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Abstract 2010: Dremel Query

. - 2004: . .
Large-scale data analytics frameworks are shifting to- 1. gy co 200%: Hive 2012:Impala query

wards shorter task durations and larger degrees of pa .. 1, job Uy 2010: In-memory
allelism to provide low latency. However, scheduling Spark query
highly parallel jobs that complete in hundreds of mil- | | | >
liseconds poses a major challenge for cluster scheduler 10 min. 10 sec. 100 ms | ms

which will need to place millions of tasks per second

on appropriate nodes while offering millisecond-level la-

tency and high availability. We demonstrate that a decenFigure 1: Data analytics frameworks can analyze increas-
tralized, randomized sampling approach provides nearingly large amounts of data with decreasing latency.
optimal performance while avoiding the throughput and

availability limitations of a centralized design. We imple ing delays above tens of milliseconds represent intol-
ment and deploy our scheduler, Sparrow, on a real clustegrable overhead. Finally, as processing frameworks ap-
and demonstrate that Sparrow performs within 14% of arProach interactive time-scales and are used in customer-

ideal scheduler. facing systems, high system availability becomes a re-
) quirement. These design requirements differ substan-
1 Introduction tially from those of batch workloads.

Today’s data analytics clusters are running ever shorter Designing a traditional, centralized scheduler that sup-
and higher-fanout jobs. Spurred by demand for lower-ports sub-second parallel tasks presents a difficult engi-
latency interactive data processing, efforts in re-neering challenge. Supporting sub-second tasks requires
search and industry alike have produced framework&andling two orders of magnitude higher throughput
(e.g., Dremel [16], Spark [30], Hadapt [2], Impala [15]) than the fastest existing schedulers (e.g., Mesos [12],
that stripe work across thousands of machines or stor§ARN [19], SLURM [14]); meeting this design require-
data in memory in order to complete jobs in seconds, agnent will be difficult with a design that schedules and
shown in Figure 1. We expect this trend to continue withlaunches all tasks through a single node. Additionally,
a new generation of frameworks targeting sub-second reachieving high availability would require the replication
sponse times. Bringing response times into the 100m8r recovery of large amounts of state in sub-second time.
range will enable user-facing services to run sophisti- This paper explores the opposite extreme in the de-
cated parallel computations on a per-query basis, suckign space by asking how well a completely decentral-
as language translation and highly personalized searchized task scheduler can perform. We propose scheduling
Providing low response times for parallel jobs thatfrom a set of machines that operate autonomously and
execute on thousands of machines poses a significamtithout shared state. Such a decentralized design offers
scheduling challenge. Parallel jobs are composed o#ttractive scaling and availability properties: the syste
many (often hundreds or thousands) of concurrent tasksan support more requests by adding additional sched-
that each run on a single machine. Response time is deders and if a particular scheduler fails, users can direct
termined by the last task to complete es@rytask needs requests to a different scheduler. For this reason, in other
to be scheduled carefully: even a single task placed on domains such as web request load balancing, decentral-
contended machine can increase response time. ized architectures are commonplace. Many of these ar-
Sub-second parallel jobs amplify the scheduling chal-chitectures [8, 10] build on the power of two choices
lenge. When tasks run in hundreds of milliseconds technique [17], in which the scheduler simply probes two
scheduling decisions must be made at very high throughrandom servers and picks the less loaded one.
put: a cluster containing ten thousand 16-core machines However, a decentralized scheduler based on the
and running 100ms tasks may require well over 1 millionpower of two choices must address three challenges to
scheduling decisions per second. Scheduling must alsprovide low response times fguarallel jobs. First, as
be performed with low latency: for 100ms tasks, schedulwe show analytically, power of two sampling performs



poorly as jobs become increasingly parallel. A parallel Sparrow supports common global policies, such as

job finishes only when its last task finishes and thusitsre-  proportional and priority scheduling.

sponse time depends heavily on the tail distribution of its

task duration, which remains high even with the powerofy  pggi gn Goals

two choices. Second, due to messaging delays, multiple

schedulers sampling in parallel may experience race confhis paper focuses on task scheduling for low-latency,

ditions. Third, the power of two choices requires WOTkerSdata-intensi\/e app”cations_ Such app"ca’[ions typyca”

to estimate the durations of tasks in their queues, Whicmecrease |atency by fanning work out over |arge numbers

is notoriously difficult. of machines. As a result, their workload is composed
To address these challenges, we present Sparrow, af many small, parallel tasks. This stands in contrast to

stateless distributed task scheduler that is scalable arghtch frameworks which acquire resources for long pe-

highly resilient. Sparrow extends simpler sampling ap-riods of time. The scheduler’s job is to place these tasks

proaches using two core techniquieatch samplingind  expediently on worker machines. Short-task workloads

virtual reservationsBatch-sampling applies the recently result in a set of unique scheduling requirements:

developed multiple choices approach [20] to the domain g |atency: To ensure that scheduling delay is not a
of parallel job scheduling. With batch-sampling, a sched-gpstantial fraction of job completion time, the scheduler

uler places then tasks in a job on the least loaded of st provide at mosnillisecond-scale scheduling delay
dmrandomly selected worker machines (tbr- 1). We

show that, unlike the power of two choices, batch sam ,
pling’s performance does not degrade as the job's par§ands of nodes (and correspondingly hundreds of thou-

allelism increases. With virtual reservations, node monSands of cores), the scheduler must suppulions of
itors queue probes until they are ready to run the taski@Sk scheduling decisions per second

This eliminates the need to estimate task durations an#ligh availability: Cluster operators already go to great
eliminates race conditions due to multiple schedulerdengths to increase the availability of centralized batch
making concurrent decisions. schedulers. We expect that low-latency frameworks will

We have implemented Sparrow in a working clusterPe used to power user-facing services, makingh
and evaluated its performance. When scheduling TPCavailability an operating requirement
H queries on a 100-node cluster, Sparrow provides re- To meet these requirements, we are willing to forgo
sponse times within 14% of an optimal scheduler andmany features of sophisticated centralized resource man-
schedules with fewer than 8 milliseconds of queueingagers. In particular, we do not design for arbitrarily long
delay. Sparrow provides low response times for shortasks that may run for days or weeks, we do not allow
tasks, even in the presence of tasks that take up to 3 otomplex placement constraints (e.g., “my job should not
ders of magnitude longer. In spite of its decentralized debe run on any machines where User X’s jobs are run-
sign, Sparrow maintains aggregate fair shares, and isaiing”), we do not perform bin packing, and we do not
lates users with different priorities (without resortig t support gang scheduling. To co-exist with long-running,
preemption) such that a misbehaving low priority user in-batch jobs, our scheduler runs tasks in a statically or dy-
creases response times for high priority jobs by at moshamically allocated portion of the cluster that has been
41%. Simulation results demonstrate that Sparrow conallocated by a more general resource manager such as
tinues to perform well as cluster size increases to tens o¥ARN [19], Mesos [12], Omega [22], or vSphere [3].
thousands of cores.

