
OPTIMAL PRIORITY ASSIGNMENT AND FEASIBILITY
OF STATIC PRIORITY TASKS WITH ARBITRARY START TIMES

N. C. Audsley

November 1991

Real-Time Systems Research Group,
Dept. of Computer Science,

University of York,
York.

Y01 5DD
ENGLAND

ABSTRACT

Within the hard real-time community, static priority pre-emptive scheduling is
receiving increased attention. Current optimal priority assignment schemes
require that at some point in the system lifetime all tasks must be released
simultaneously. Two main optimal priority assignment schemes have been
proposed: rate-monotonic, where task period equals deadline, and deadline-
monotonic where task deadline maybe less than period. When tasks are
permitted to have arbitrary start times, a common release time between all tasks
in a task set may not occur. In this eventuality, both rate-monotonic and
deadline-monotonic priority assignments cease to be optimal. This paper
presents an method of determining if the tasks with arbitrary release times will
ever share a common release time. This has complexity O(m loge m) in the
longest task period. Also, an optimal priority assignment method is given, of
complexity O(n 2 + n) in the number of tasks. Finally, an efficient feasibility
test is presented, for those task sets whose tasks do not share a common release
time.

1. INTRODUCTION

Recently, scheduling theory has enjoyed renewed interest within the real-time computing
community. In particular, the problem of scheduling hard real-time systems, where
missing a single task deadline can have disastrous consequences, has motivated a
renaissance of static priority pre-emptive scheduling for periodic task sets. Within this
discipline, for every periodic release of each task, sufficient processor resource must be
guaranteed to be assigned to a task for it to meet its computational requirement before its
deadline.

Much work has been carried out in this area to provide optimal priority assignment to
tasks and to check the feasibility of a task set [Liu73, Leh89, Leu80, Leu82]. Much of this
work has used a task model which constrains all tasks to have a simultaneous release time
or critical instant [Liu73]. This simplifies both priority assignment and determination of
feasibility. The main focus of this paper is to remove this constraint and to permit periodic
tasks to have arbitrary start times. Under these conditions, known priority assignment
strategies are, in general, no longer optimal, with known feasibility tests either inefficient
or of limited use.

The relaxation towards arbitrary start times for tasks raises a number of key issues:

(i) determining whether tasks with arbitrary start times are ever, within the system
lifetime, released simultaneously;

(ii) provision of an optimal priority assignment mechanism;

(iii) determining, in a sufficient and necessary manner, feasibility of a task set with
arbitrary start times.

Formally, for a task set of cardinality n, ∆ = {τ1, τ2, ..., τi, ... τn}, each task τi is
assigned priority i (where 1 is the highest priority and n the lowest). Those tasks that have
yet to be assigned priority have upper case subscripts, i.e. τA, τB .. etc. Each τi has period
T i , deadline D i , computation time C i and offset O i . The latter represents the time at
which the first request for τi occurs, assuming that the system commences execution at
time 0. Each τi makes an initial request, or release, at O i , and then periodically every T i
time units. For all task deadlines to be guaranteed, for each request of a τi at t, the
processor must be allocated to τi for C i units in [t , t + D i), where the interval is
composed of the D i discrete time units t, t + 1, ..., t + D i − 1.

Within this general model, we make a number of assumptions:

(i) at any point in time, the highest priority runnable task is allocated the processor;

(ii) the cost of pre-emption is zero;

(iii) pre-emptions occur at the boundaries between discrete time units;

(iv) all tasks are independent: requests for any τi are not dependent upon the initiation or
completion of any other task;

(v) the computation requirement C i of task τi is constant for each release;

(vi) tasks cannot be blocked;

(vii) tasks cannot voluntarily suspend themselves.

Major contributions in static priority scheduling theory for single processor systems
adhering to this model stem from the seminal paper by Liu and Layland [Liu73] describing
the rate-monotonic priority assignment for use with a simple execution model: pre-emptive
static priority. Rate-monotonic priority assignment is optimal (amongst all possible
assignments) for periodic task sets where each τi has O i = 0 and C i ≤ D i = T i .
Priorities are assigned inversely proportional to period, i.e. the highest priority is assigned

to the shortest period task. This assignment is of O(n log2 n), i.e. that of ordering the tasks
in ∆ by period.

Leung et al [Leu82] describe the deadline monotonic priority assignment for task sets
where each τi has C i ≤ D i ≤ T i . Again, this priority assignment is optimal, assuming all
O i = 0. Priorities are assigned inversely proportional to deadline, with the shortest
deadline task given the highest priority. Deadline-monotonic priority assignment is
equivalent to rate-monotonic when all τi ∈ ∆ have T i = D i .

