to emphasize the difference between
probe ratios; with larger numbers of cores, fewer probes
are necessary. A higher probe ratio decreases tail behav-
ior at loads of at most 90%, but at 95% load, using a
probe ratio of 3 leads to increased response times due to
the increased messaging. A lower probe ratio of 1.5 pro-
vides nearly as good performance as a probe ratio of 2;
systems where messaging is expensive might choose to
use a lower probe ratio.

7.8 Breaking Sparrow with Heterogeneity

We hypothesized that heterogeneous task distributions
were the weak point in Sparrow’s design: if some work-
ers were running long tasks, we expected Sparrow’s ap-
proach to have increasing difficulty finding idle machines
on which to run tasks. We found that Sparrow works well
unless a large fraction of tasks are longand the long
tasks are many orders of magnitude longer than the short
tasks. We ran a series of experiments with two types of
jobs: short jobs, composed of 10 100ms tasks, and long
jobs, composed of 10 tasks of longer duration. Jobs are

 0
 50

 100
 150
 200
 250
 300

10s 100sSh
o
rt

 J
o
b

R
es

p.
 T

im
e

(m
s)

Duration of Long Tasks

16 core, 50% long
4 cores, 10% long

4 cores, 50% long

666 62782466

Figure 13: Sparrow provides low response time for jobs
composed of 10 100ms tasks, even when those tasks are
run alongside much longer jobs.

submitted to sustain 80% cluster load. Figure 13 illus-
trates the response time of short jobs when sharing the
cluster with long jobs. We vary the percentage of jobs
that are long, the duration of the long jobs, and the num-
ber of cores on the machine, to illustrate where perfor-
mance breaks down. Sparrow’s provides response times
for short tasks within 11% of optimal (100ms) when run-
ning on 16-core machines, even when 50% of tasks are 3
orders of magnitude longer. Short tasks see more signifi-
cant performance degredation in a 4-core environment.

7.9 Scaling to Large Clusters

We use simulation to evaluate Sparrow’s performance in
larger clusters. Figure 3 demonstrated that Sparrow con-
tinues to provide good performance in a 10,000 node
cluster.

8 Practical Challenges for Low-Latency
Workloads

This paper focuses on optimizing scheduling for low-
latency parallel workloads. In removing the scheduling
bottleneck, we discovered numerous other barriers to
supporting low latency; eliminating such bottlenecks will
be important for future frameworks that seek to provide
low latency. This section outlines three such issues and
discusses how we addressed them in our implementation
and evaluation.

Overhead of control-plane messages Messaging can
impose significant overhead when tasks become very
short. In particular, launching a task on a worker node re-
quires shipping the relevant task information to that node
(which occurs in response to thegetTask() RPC).
Long-lived executor processes running on the node help
reduce the size of this information, because the applica-
tion need not ship binaries or other information shared
across all jobs. Nonetheless, the application must send
information about the task, including information about
input data, a partial query plan, function closures, or

11

other meta data. If a node is launching a job composed
of hundreds of tasks, task descriptions must be small
enough to ensure that even the last task to ship doesn’t
experience appreciable delay. We found that 100-200Kb
task descriptions impacted performance of Shark jobs on
a 100-node cluster, and as a result, invested effort to com-
press tasks down to approximately 5Kb. Even with 5Kb
task descriptions, shipping all of the tasks for a large job
requires significant messaging at the scheduler. The over-
head of this messaging presents another compelling rea-
son to distribute scheduling (and associated messaging)
over many schedulers.

Skew in data partitioning If partitions of a dataset
are unevenly distributed, hot-spots develop that can sig-
nificantly slow response time. Such data skew can hurt
performance, even in the face of very efficient schedul-
ing. For the experiments in this paper, we leveraged two
features of Shark to alleviate hot-spots. First, we repli-
cated each partition in-memory on multiple machines,
which allows the underlying scheduler more choice in
placing tasks. Second, we tightly controlled data-layout
of each table to ensure that partitions were balanced.

Virtualized environments Many modern clusters use
CPU virtualization to multiplex workloads between users
and improve efficiency. Unfortunately, virtualization can
inflate network round trip times to as much as 30ms, as
discussed in Bobtail [28]. Because Sparrow node moni-
tors are idle while requesting new tasks from the sched-
uler, 30ms network RTTs significantly degrade perfor-
mance, particularly at high system load. To mitigate this
problem, all experiments in this paper were run on EC2
high memory cluster compute instances with 16 cores
(cr1.xlarge) to minimize the presence of swapping. We
found that even medium to large size EC2 nodes (e.g.,
quad-core m2.2xlarge instances) introduced unaccept-
able virtualization-induced network delay.