High throughput: To handle clusters with tens of thou-

Our key focus is on supporting a small set of features

In summary, we make the following contributions: iy 5 way that can be easily scaled, minimizes latency, and
e We propose Sparrow,decentralized schedulénat ~ keeps the design of the system simple. Many applications
is highly scalable and resilient. wish to run low-latency queries from multiple users, so

e We introducebatch samplinga scheduling tech- a scheduler should enforce sensible resource allocation
nique that, unlike the power of two choices [17], policies when aggregate demand exceeds capacity. We
does not lead to larger response times as the paraklso aim to support basic constraints over job placement,
lelism of jobs increases. such as task-level constraints (e.g. each task needs to

e We introducevirtual reservationsthat, together be co-resident with input data) and job-level constraints
with batch-sampling, allow Sparrow to closely ap- (e.g., all tasks must be placed on machines with GPUS).
proach the performance of an optimal scheduler. This feature set is similar to that of the Hadoop MapRe-

e We show that in spite of its decentralized design,duce scheduler [25] and the Spark [30] scheduler.
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(a) Per-task sampling selects queues of length 1 and 3. (b) Batch sampling selects queues of length 1 and 2.

Figure 2: Placing a parallel, two-task job. Batch samplingperforms per-task sampling because tasks are placed in
the least loaded of the entibatchof sampled queues.

3 Sample-Based Scheduling for Parallel  task on the least loaded of two randomly selected worker
Jobs machines. Mitzenmacher demonstrated that assigning
» o _tasks in this manner improves expected wait time expo-

Traditional cluster schedulers maintain a complete VieWsentially compared to using random placement [17].

of which ta.SkS. are running on Wh'(.:h worker mach!nes, We first consider a direct application of the power of
and use this view to assign incoming tasks to avallablq

0 choices technique to parallel job scheduling. The
workers. To support low-latency workloads, Sparrow " ! Iqu p J uling

) : .. scheduler randomly selects two worker machines for
takes a radically different approach: schedulers maintairy

tate about cluster load and instead ol tasks b ﬁﬁ:h task and sendspaobeto each of the two worker
no state about cluster oad and Instead place tasks bas chines, where a probe is a lightweight RPC. The
on instantaneous load information acquired from worker

hi S ) h extend isting load b orker machines each reply to the probe with the num-
MACNINEs. Sparrow's approach extends existing load bag, - currently queued tasks, and the scheduler places
ancing techniques [17, 20] to the domain of parallel job

) ) ) . the task on the worker machine with the shortest queue.

scheduling and introduces virtual reservations to addres.Fhe scheduler repeats this process for each task in the

practical problems. job, as illustrated in Figure 2(a). We refer to this appli-

3.1 Terminology cation of the power of two choices techniquepas-task
sampling

. Per-task sampling improves performance compared to
execute tasks ansthedulershat assign tasks to worker random placement but still provides high tail wait times

machines. A scheduling reque_st consstsnd‘qsks that when jobs are parallel. Intuitively, for jobs that contain
are allocated to worker machines. Scheduling request;

can be handled by any scheduler: a scheduler assigri large number of tasks, every job is expected to experi-

h task in th tt K hine. If K Shee tail task wait time, making response times with per-
eac h.as -In the reqlées 0 atW(l)<r ?r: ma_;; Ine. 1ha Workefa sk sampling 2x or more worse than optimal placement.
machine 1S assighed more tasks than It can run CoNCUGye g jated per-task sampling and random placement
rently, it queues new tasks until existing tasks re_leas?n a 10,000 node cluster running 500-task jobs where the
enough resources for the new task to be run. Weugse duration of each task is exponentially distributed with

timeto describe the_tlme from when a task IS sub_rmtted ean 100ms. Because job response time is determined
to the scheduler until when the task begins executing ang]

ice timeo d ibe the time the task d ¢ y the last of 500 tasks to complete, the expected opti-
service imdo describe the ime e task Spends execuly, ) job response time (if all tasks are scheduled with no
ing on a worker machineResponse timdescribes the

) . . wait time) is 680ms. We assume 1ms network RTTs, and
tlm(_e from when th? TeqUESt IS su_bmltted to the schedule\gve model jobs arrivals as a Poisson process. As shown
until the last task finishes executing. in Figure 3, response time increases with increasing load,
3.2 Per-Task Sampling because schedulers have increasing difficulty finding free

, ] o machines on which to place tasks. At 90% load, per-task
Sparrow’s design takes inspiration from the power Oftwosampling improves performance by a factor of 5 com-
choices load balancing technique [17], which provides

near-op_tlmal expected task wait times using a stateless, IMore precisely, expected task wait time using random plareris

randomized approach. The power of two choices tech4/(1—p), wherep represents load. Using the least loaded ohoices,

nigue proposes a simple improvement over purely ranwait time in an initially empty system over the firktunits of time is
. . |

dom assignment of tasks to worker machines: place eaclipper bounded by;";lp%ff +0(1) [17].

We consider a cluster composedmdrker machinethat
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ing constant and Pareto, batch sampling improves per-
formance by a factor of two (results omitted for brevity).