The problem of determining the feasibility (also termed schedulability) of a task set
under a given priority assignment is well studied. For rate-monotonic priority assignment
Liu and Layland presented a simple task set utilisation threshold test which is sufficient
and not necessary [Liu73]. Hence task sets declared infeasible by the test may at runtime
prove feasible. Sufficient and necessary tests, proposed by Joseph et al [Jos86] and
Lehoczky et al [Leh89] are also available.

For deadline-monotonic priority assignment, Leung et al propose a feasibility test
based upon construction of a schedule until the longest deadline amongst all tasks in ∆. If
all deadlines are met in the finite schedule, deadlines will always be met. Other feasibility
tests include those by Lehoczky [Leh90], Audsley et al [Aud90, Aud91b] and Nassor et al
[Nas91]. These tests assume all tasks are initially released simultaneously (at time 0) and
examine the first deadline of each task. If this deadline is met, all subsequent deadlines for
that task will be met, since the computation demand by other higher priority tasks is at a
maximum @footnote cinote@.

When the O i = 0 constraint is lifted, and the tasks in ∆ never have a simultaneous
release at runtime, the rate-monotonic priority assignment is no longer optimal. For
example, consider tasks with equal periods. Rate-monotonic priority assignment dictates
that the assignment of priorities of such tasks is arbitrary [Liu73]. Consider the priority
assignment of the tasks defined in example @example rate@.

Example @example rate@:

τ A : O A = 0 ; C A = 3 ; D A = 8 ; T A = 8

τ B : O B = 10 ; C B = 1 ; D B = 12 ; T B = 12

τ C : O C = 0 ; C C = 6 ; D C = 12 ; T C = 12

a
Task τA is given the highest priority. The assignment of priorities for τB and τC cannot be
performed in an arbitrary manner. If τB is assigned a higher priority than τC, at time 12 τC
misses a deadline. However, if τC is assigned higher priority than τB, all tasks meet their
deadlines. No general rule regarding the assignment of priorities to tasks with equal
periods has been identified in the literature.

If tasks are permitted arbitrary start times, with no simultaneous release of all tasks
ever occurring at runtime, deadline-monotonic priority assignment is also no longer
optimal. For example, consider the task set in example @example dead@.

hhhhhhhhhhhhhhh
@footnote cinote@. The simultaneous release of all tasks can occur at any time in the systems life-
time, not necessarily at time 0.

Example @example dead@:

τ A : O A = 2 ; C A = 2 ; D A = 3 ; T A = 4

τ B : O B = 0 ; C B = 3 ; D B = 4 ; T B = 8

a
Deadline-monotonic priority ordering dictates that τA is assigned a higher priority than τB.
However this leads to the deadline of τB being missed at time 4 (then successively at 12,
20, 28 ...). When priorities are reversed, (contrary to deadline-monotonic priority
assignment) task deadlines are met. Indeed, according to Leung, who describes tasks with
arbitrary offsets as asynchronous [Leu82]:

"At the present time no priority assignment has been found which is optimal for
an arbitrary asynchronous system."

When considering the feasibility for tasks with arbitrary start times and no
simultaneous release, Lehoczky’s [Leh90] and Audsley’s tests [Aud91b], developed for
deadline-monotonic priority assignments, are in general, no longer necessary@footnote

intro@. For both tests, we can assume, for the purposes of determining feasibility, that all
O i = 0 forcing a simultaneous release onto the task set. This creates a maximum
computation demand on the processor producing the hardest scenario for the tasks to meet
their deadlines. Of course, at runtime a simultaneous release does not occur. Hence, by
assuming all O i = 0 the feasibility tests become sufficient and not necessary.

Leung’s test, that of construction of a schedule, has been extended to cope with
arbitrary task start times [Leu82]: a task set is feasible if all deadlines are met in [s , 2P)
(where s = max { O 1 , O 2 , . . . , O n } and P = lcm { T 1 , T 2 , . . . , T i }) @footnote

lcm@. The feasibility task consists of constructing a schedule for this interval. In practice,
this requires the construction of a schedule for the interval [0, 2P). This approach is
sufficient and necessary but can be inefficient.

Clearly, an optimal priority assignment and an efficient sufficient and necessary test
for periodic task sets with arbitrary start times remain open issues. This paper focuses on
these issues, proposing an integrated approach to priority assignment and schedulability.
This is in contrast to previous work cited above, which separately addresses the issues of
priority assignment and feasibility testing. The integrated approach uses feasibility testing
as part of task priority assignment. Thus, when a valid priority assignment is found, the
task set is known to be feasible. Additionally, the problem of determining if all tasks in a
task set will ever have a common release time is addressed.