9 Limitations and Future Work
To handle the latency and throughput demands of low-
latency frameworks, our approach sacrifices some of the
features sometimes available in general purpose resource
managers. Some of these limitations of our approach are
fundamental, while others are the focus of future work.
Scheduling Policies When a cluster becomes over-
subscribed, batch sampling supports aggregate fair-
sharing or priority-based scheduling. Sparrow’s dis-
tributed setting lends itself toapproximatedpolicy en-
forcement in order to minimize system complexity.
Bounding this inaccuracy under arbitrary workloads is
a focus of future work.

With regards to job-level policies, our current design
does not handleinter-job constraints(e.g. “the tasks for

job A must not run on racks with tasks for job B”). Sup-
porting inter-job constraints across frontends is difficult
to do without significantly altering Sparrow’s design.
Gang Scheduling Applications that need to runm
inter-communicating tasks require gang scheduling.
Gang scheduling is typically implemented using bin-
packing algorithms which search for and reserve time
slots in which an entire job can run. Because Sparrow
queues tasks on several machines, there is no central
point from which to perform bin-packing. While it is of-
ten the case that Sparrow places all jobs on entirely idle
machines, this is not guaranteed. Applications that use
Sparrow could implement inter-task communication by
using a map-reduce model, where data is shuffled and
stored (in memory or on disk) before being joined. This
trade-off is also made by several other cluster sched-
ulers [12, 19, 13]).
Cancellation Schedulers could reduce the amount of
time slaves spend idle due to virtual reservations by can-
celing outstanding reservations once all tasks in a job
have been scheduled. Cancellation would decrease idle
time on slaves with little cost.

10 Related Work
Scheduling in large distributed systems has been exten-
sively studied in earlier work.
HPC Schedulers The high performance computing
(HPC) community has produced a broad variety of
schedulers for cluster management. HPC jobs tend to be
monolithic, rather than composed of fine-grained tasks,
obviating the need for high throughput schedulers. HPC
schedulers thus optimize for large jobs with complex
constraints, using constrained bin-packing algorithms.
High throughput HPC schedulers, such as SLURM [14],
target maximum throughput in the tens to hundreds of
scheduling decisions per second.
Condor The Condor scheduler [24] targets high
throughput computing environments using a combina-
tion of centralization and distribution. Condor’s schedul-
ing throughput is again in the regime of 10 to 100 jobs
per second [6]. This is the result of several complex fea-
tures, including a rich constraint language, a job check-
pointing feature, and support for gang scheduling, all of
which result in a heavy-weight matchmaking process.
Unlike Sparrow, Condor is a general purpose cluster re-
source manager.
Fine-Grained Schedulers Quincy [13] provides fair-
ness and locality by mapping the scheduling problem
onto a graph and using a solver to compute the opti-
mal online schedule. Because the size of the graph is
proportional to the number of slaves, scheduling latency
grows with cluster size. In a 2500 node cluster, the graph

12

solver takes over a second to compute a scheduling as-
signment [13]; while multiple jobs can be batched in a
single scheduling assignment, waiting seconds to sched-
ule a job that can complete in hundreds of milliseconds
is unacceptable overhead.

Dremel [16] achieves response times of seconds with
extremely high fanout. Dremel uses a hierarchical sched-
uler design whereby each query is decomposed into a
serving tree. This approach exploits the internal structure
of Dremel query’s and its storage layout – it is closely
tied to the underlying architecture of the system.
Cluster Resource Managers Cluster resource man-
agers federate resource usage between multiple users and
applications running in a cluster, typically using a cen-
tralized design. These resource managers target coarse
grained resource allocation and are not designed to han-
dle fine-grained task assignment.

YARN [19] extends the original Hadoop Map Reduce
scheduler [25] to support multiple frameworks by intro-
ducing distributed per-job application masters. YARN re-
lies on periodic (1s, by default) heartbeats from slaves
to determine when resources have become available. To
avoid wasted resources, heartbeats need to occur more
frequently than the expected task turnover rate on a ma-
chine; to handle a multi-core machines running sub-
second tasks, each slave would need to send hundreds
of heartbeats per second, which would easily overwhelm
the resource manager. Furthermore, high availability has
not yet been implemented for YARN.

Mesos [12] imposes minimal scheduling overhead by
delegating all aspects of scheduling other than fairness to
framework schedulers and employs batching to handle
high throughput. Still, Mesos was not designed to han-
dle short tasks, so batches scheduling requests to provide
high throughput. This batching introduces scheduling de-
lay on the order of seconds.