Q Random
- ® - Per-Task
#- Batch

I 0
15007 Batch+Virtual R Ations o gltogoeot/hlelezs, batch srampllng ad_ds over 50% of overhead
_eX 6 load compared to an optimal scheduler.
o- O _,_'.g-"'x,A 3.4 Problemswith Sample-Based Scheduling
PR - ool R Sy I S

Sample-based techniques perform poorly at high load
due to two problems. First, schedulers place tasks based
on the queue length at worker nodes. However, queue
0 02 0.4 06 08 | length provides only a coarse prediction of wait time.
Load Consider a case where the scheduler probes two work-

ers to place one task, one of which has two 50ms tasks

Figure_ 3 Comparison. of random pIaceme_nt, pfar'ta_Skqueued and the other of which has one 300ms task
sampling, batch sampling, and batch sampling with V'r'queued. The scheduler will place the task in the queue

tqal reservations in a S|mulateq 10,000 node clugter "UNyith only one task, even though that queue will resultin a
ning 500-task jobs. Task durations are exponentially d'S'ZOOms longer wait time. While workers could reply with

tributed ,W'th, mean 100ms; ex_pected optimal job "®"an estimate of task duration rather than gueue length, ac-
sponse time is 680ms (shown with the black dashed IIne)curately predicting task durations is notoriously difficul
pared to random placement, but still adds 75% overhead Sampling also suffers from a race condition where
compared to an optimal scheduler. multiple schedulers may concurrently place tasks on
: a worker that appears lightly loaded. Consider a case
33 Batch Sampling where two different schedulers probe the same idle
Batch sampling improves on per-task sampling by sharworker machiney, at the same time. Since the worker
ing information across all of the probes for a partic- machine is idle, both schedulers are likely to place a task
ular scheduling request. Batch sampling is similar toon w; however, only one of the two tasks placed on the
a technique recently proposed in the context of storworker will arrive in an empty queue. The queued task
age systems [20]. With per-task sampling, one pair ofmight have been placed in a different queue had the cor-

probes may have gotten unlucky and sampled two heawesponding scheduler known thatwas not going to be
ily loaded machines (e.g., Task 1 in Figure 2(a)), whilejdle when the task arrived.

another pair may have gotten lucky and sampled two ) )
lightly loaded machines (e.g, Task 2 in Figure 2(a)); one3 Virtual Reservations
of the two lightly loaded machines will go unused. Batch Sparrow introducesvirtual reservationsto solve the
sampling aggregates load information from the probesaforementioned problems. With virtual reservations,
sent for all of a job’s tasks, and places the joim$asks  workers do not reply immediately to probes and instead
on the least loaded of all the worker machines probed. Iiplace a reservation for the task at the end of an internal
the example shown in Figure 2, per-task sampling placesiork queue. When this reservation reaches the front of
tasks in queues of length 1 and 3; batch sampling reducebe queue, the worker sends an RPC to the scheduler re-
the maximum queue length to 2 by using both workersguesting a specific task. The scheduler assigns the job’s
that were probed by Task 2 with per-task sampling. tasks to the firsm workers to reply, and replies to the

To schedule using batch sampling, a scheduler ranremaining(d — 1)mworkers with a no-op signalling that
domly selectsdm worker machines (fod > 1). The all of the job’s tasks have been launched. In this manner,
scheduler sends a probe to each of dmeworkers; as the scheduler guarantees that the tasks will be placed on
with per-task sampling, each worker replies with thethem probed workers where they will be launched soon-
number of queued tasks. The scheduler places one of thest. For exponentially-distributed task durations at 90%
job’s mtasks on each of thm least loaded workers. Un- load, virtual reservations improve response time by 35%
less otherwise specificed, we use- 2; we explore the compared to batch sampling, bringing response time to
impact ofd in §7.7. within 14% of optimal (as shown in Figure 3).

As shown in Figure 3, batch sampling improves per- The downside of virtual reservations is that workers
formance compared to per-task sampling. With exponenare idle while they are sending an RPC to request a
tially distributed task durations, batch sampling reducesiew task from a scheduler. All current cluster schedulers
job response time by over 10% compared to per-taskve are aware of make this tradeoff: schedulers wait to
sampling. For other task duration distributions includ-assign tasks until a worker signals that it has enough

500

Response Time (ms)
o
8




free resources to launch the task. In our target settingchines A, B, and C, and task 1 is constrained to run on
this tradeoff leads to a 2% efficiency loss. The fractionmachines C, D, and E. Suppose the scheduler probed ma-
of time a worker spends idle while requesting tasks ischines A and B for task 0, which were heavily loaded,
(d-RTT)/(t+d-RTT) (whered denotes the number of and probed machines C and D for task 1, which were
probes per task, RTT denotes the mean network rountoth idle. In this case, Sparrow will place task O on ma-
trip time, andt denotes mean task service time). In ourchine C and task 1 on machine D, even though both ma-
deployment on EC2 with an un-optimized network stack,chines were selected to be probed for task 1.

mean network round trip time was 1 millisecond. We ex-  Although Sparrow cannot use batch sampling for jobs
pect that the shortest tasks will complete in 100ms andvith task-level constraints, our distributed approach sti
that scheduler will use a probe ratio of no more than 2 provides near-optimal response times for these jobs. Jobs
leading to at most a 2% efficiency loss. For our targetwith task level constraints can still use virtual reserva-
workload, this tradeoff is worthwhile, as illustrated by tions, so the scheduler is guaranteed to place each task
the results shown in Figure 3, which incorporate networkon whichever of two probed machines that the task will
delays. In other environments where network latenciesun soonest. Because task-level constraints typically con
and task runtimes are the same order of magnitude, virstrain a task to run on three machines, even an ideal, om-
tual reservations will not present a worthwhile tradeoff. niscient scheduler would only have one additional choice

4 Scheduling Policiesand Constraints for where to place each task.
. . 4.2 ResourceAllocation Policies
Sparrow aims to support a small but useful set of poli-
cies within its decentralized framework. This section out-Cluster schedulers seek to allocate resources according
lines support for two types of popular scheduler policies:t0 @ specific policy when aggregate demand for resources

constraints over where individual tasks are launched an@xceeds capacity. Sparrow supports two types of policies:

inter-user isolation policies to govern the relative perfo Strict priorities and weighted fair sharing. These pobcie
mance of users when resources are contended. mirror those offered by other schedulers, including the

Hadoop Map Reduce scheduler [29].