The remainder of this paper is arranged as follows. The next section provides a
method for determining if and when tasks share a common release time. Section 3
discusses optimal priority assignment. Section 4 defines a minimum interval that must be
considered when determining the feasibility of a task. Section 5 proposes a sufficient and
necessary test that combines priority assignment and feasibility to provide an integrated
approach. Concluding remarks are offered in section 6.

hhhhhhhhhhhhhhh
@footnote intro@. Both these tests are applicable to any fixed priority assignment rule. They are
not limited to task priorities assigned by the deadline-monotonic method.
@footnote lcm@. lcm - least common multiple of a set of integers.

2. CRITICAL INSTANTS

The feasibility tests for static priority periodic task systems cited in section 1 are founded
on the assumption that at some point of time during the lifetime of the system all tasks
share a common release time. This is termed the critical instant [Liu73] @footnote

criticalinstant@. When a critical instant occurs, the worst-case load on the processor
becomes apparent. In a static priority pre-emptive system, this forms the hardest time for
all task deadlines to be guaranteed: Theorem 1 in [Liu73] shows that if deadlines can be
guaranteed for releases starting at a critical instant, they can be guaranteed, by implication,
for the lifetime of the system.

When tasks have offsets, it is difficult, by inspection of task timing characteristics
alone, to determine if a critical instant will occur during system execution. If a critical
instant does not exist, different priority assignments and feasibility tests need to be
employed for optimality to be achieved.

The following discussion details how to determine if a task set contains a critical
instant. Firstly, we constrain the problem to that of determining if two tasks share a
common release time. This result is developed in the subsequent section to show how to
decide if a task set of arbitrary cardinality has a critical instant.

2.1. Two-Tasks

Consider ∆ = {τ1, τ2}. We note that for any τi ∈ ∆ , without loss of generality, if
O i = T i , O i can be set to 0. If O i > T i , we can reduce the offset to be O i − Q O i /T i P T i .
Hence, we can state that O 1 < T 1 and O 2 < T 2 . Thus, a critical instant will occur if

O 1 + aT 1 = O 2 + bT 2 [a,b ∈ Z]

Without loss of generality, we can reduce the smallest offset to be 0. Let O 1 < O 2 . Thus
the critical instant condition becomes:

riticalInstantCondition@)’aT 1 = O2
′ + bT 2 [a,b ∈ Z ; O2

′ = O 2 − O 1](@equation

This is a linear diophantine equation in two variables. Equation (@equation
CriticalInstantCondition@) holds if and only if the greatest common divisor (gcd) of T 1
and T 2 divides exactly into O2

′ [Jac75]. Thus, a critical instant exists if and only if

CDcondition@)’O2
′ = h gcd(T 1 , T 2) [h ∈ Z] (@equation

We note that the gcd can be found using Euclid’s Algorithm (algorithm 1.1.E in [Knu73]).
This has complexity O(loge max{T 1 , T 2 }).

Consider the task set given in example @example twotasksci@.

Example @example twotasksci@:

τ A : O A = 3 ; T A = 42

τ B : O B = 66 ; T B = 147

a
We let O A ′ = 0 and O B ′ = 63. Since gcd(42, 147) = 21 and O B ′ = 3×21, a common
release time exists between the tasks. Indeed, releases of τA occur at 0, 42, 84, 126, 168,
210,.. Releases of τB occur at 63, 210,.. Common release times are 210, 594, 798,...
hhhhhhhhhhhhhhh
@footnote criticalinstant@. A critical instant refers to a simultaneous release of all tasks in ∆. A
simultaneous release of a subset of tasks in ∆ is termed a common release time.

2.2. Many Tasks

We extend the problem to ∆ = {τ1, τ2 ... τn}. Two approachs are identified.

Naive Approach

Compare every release of τi (1 ≤ i ≤ n) with every τj (j = 1 to i − 1, i + 1 to n). This
requires a total number of comparisons given by:

cre@)’
i =1
Σ
n

j = i +1
Σ
n R

J
J T i

lcm(T i , T j)hhhhhhhhhhh
H
J
J

(@equation

In the worst case lcm(T i ,T j) = T i T j , giving:

R
J
J T i

lcm(T i , T j)hhhhhhhhhhh
H
J
J

=
R
J
J T i

T i T jhhhhh
H
J
J

= T j

Therefore, equation (@equation wcre@) can be restated:

i =1
Σ
n

j = i +1
Σ
n

T j =
i =2
Σ
n

(i − 1) T i

The complexity of this approach is O(
i =2
Σ
n

(i − 1) T i). Hence, in general the approach is

exponential.