A variety of other schedulers, e.g., Omega [22], tar-
get course-grained scheduling, scheduling dedicated re-
sources for services that handle their own request-level
scheduling. Batch sampling instead targets fine-grained
scheduling, which allows high utilization by sharing re-
sources across frameworks; we envision that batch sam-
pling may be used to schedule a static subset of cluster
resources allocated by a general scheduler like Omega.
Straggler Mitigation Straggler mitigation techniques
such as task speculation [4, 31, 5, 8] deal with the non-
deterministic variation in task execution time (rather than
task wait time) due to unpredictable causes (e.g., re-
source contention and failures). These techniques are or-
thogonal (and complementary) to Sparrow’s distributed
scheduling technique, and could be implemented in Spar-
row or by applications running on top of Sparrow.

Load Balancing A variety of projects explore load bal-
ancing tasks in multi-processor shared-memory archi-
tectures [21, 7, 27, 10]. In such systems, processes are
dynamically scheduled amongst an array of distributed
processors. Scheduling is necessary each time a process
is swapped out, leading to a high aggregate volume of
scheduling decisions. These projects echo many of the
design tradeoffs underlying our approach, such as the
need to avoid centralized scheduling points. They dif-
fer from our approach because they focus on a single,
parallel machine with memory access uniformity. As a
result, the majority of effort is spend determining when
to reschedule processes to balance load.
Theoretical Work While a huge body of existing work
analyzes the performance of the power of two choices
load balancing technique, as summarized by Mitzen-
macher [18], to the best of our knowledge, no existing
work explores performance for parallel jobs. Many exist-
ing analyses, including the work that inspired batch sam-
pling [20], examine a setting where balls are assigned
to bins, and analyze how many balls fall into the most
loaded bin. This analysis is not appropriate for a schedul-
ing setting, because unlike bins, worker machines pro-
cess tasks to empty their queue. Other work analyzes
scheduling for single tasks; parallel jobs are fundamen-
tally different because a parallel job cannot complete un-
til the last of a large number of tasks completes.
Parallel Disk Request Scheduling Scheduling paral-
lel tasks has been explored in the context of parallel disk
IO in RAID disk arrays [26].

11 Conclusion
This paper presented Sparrow, a stateless decentralized
scheduler that provides near optimal performance us-
ing two key techniques: batch sampling and pull-based
scheduling. Using mathematical analysis, we demon-
strated Sparrow’s provable performance. We used a real-
istic TPC-H workload to demonstrate that Sparrow pro-
vides response times within 14% of an optimal scheduler,
and used a synthetic workload running on a deployed
cluster to demonstrate that Sparrow is fault tolerant, pro-
vides aggregate fair shares, can enforce priorities, and
is resilient to different probe ratios and distributions of
task durations. In light of these results, we assert that
distributed scheduling using Sparrow presents a viable
alternative to centralized schedulers for low latency par-
allel workloads.

References
[1] Apache Thrift.http://thrift.apache.org.

[2] The Hadapt Adaptive Analytic Platform.http://hadapt.
com.

13

[3] VMware vSphere. http://www.vmware.com/
products/datacenter-virtualization/vsphere/
overview.html.

[4] A NANTHANARAYANAN , G., GHODSI, A., SHENKER, S., AND

STOICA, I. Why Let Resources Idle? Aggressive Cloning of Jobs
with Dolly. In HotCloud(2012).

[5] A NANTHANARAYANAN , G., KANDULA , S., GREENBERG, A.,
STOICA, I., LU, Y., SAHA , B., AND HARRIS, E. Reining in the
Outliers in Map-Reduce Clusters using Mantri. InProc. OSDI
(2010).

[6] BRADLEY, D., CLAIR , T. S., FARRELLEE, M., GUO, Z.,
L IVNY, M., SFILIGOI , I., AND TANNENBAUM , T. An Update
on the Scalability Limits of the Condor Batch System.Journal of
Physics: Conference Series 331, 6 (2011).

[7] CASAVANT, T. L., AND KUHL , J. G. A Taxonomy of Scheduling
in General-Purpose Distributed Computing Systems.IEEE Trans.
Software Eng. 14(February 1988), 141–154.

[8] DEAN, J.,AND BARROSO, L. A. The Tail at Scale.Ccommuni-
cations of the ACM 56, 2 (February 2013).

[9] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and
Simulation of a Fair Queueing Algorithm. InProc. SIGCOMM
(1989).

[10] EAGER, D. L., LAZOWSKA, E. D.,AND ZAHORJAN, J. Adap-
tive Load Sharing in Homogeneous Distributed Systems.IEEE
Trans. Softw. Eng.(1986).

[11] ENGLE, C., LUPHER, A., X IN , R., ZAHARIA , M., FRANKLIN ,
M. J., SHENKER, S.,AND STOICA, I. Shark: Fast Data Analysis
Using Coarse-Grained Distributed Memory. InProc. SIGMOD
(2012).