Many cluster sharing policies reduce to using strict
Sparrow handles two types of constraints, job-level andpriorities; Sparrow supports all such policies by main-
task-level constraints. Such constraints are commonly retaining multiple queues on worker nodes. FIFO, earliest
quired in data-parallel frameworks, for instance, to rundeadline first, and shortest job first all reduce to assign-
tasks co-resident with a machine that holds data on dising a priority to each job, and running the highest pri-
or in memory. As mentioned i§2, Sparrow does not ority jobs first. For example, with earliest deadline first,
support complex constraints (e.g., inter-job constraintsjobs with earlier deadlines are assigned higher priority.
supported by some general-purpose resource managergluster operators may also wish to directly assign prior-

Job-level constraints (e.g., all tasks should be run orities; for example, to give production jobs high priority
a worker with a GPU) are trivially handled at a Spar- and ad-hoc jobs low priority. To support these policies,
row scheduler. Sparrow randomly selects dlrecandi-  Sparrow maintains one queue for each priority at each
date workers from the subset of workers that satisfy thevorker node. When resources become free, Sparrow re-
constraint. Once them workers to probe are selected, sponds to the reservation from the highest priority non-
scheduling proceeds as described previously. empty queue. This mechanism trades simplicity for ac-

For jobs with task-level constraints, Sparrow uses percuracy: hodes need not use complex gossip protocols to
task rather than batch sampling. Each task may have exchange information about jobs that are waiting to be
different set of machines on which it can run, so Sparrowscheduled, but low priority jobs may run before high pri-
cannot aggregate information over all of the probes in theority jobs if a probe for a low priority job arrives at a
job using batch sampling. Instead, Sparrow uses per-taskode where no high priority jobs happen to be queued.
sampling, where the scheduler selects the two machined/e believe this is a worthwhile tradeoff: as shown in
to probe for each task from the set of machines that th§7.6, this distributed mechanism provides good perfor-
task is constrained to run on. mance for high priority users. Sparrow does not currently

Sparrow implements a small optimization over per-support preemption when a high priority task arrives at a
task sampling for jobs with task-level constraints. Rathemmachine running a lower priority task; we leave explo-
than probing individually for each task, Sparrow sharesration of preemption to future work.
information across tasks when possible. For example, Sparrow can also enforce weighted fair shares. Each
consider a case where task 0 is constrained to run in mawvorker maintains a separate queue for each user, and per-

4.1 Handling Placement Constraints
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ple mechanism because more accurate mechanisms (e.g., Random == Per-Task = = Batch ===

Pisces [23]) add considerable complexity; as we demonFigure 5: Probability that a job will experience zero wait
strate in§7.5, Sparrow’s simple mechanism providestime in a system of 4-core servers.

near-perfect fair shares.

5 Analysis _ _
Mathematical analysis corroborates the result§3n

Before delving into our experimental evaluation, we demonstrating that per-task sampling performs poorly

use mathematical analysis to prove that batch samplingy, harallel jobs. The probability that a particular task
the key technique underlying Sparrow, achieves near

) v ~%is placed on an idle machine is one minus the probabil-
optimal performanceegardless of the task duration dis-

P ! ity that all probes hit busy machines—1p% (wherep
tribution. Section 3 demonstrated that Sparrow pen‘ormsreloresents cluster load addrepresents the probe ratio:
well, but only under one particular workload; this section tanj1e 1 summarizes notation). The probability thdt

ge_neralizes those results to all Workloads. Batch same,qisin a job are assigned to idle machinedis p%)™
pling’s good performance comes in contrast to the PE€T1as shown in Table 2) because milsets of probes must
formance of per-task sampling: the performance of peryj¢ a¢ jeast one idle machine. This probability decreases
task sampling decreases exponentially with the numbeg, ,,nentially with the number of tasks in a job, render-
of tasks in a job, making it perform poorly for parallel ing per-task sampling inappropriate for scheduling par-

workloads. allel jobs. Figure 4 illustrates the probability that a job

“Toanalyze the performance of batch and per-task samsyperiences zero wait time (equivalent to the probability
pling, we examine the probability of placing all tasks in ¢ all of a job’s tasks are placed in idle queues) for both

a job on idle machines, or equivalently, providing zero 1 and 100-task jobs, and demonstrates that the proba-
wait time. Because an ideal, omniscient scheduler coulc[g”ity of experiencing zero wait time for a 100-task job

place all jobs on idle machines when the the cluster is UNgrops to less than 2% at just 20% load.

der 100% utilized, quantifying how often our approach

places jobs on idle workers provides a bound on how Batch sampling can place all of a job’s tasks on idle

Sparrow performs compared to an optimal scheduler. machines at much higher loads than per-task sampling.
We make a few simplifying assumptions for the pur- In expectation, batch sampling will be able to placemall

poses of this analysis. We assume zero network delay, alasks in empty queues as longhs 1% Crucially, this

infinitely large number of servers, and that each serveexpression does not depend on the number of tasks in a

runs one task at a time. Our experimental evaluation evaljob (m)! Figure 4 illustrates this effect: for both 10 and

uates results in the absence of these assumptions. 100-task jobs, the probability of experiencing zero wait
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Figure 6: Frameworks that use Sparrow are decom
posed into frontends, which generate tasks, and execiFigure 7: RPCs (parameters not shown) and timings as-
tors, which run tasks. Frameworks schedule jobs by comsociated with launching a job. Sparrow’s external inter-
municating with any one of a set of distributed Sparrowface is shown in bold text.
schec!ulers. Sparrow node monitors run on each slavg.1 System Components
machine and federate resource usage.
As shown in Figure 6, Sparrow schedules from a dis-

time drops from 1 to 0 at 50% lo&d. tributed set of schedulers that are each responsible for

Our analysis thus far has considered machines that casssigning tasks to slaves. Because batch sampling does
run only one task at a time; however, today’s clusters typ-not require any communication between schedulers, ar-
icaly feature multi-core machines. Multicore machinesbitrarily many schedulers may operate concurrently, and
significantly improve the performance of batch sampling.users or applications may use any available scheduler
Consider a model where each server can run wygdsks  to place jobs. Schedulers expose a cross-platform Thrift
concurrently without degraded performance compared taervice [1] (illustrated in Figure 7) to allow frameworks
running the task on an idle machine. Because each servéw submit scheduling requests. Each scheduling request
can run multiple concurrent tasks, each probe implicitlyincludes a list of task specifications; the specification for
describes load oo processing units rather than just one, a task includes a task description and a list of constraints
which increases the likelihood of finding an idle process-governing where the task can be placed.
ing unit on which to run each task. To analyze perfor- A Sparrow node monitor runs on each slave, and fed-
mance in a multicore envirionment, we make two simpli- erates resource usage on the slave by enqueuing vir-
fying assumptions: first, we assume that the distributionual reservations and requesting task specifications from
of idle cores is independent of whether the cores residgchedulers when resources become available. Node mon-
on the same machine; and second, we assume that th@rs run tasks in a fixed number sfots slots can be
scheduler places at most 1 task on each machine, evefpnfigured based on the resources of the underlying ma-
if multiple cores are idle. Based on these assumptionsghine, such as CPU cores and memory.

we can replace in Table 2 withp® to obtain the re-  gparrow performs task scheduling for one or more
sults shown in Figure 5. These results improve dramat"concurrently operating frameworks. As shown in Fig-
cally on the single-core results: for batch sampling with ;e 6 frameworks are composed of long-liieshtend
4 cores per machine and 100 tasks per job, batch Samynd executor processes, a model employed by many
pling achieves near perfect performance (99.9% of jobgystems (e.g., Mesos [12]). Frontends accept high level
experience zero wait time) at upto 79% load. This res”"queries or job specifications (e.g., a SQL query) from
demonstrates that batch sampling performs veglard-  oy0genous sources (e.g., a data analyst, web service,
less of the distribution of task durations business application, etc.) and compile them into paral-
6 |mplementation lel tasl_<s for execution on Workers._ Frontends are typl-
) _ _ cally distributed over multiple machines to provide high

We implemented Sparrow to evalute its performance ierformance and availability. Executor processes are re-
arunning cluster. The Sparrow code, including scripts tasponsible for executing tasks, and are long-lived to avoid
replicate our experimental evaluation, is publicly avail- startup overhead such as shipping binaries or bringing
able atht t p: // gi t hub. conf radl ab/ sparrow.  |arge datasets into cache. Executor processes for multi-

2With the larger, 100-task job, the drop happens more ragiidly ple framework; may run co-resident on a single machine;
cause the job uses more total probes, which decreases theceain  the node monitor federates resource usage between co-
the proportion of probes that hit idle machines. located frameworks. Sparrow requires executors to ac-




cept al aunchTask() RPC from a local node moni- row incurs and quantify its performance in comparison
tor, as shown in Figure 7; tHeaunchTask() RPCin-  with an optimal scheduler. Second, we evaluate Spar-
cludes a task description (opaque to Sparrow) providedow’s ability to isolate users from one another in accor-

by the application frontend. dance with cluster-wide scheduling policies. Finally, we
6.2 Spark on Sparrow perform a sensitivity analysis of key parameters in Spar-
' row’s design.

In order to test batch sampling using a realistic workload
we have ported Spark [30] to Sparrow by writing a Spark,7'1 Performance on TPC-H Workload
scheduling plugin that uses the Java Sparrow client. ThiJo evaluate Sparrow against a realistic workload, we
plugin is 132 lines of Scala code. measure Sparrow's performance scheduling TPC-H
The execution of a Spark job begins at a Spark fron-gueries. The TPC-H benchmark is representative of ad-
tend, which compiles a functional query definition into a hoc queries on business data, which are a common use
multi-phase parallel job. The first phase of the job is typ-case for low-latency data parallel frameworks.
ically constrained to execute on machines that contain We use Shark [11], a large scale data analytics plat-
partitions of the cached input data set, while the remainform built on top of Spark, to execute the TPC-H bench-
ing phases (which read data shuffled over the networkinark queries. Shark lets users load working sets into
can execute anywhere. The Spark frontend passes a lisiemory on several parallel machines and analyze them
of task descriptions (and any associated placement corssing a SQL-based query language. Our experiment fea-
straints) for the first phase of the job to a Sparrow schedtures several users concurrently using Shark to run ad-
uler, which assigns the tasks to slaves. Because Sparrdd@c analytical queries in a 100-node cluster. The data set
schedulers are lightweight, we run a scheduler alongand queries are drawn from the TPC-H OLAP database
side each Spark frontend to ensure minimum schedulbenchmark.
ing latency. When the Sparrow scheduler assigns a task The query corpus features four TPC-H queries, with
to a slave, it passes the task description provided by, 3, 3, and 5 phases respectively. The queries operate
the Spark frontend to the Spark executor running on th@n a denormalized in-memory copy of the TPC-H in-
slave, which uses the task description to launch the taskut dataset (scale factor 2.5). Each frontend queries a
When one phase completes, Spark requests scheduligistinct data-set that is striped over 90 of the 100 ma-
of the tasks in the subsequent phase. chines: this consists of 30 three-way replicated partition
Each Shark query breaks down into multiple phases.
For example, for query 3, the first phase scans and
Because Sparrow schedules from multiple schedulerdilters records, the second aggregates data into groups
the design is inherently fault tolerant: if a scheduler(via a shuffle) and the third sorts by a group-related
becomes unavailable, an application can direct its revalue. These phases are each scheduled through Spar-
qguests to one of many alternate schedulers. When inirow’s subm t Request RPC.
tializing a Sparrow client, applications pass a list of In the experiment, each of 10 users launches random
schedulers to connect to. When a scheduler fails, th@ermutations of the TPC-H queries continuously for 30
Sparrow clients using it re-connect to the next avail-minutes. The queries are launched at an aggregate rate of
able scheduler and trigger a callback at the applicationapproximately 30 per second in order to keep the cluster
This approach lets frameworks decide how to handle5% utilized, on average. Queries are launched through
tasks which were in-flight during the scheduler failure. 10 Sparrow schedulers, which use a sample ratio of 2 to
In some cases, they may want to simply ignore failedassign tasks to worker machines.
tasks. Other frameworks might want to re-launch them Shark queries are compiled into multiple Spark [30]
or determine whether they have run once already. Spark’stages that each trigger a scheduling request to Sparrow.
approach to failure tolerance is discussed furthg7i8.  The response time of a Shark query is dictated by the
accumulated response time of each sub-phase. The dura-
tion of each phase is not uniform, instead varying from a
We evaluate Sparrow by performing a variety of exper-few tens of milliseconds to several hundred. The phases
iments on 110 node 16-core EC2 clusters. Unless othin this workload have heterogeneous numbers of tasks,
erwise specified, we use a probe ratio of 2. First, wecorresponding to the amount of data processed in that
use Sparrow to schedule tasks for a TPC-H workloadphase. The queries require a mix of constrained and un-
which features heterogeneous analytics queries. We pra@onstrained scheduling requests.
vide fine-grained tracing of the exact overhead that Spar- Figure 8 plots the median, 5th, and 95th percentile re-

6.3 Fault Tolerance

7 Experimental Evaluation
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Figure 9: Latency distributions for each stage in the Spar-
row scheduling algorithm. Note that control plane mes-
§ages are much shorter than task durations.
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Figure 8: Median, 5th, and 95th percentile response time

for TPC-H queries with several placement strategies. o ) ) )
This includes time spent asking for “null” tasks which

. were already launched elsewhe8er vi ceTi ne and
sponse times for each TPC-H query across all frontend&]eue.n e reflect the amount of time individual tasks
during a 2 minute sampled period in the middle of the

! . . c?pent running or queued on the slave nodes. The mes-
experiment. Approximately 4000 queries are complete Saging in Sparrow is fast, requiring only a handful of
during this window, resulting in around 12TB of in- !