[12] HINDMAN , B., KONWINSKI, A., ZAHARIA , M., GHODSI, A.,
JOSEPH, A. D., KATZ , R., SHENKER, S., AND STOICA, I.
Mesos: A Platform For Fine-Grained Resource Sharing in the
Data Center. InNSDI (2011).

[13] ISARD, M., PRABHAKARAN , V., CURREY, J., WIEDER, U.,
TALWAR , K., AND GOLDBERG, A. Quincy: Fair Scheduling for
Distributed Computing Clusters. InProc. SOSP(2009).

[14] JETTE, M. A., YOO, A. B., AND GRONDONA, M. Slurm: Sim-
ple linux utility for resource management. InIn Lecture Notes
in Computer Science: Proceedings of Job Scheduling Strategies
for Parallel Processing (JSSPP) 2003(2002), Springer-Verlag,
pp. 44–60.

[15] KORNACKER, M., AND ERICKSON, J. Cloudera Im-
pala: Real Time Queries in Apache Hadoop, For Real.
http://blog.cloudera.com/blog/2012/10/
cloudera-impala-real-time-queries-in-apache-hadoop-for-real/,
October 2012.

[16] MELNIK , S., GUBAREV, A., LONG, J. J., ROMER, G., SHIV-
AKUMAR , S., TOLTON, M., AND VASSILAKIS, T. Dremel: In-
teractive Analysis of Web-Scale Datasets.Proc. VLDB Endow.
(2010).

[17] M ITZENMACHER, M. The Power of Two Choices in Random-
ized Load Balancing.IEEE Trans. Parallel Distrib. Syst.(2001).

[18] M ITZENMACHER, M. The Power of Two Random Choices: A
Survey of Techniques and Results. InHandbook of Randomized
Computing, S. Rajasekaran, P. Pardalos, J. Reif, and J. Rolim,
Eds., vol. 1. Springer, 2001, pp. 255–312.

[19] MURTHY, A. C. The Next Generation of Apache MapReduce.
http://tinyurl.com/7deh64l, February 2012.

[20] PARK , G. A Generalization of Multiple Choice Balls-into-Bins:
Tight Bounds.CoRR abs/1201.3310(2012).

[21] RUDOLPH, L., SLIVKIN -ALLALOUF, M., AND UPFAL, E. A
Simple Load Balancing Scheme for Task Allocation in Parallel
Machines. InProc. ACM SPAA(1991).

[22] SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-MALEK , M.,
AND WILKES, J. Omega: Flexible, scalable schedulers for large
compute clusters. InProc. EuroSys(2013).

[23] SHUE, D., FREEDMAN, M. J., AND SHAIKH , A. Performance
Isolation and Fairness for Multi-Tenant Cloud Storage. InProc.
OSDI (2012).

[24] THAIN , D., TANNENBAUM , T., AND L IVNY, M. Distributed
Computing in Practice: The Condor Experience.Concurrency
and Computation : Practice and Experience 17, 2-4 (Feb. 2005),
323–356.

[25] WHITE, T. Hadoop: The Definitive Guide. O’Reilly Media,
2009.

[26] WILKES, J., GOLDING, R., STAELIN , C., AND SULLIVAN , T.
The HP AutoRAID Hierarchical Storage System.ACM Trans.
Comput. Syst.(1996).

[27] WILLEBEEK-LEMAIR , M., AND REEVES, A. Strategies for
Dynamic Load Balancing on Highly Parallel Computers.IEEE
Transactions on Parallel and Distributed Systems 4(1993), 979–
993.

[28] XU, Y., MUSGRAVE, Z., NOBLE, B., AND BAILEY, M. Bobtail:
Avoiding Long Tails in the Cloud. InProc. NSDI(2013).

[29] ZAHARIA , M., BORTHAKUR, D., SEN SARMA , J., ELMELE-
EGY, K., SHENKER, S., AND STOICA, I. Delay Scheduling: A
Simple Technique For Achieving Locality and Fairness in Cluster
Scheduling. InProc. EuroSys(2010).

[30] ZAHARIA , M., CHOWDHURY, M., DAS, T., DAVE , A., MA , J.,
MCCAULEY, M., FRANKLIN , M. J., SHENKER, S.,AND STO-
ICA , I. Resilient Distributed Datasets: A Fault-Tolerant Abstrac-
tion for In-Memory Cluster Computing. InProc. NSDI(2012).

[31] ZAHARIA , M., KONWINSKI, A., JOSEPH, A. D., KATZ , R.,
AND STOICA, I. Improving MapReduce Performance in Het-
erogeneous Environments. InProc. OSDI(2008).

14