. milliseconds to enqueue and dequeue individual tasks.
memory table scans (the first phase of each query scans majority of this time is spent shipping the task in-

Fhe entire table). The f|gu.re compares response time US6rmation itself, a component dget Task, which is
ing Sparrow to response time with three alternatives. Th n unavoidable overhead. Sparrow achieves good perfor-

first alternative, random p_Iacement, places each tas_k ON A ce because it keeps queue time low relative to ser-
randomly selected .machlne. The second strategy 'm.ple\7ice time. The long enqueue reservation 99th percentile
ments batch sampling and uses queue-length est|mat|on|
The third group represents the full Sparrow algorithm
which includes virtual reservations.

As shown in Figure 8, Sparrow improves the median
query response time by 23 and the 95th by up to 130

compared to naive randomized techniques. In addition to

improving on existing techniques, Sparrow also providessparrow is resilient to scheduler failure, providing auto-
good absolute performance: response times using Spamatic client failover between schedulers. Figure 10 plots
row are within 14% of an offline optimal. To determine the response time for ongoing TPC-H queries in an ex-
the offline optimal, we take each query and calculates th@eriment parameterized exacﬂy a5§m1_ This experi-
response time of the query if all tasks were launched imment features 10 Shark frontends which submit continu-
mediately; that is, with zero wait time. This offline op- ous queries. The frontends are each initialized with a list
timal calculation is conservative—it does not take into of several Sparrow schedulers and initially connect to the
account task launch delay or queuing that is unavoidscheduler resident on the same node. At ttw@0, we
able due to small utilization bursts—both of which are terminate the Sparrow scheduler on Node 1. The fron-
inevitable even with an omniscient scheduler. Even SOtend is programmed to fail over to a scheduler on Node
Sparrow performs within 14% of the offline optimal. 2, so we plot that node as well.

The speed of failover recovery makes the interruption
almost unnoticeable. Because Sparrow schedulers main-
Figure 9 deconstructs Sparrow scheduling latency frontain no session state, the process of failing-over reduces
the proceeding TPC-H experimentinto four componentsto timing out and connecting to another node. The Spar-
These describe a complete trace of 21,651 requests. Fotow client library detects failures with a fixed 100ms
lines are plotted, each characterizing the latency of a patimeout. On failure, it triggers an application-layer fail
ticular phase of the Sparrow scheduling algorithm. Thesaire handler which has the option of resubmitting in-flight
phases are depicted in Figure EnqueueRes plots  tasks. In the case of Spark, that handler instantly re-
the time it takes for the scheduler to enqueue a givehaunches any phases which were in-flight. In this exper-
task reservation on a slave noet Task describesthe iment, detecting the failure took 100ms, connecting to a
time it takes for the slave to fetch and run a new taskinew scheduler took less than 5ms, and re-launching out-

%’tency does not affect performance: workers that take a
'long time to receive or response to a reservation are sim-
ply not assigned a task.

7.3 How do scheduler failuresimpact job response
time?

7.2 Scheduling Latency
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Figure 10: TPC-H response times for two frontends subyasys in a 100-node cluster. Sparrow successfully shields
mitting queries to a 100-node cluster. Node 1 sufferspe high priority user from a low priority user.
from a scheduler failure at 20 seconds.

performance, we evaluate it under the smallest number of
cores we would expect in a cluster today. User 0 submits
at a rate to fully utilize the cluster for the entire dura-
tion of the experiment. User 1 changes her demand every
10 seconds: she submits at a rate to consume 0%, 25%,
: 50%, 25%, and finally 0% of the cluster’s available slots.
0 10 20 30 40 50 Under max-min fairness, each user is allocated her fair
Time (s) share of the cluster unless the user’s demand is less than
Figure 11: Cluster share used by two users that are eadrer share, in which case the unused share is distributed
assigned equal shares of the cluster. User 0 submits atevenly amongst the remaining users. Thus, user 1's max-
rate to utilize the entire cluster for the entire experimentmin share for each 10-second interval is O concurrently
while user 1 adjusts its submission rate each 10 secondgunning tasks, 100 tasks, 200 tasks, 100 tasks, and finally
Sparrow assigns both users their max-min fair share. 0 tasks; user 1's max-min fair share is the remaining re-
sources. Sparrow’s fairness mechanism lacks any central

standing tasks took less than 15ms. Only a small numbeguthority with a complete view of how many tasks each
of queries (2) have tasks in flight during the failure; theseUSer is running, leading to imperfect fairness over short

queries suffer some overhead. time intervals. Nonethess, as shown in Figure 11, Spar-
. row quickly allocates enough resources to User 1 when
7.4 Synthetic Workload she begins submitting scheduling requests (10 seconds

The remaining sections evaluate Sparrow using a Syni.nto the eXperiment), and the cluster share allocated by
thetic workload composed of 10 100ms tasks, unless othSparrow exhibits only small fluctionations from the cor-
erwise specified. Each task runs floating-point multipli- rect fair share.

cations to fully utilize a single CPU for 100ms. In this
workload, ideal job completion time is always 100ms,
which helps to isolate the performance of Sparrow from
application-layer variations in service time. As in previ- Table 3 demonstrates that Sparrow provides response
ous experiments, these experiments run on a cluster dimes with 40% of optimal for a high priority user in the
110 EC2 servers, with 10 schedulers and 100 workers. presence of a misbehaving low priority user. The high
priority user submits jobs at a rate to fill 25% of the clus-
ter, while the low priority user increases her submission
rate to well beyond the capacity of the cluster. Without
Figure 11 demonstrates that Sparrow’s distributed fairany isolation mechanisms, when the aggregate submis-
ness mechanism enforces cluster-wide fair shares amglon rate exceeds the cluster capacity, both users would
quickly adapts to changing user demand. Users 0 and &xperience infinite queueing. As described4n2, Spar-

are both given equal shares in a cluster with 400 slotstow node monitors run all queued high priority tasks be-
Unlike other experiments, we use 100 4-core EC2 mafore launching any low priority tasks, allowing Sparrow
chines; Sparrow’s distributed enforcement works bettetto shield high priority users from misbehaving low prior-
as the number of cores increases, so to avoid over statinty users. While Sparrow prevents the high priority user

7.6 How much can low priority usershurt response
timesfor high priority users?

7.5 How well can Sparrow’sdistributed fairnessen-
forcement maintain fair shares?
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Figure 13: Sparrow provides low response time for jobs
composed of 10 100ms tasks, even when those tasks are
run alongside much longer jobs.

from experiencing infinite queueing, the high priority ex- sypmitted to sustain 80% cluster load. Figure 13 illus-
periences 40% worse response times when sharing with@ates the response time of short jobs when sharing the
demanding low priority user than when running alone ong,ster with long jobs. We vary the percentage of jobs
the cluster. Because Sparrow does not use preemptioghat gre long, the duration of the long jobs, and the num-
high priority tasks may need to wait to be launched untilper of cores on the machine, to illustrate where perfor-
low priority tasks (that are running when the higher pri- jace breaks down. Sparrow’s provides response times
ority task arrives) complete. In the worst case, this waitfg, short tasks within 11% of optimal (100ms) when run-
time may be as long as the longest running low-priority ning on 16-core machines, even when 50% of tasks are 3
task. Exploring the impact of preemption is a subject ofgrers of magnitude longer. Short tasks see more signifi-
future work. cant performance degredation in a 4-core environment.

7.7 ProbeRatio Sensitivity Analysis 7.9 Scalingto Large Clusters

:Omsrzzztézg fne:;fj;oisniwi;mofufsﬁg?:{igﬁztégtﬁgﬁr%’e use simulation to evaluate Sparrow’s performance in

how does it erformq ar?d Zecon?i hF())w much can a large rger clusters. Figure 3 demonstrated that Sparrow con-
> 1LP ’ L . 9finues to provide good performance in a 10,000 node

probe ratio improves Sparrow’s performance? Figure 1 luster

illustrates response time at increasing load in a system '

running our synthetic workload. We use 4-core nodes8 Practical Challenges for Low-Latency

for this experiment to emphasize the difference between  \work|oads

probe ratios; with larger numbers of cores, fewer probes o )

are necessary. A higher probe ratio decreases tail behayNiS paper focuses on optimizing scheduling for low-

ior at loads of at most 90%, but at 95% load, using glatency parallel workloads. In removing the scheduling

probe ratio of 3 leads to increased response times due fo°ttleneck, we discovered numerous other barriers to

the increased messaging. A lower probe ratio of 1.5 pro_sup.por'ung low latency; eliminating such bottlenecks vylll

vides nearly as good performance as a probe ratio of Zt?e important for future frameworks that seek to provide

systems where messaging is expensive might choose {gw latency. This section outlines three such issues and
use a lower probe ratio. discusses how we addressed them in our implementation

and evaluation.

Over head of control-planemessages Messaging can
We hypothesized that heterogeneous task distributionsnpose significant overhead when tasks become very
were the weak point in Sparrow’s design: if some work-short. In particular, launching a task on a worker node re-
ers were running long tasks, we expected Sparrow’s apquires shipping the relevant task information to that node
proach to have increasing difficulty finding idle machines(which occurs in response to thlget Task() RPC).
on which to run tasks. We found that Sparrow works wellLong-lived executor processes running on the node help
unless a large fraction of tasks are loagd the long  reduce the size of this information, because the applica-
tasks are many orders of magnitude longer than the shotion need not ship binaries or other information shared
tasks. We ran a series of experiments with two types ofcross all jobs. Nonetheless, the application must send
jobs: short jobs, composed of 10 100ms tasks, and longhformation about the task, including information about
jobs, composed of 10 tasks of longer duration. Jobs ar@put data, a partial query plan, function closures, or

Error bars depict 5th and 95th percentile performance.

7.8 Breaking Sparrow with Heterogeneity
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other meta data. If a node is launching a job composegbb A must not run on racks with tasks for job B”). Sup-
of hundreds of tasks, task descriptions must be smalborting inter-job constraints across frontends is difficul
enough to ensure that even the last task to ship doesntd do without significantly altering Sparrow’s design.
experience appreciable delay. We found that 100-200Kl6sang Scheduling Applications that need to rum
task descriptions impacted performance of Shark jobs oimter-communicating tasks require gang scheduling.
a 100-node cluster, and as a result, invested effortto comzang scheduling is typically implemented using bin-
press tasks down to approximately 5Kb. Even with 5Kbpacking algorithms which search for and reserve time
task descriptions, shipping all of the tasks for a large jobslots in which an entire job can run. Because Sparrow
requires significant messaging at the scheduler. The ovegueues tasks on several machines, there is no central
head of this messaging presents another compelling regoint from which to perform bin-packing. While it is of-
son to distribute scheduling (and associated messaginggn the case that Sparrow places all jobs on entirely idle
over many schedulers. machines, this is not guaranteed. Applications that use

Skew in data partitioning If partitions of a dataset Sparrow could implement inter-task communication by
are unevenly distributed, hot-spots develop that can sigusing a map-reduce model, where data is shuffled and
nificantly slow response time. Such data skew can hurstored (in memory or on disk) before being joined. This
performance, even in the face of very efficient schedultrade-off is also made by several other cluster sched-
ing. For the experiments in this paper, we leveraged twaulers [12, 19, 13]).
features of Shark to alleviate hot-spots. First, we repli-Cancellation Schedulers could reduce the amount of
cated each partition in-memory on multiple machinestime slaves spend idle due to virtual reservations by can-
which allows the underlying scheduler more choice inceling outstanding reservations once all tasks in a job
placing tasks. Second, we tightly controlled data-layouthave been scheduled. Cancellation would decrease idle
of each table to ensure that partitions were balanced. time on slaves with little cost.

Virtualized environments Many modern clusters use
CPU virtualization to multiplex workloads between users 10 Related Work
and improve efficiency. Unfortunately, virtualization can Scheduling in large distributed systems has been exten-
inflate network round trip times to as much as 30ms, asively studied in earlier work.
discussed in Bobtail [28]. Because Sparrow node moniHPC Schedulers The high performance computing
tors are idle while requesting new tasks from the sched(HPC) community has produced a broad variety of
uler, 30ms network RTTs significantly degrade perfor-schedulers for cluster management. HPC jobs tend to be
mance, particularly at high system load. To mitigate thismonolithic, rather than composed of fine-grained tasks,
problem, all experiments in this paper were run on EC20bviating the need for high throughput schedulers. HPC
high memory cluster compute instances with 16 coreschedulers thus optimize for large jobs with complex
(crl.xlarge) to minimize the presence of swapping. Weconstraints, using constrained bin-packing algorithms.
found that even medium to large size EC2 nodes (e.gHigh throughput HPC schedulers, such as SLURM [14],
quad-core m2.2xlarge instances) introduced unacceptarget maximum throughput in the tens to hundreds of
able virtualization-induced network delay. scheduling decisions per second.

T Condor The Condor scheduler [24] targets high

9 Limitations and Future Work throughput computing environments using a combina-
To handle the latency and throughput demands of lowtion of centralization and distribution. Condor’s schedul
latency frameworks, our approach sacrifices some of théeng throughput is again in the regime of 10 to 100 jobs
features sometimes available in general purpose resourg@er second [6]. This is the result of several complex fea-
managers. Some of these limitations of our approach artires, including a rich constraint language, a job check-
fundamental, while others are the focus of future work. pointing feature, and support for gang scheduling, all of
Scheduling Policies When a cluster becomes over- which result in a heavy-weight matchmaking process.
subscribed, batch sampling supports aggregate faitdnlike Sparrow, Condor is a general purpose cluster re-
sharing or priority-based scheduling. Sparrow’s dis-source manager.
tributed setting lends itself tapproximatedpolicy en-  Fine-Grained Schedulers Quincy [13] provides fair-
forcement in order to minimize system complexity. ness and locality by mapping the scheduling problem
Bounding this inaccuracy under arbitrary workloads isonto a graph and using a solver to compute the opti-
a focus of future work. mal online schedule. Because the size of the graph is

With regards to job-level policies, our current design proportional to the number of slaves, scheduling latency
does not handleter-job constraintge.g. “the tasks for grows with cluster size. In a 2500 node cluster, the graph
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solver takes over a second to compute a scheduling as-oad Balancing A variety of projects explore load bal-
signment [13]; while multiple jobs can be batched in aancing tasks in multi-processor shared-memory archi-
single scheduling assignment, waiting seconds to schedectures [21, 7, 27, 10]. In such systems, processes are
ule a job that can complete in hundreds of millisecondsdynamically scheduled amongst an array of distributed
is unacceptable overhead. processors. Scheduling is necessary each time a process
Dremel [16] achieves response times of seconds witlis swapped out, leading to a high aggregate volume of
extremely high fanout. Dremel uses a hierarchical schedscheduling decisions. These projects echo many of the
uler design whereby each query is decomposed into design tradeoffs underlying our approach, such as the
serving tree. This approach exploits the internal strigctur need to avoid centralized scheduling points. They dif-
of Dremel query’s and its storage layout — it is closely fer from our approach because they focus on a single,
tied to the underlying architecture of the system. parallel machine with memory access uniformity. As a
Cluster Resource Managers Cluster resource man- result, the majority of effort is spend determining when
agers federate resource usage between multiple users atitkeschedule processes to balance load.
applications running in a cluster, typically using a cen-Theoretical Work While a huge body of existing work
tralized design. These resource managers target coarg@alyzes the performance of the power of two choices
grained resource allocation and are not designed to hanmead balancing technique, as summarized by Mitzen-
dle fine-grained task assignment. macher [18], to the best of our knowledge, no existing
YARN [19] extends the original Hadoop Map Reduce work explores performance for parallel jobs. Many exist-
scheduler [25] to support multiple frameworks by intro- ing analyses, including the work that inspired batch sam-
ducing distributed per-job application masters. YARN re-pling [20], examine a setting where balls are assigned
lies on periodic (1s, by default) heartbeats from slaveso bins, and analyze how many balls fall into the most
to determine when resources have become available. Teaded bin. This analysis is not appropriate for a schedul-
avoid wasted resources, heartbeats need to occur mojigy setting, because unlike bins, worker machines pro-
frequently than the expected task turnover rate on a macess tasks to empty their queue. Other work analyzes
chine; to handle a multi-core machines running sub-scheduling for single tasks; parallel jobs are fundamen-
second tasks, each slave would need to send hundreggly different because a parallel job cannot complete un-
of heartbeats per second, which would easily overwhelnj| the last of a large number of tasks completes.
the resource manager. Furthermore, high availability haggy j|el Disk Request Scheduling  Scheduling paral-

not yet been implemented for YARN. lel tasks has been explored in the context of parallel disk
Mesos [12] imposes minimal scheduling overhead by|Q in RAID disk arrays [26].

delegating all aspects of scheduling other than fairness to .
framework schedulers and employs batching to handidl Conclusion

high throughput. Still, Mesos was not designed to han-Thjs paper presented Sparrow, a stateless decentralized
dle short tasks, so batches scheduling requests to providgheduler that provides near optimal performance us-
high throughput. This batching introduces scheduling deing two key techniques: batch sampling and pull-based
lay on the order of seconds. scheduling. Using mathematical analysis, we demon-
A variety of other schedulers, e.g., Omega [22], tar-strated Sparrow’s provable performance. We used a real-
get course-grained scheduling, scheduling dedicated restic TPC-H workload to demonstrate that Sparrow pro-
sources for services that handle their own request-levelides response times within 14% of an optimal scheduler,
scheduling. Batch sampling instead targets fine-grainegnd used a synthetic workload running on a deployed
scheduling, which allows high utilization by sharing re- cluster to demonstrate that Sparrow is fault tolerant, pro-
sources across frameworks; we envision that batch sanyides aggregate fair shares, can enforce priorities, and
pling may be used to schedule a static subset of clustes resilient to different probe ratios and distributions of
resources allocated by a general scheduler like Omegatask durations. In light of these results, we assert that
Straggler Mitigation ~ Straggler mitigation techniques gjstributed scheduling using Sparrow presents a viable

such as task speculation [4, 31, 5, 8] deal with the nonajternative to centralized schedulers for low latency par-
deterministic variation in task execution time (rathertha 4)1e| workloads.

task wait time) due to unpredictable causes (e.g., re-

source contention and failures). These techniques are oR€ferences

thogonal (and complementary) to Sparrow’s distributed [1] Apache Thrift.ht t p: //thrift. apache. org.
scheduling technique, and could be implemented in Spar-2) The Hadapt Adaptive Analytic Platformht t p: / / hadapt .
row or by applications running on top of Sparrow. com
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