Efficient Approach

We use the results of section 2.1 to establish a more efficient approach. Consider two
tasks, τA and τB, that share a critical instant (i.e. use the method in section 2.1). Assume
that O A = 0 and 0 < O B < T B . We can form a hybrid task, τAB to represent the critical
instant of the two tasks throughout the system lifetime. The period of τAB will be the time
between successive critical instants, with O AB being the time from 0 to the first critical
instant (hence O AB ≥ O B). Thus we replace two tasks with one.

We now identify the period and offset of τAB. The period, T AB , is the lcm of T A and
T B

@footnote lcmgcd@:

itab@)’T AB =
gcd(T A , T B)

T A T Bhhhhhhhhhhhh (@equation

Since the denominator has already been found (when determining if a critical instant exists
between τA and τB) the calculation of T AB is trivial.

The offset can be calculated using the Euclidean algorithm for finding the gcd of two
integers. This can be adapted to find two integers x and y such that (algorithm 1.2.1.E
in[Knu73]):

xTA + yTB = gcd(T A , T B)

We note that x and y represent one of an infinite set of solutions for this expression.
Multiplying through by h:
hhhhhhhhhhhhhhh
@footnote lcmgcd@. The lcm of two integers a, b, is related to the gcd of a, b, by
ab/gcd(a,b) = lcm(a,b). For further details see theorem 2.5 in [Ros85].

(hx) T A + (hy) T B = h gcd(T A , T B)

Since by equation (@equation GCDcondition@) OB = h gcd(T A , T B):

uclidone@)’(hx) T A + (hy) T B = OB (@equation

We note that one of x and y will be negative, the other positive. If the multiplier of T A is
negative, we have effectively extrapolated a common release time of the tasks prior to time
0. To find a common release time after 0 we need to make the multiplier of T A positive and
that of T B negative. This is achieved by noting that common release times occur with
period T AB. Thus, we add kTAB to the first term of equation (@equation Euclidone@)
subtract the same quantity from the second term:

uclidtwo@)’(hxTA + kTAB) + (hyTB − kTAB) = OB (@equation

where

uclidk@)’k =
R
J
J T AB

| x| hT Ahhhhhhh
H
J
J

(@equation

Since the first term of equation (@equation Euclidtwo@) is positive and the second
negative, we may rearrange:

uclidFinal@)’(hx) T A + kTAB = (hy) T B + kTAB + OB (@equation

Either side of equation (@equation EuclidFinal@) defines a simultaneous release of τA and
τB after 0. Let t equate to one side of equation (@equation EuclidFinal@):

uclidt@)’t = (hx) T A + kTAB (@equation

It may occur that t > T AB or that t > lcm(T A , T B). Therefore we form OAB by subtracting
from t a multiple of lcm(T A , T B), the resulting quantity representing the first release of τAB,
that is OAB:

askaboffset@)’OAB = t −
J
J
Q T AB

thhhh
J
J
P
T AB (@equation

where k and t are defined by equations (@equation Euclidk@) and (@equation Euclidt@)
respectively. We note that OAB ≥ OB as T AB ≥ T B and OB < T B.

We have shown that if two tasks τA and τB have a critical instant, we can form the
hybrid task τAB with period T AB and offset OAB (given by equations (@equation citab@)
and (@equation taskaboffset@) respectively). τAB defines the common release times of τA
and τB.

Successively, we can apply this technique to the remaining tasks in ∆: we compare
τAB and τC ∈ ∆ − {τA, τB}. If these two tasks share a critical instant (by section 2.1), we
formulate τABC. Therefore, we can determine whether the tasks in ∆ share a critical instant.
If this is so, the resulting hybrid task, by its offset and period, will characterise the
common release times of the tasks in ∆.

The complexity of this method is now considered. For each combination of two tasks
(or one hybrid and one task) the cost involves:

(i) deciding whether a critical instant exists for the two tasks;

(ii) formulating the hybrid task: this is trivial by equations (@equation citab@) and
(@equation taskaboffset@).

Since we may create a maximum of n − 1 hybrid tasks for a task set containing n tasks, the
complexity of finding if the tasks in ∆ share a critical instant is, as n→∞,

O(n log e max{T A ,T B ,T C ,..}). This is clearly more efficient (and less exponential) than the
"Naive Approach".

We return to example @example twotasksci@ noting that OA = 0 and OB = 63. In
section 2.1 it was shown that the tasks had a common release time. By evaluation of the
schedule the first such time is 210. We now derive the hybrid task τAB. Evaluating T AB

according to equation (@equation citab@), noting that gcd(T A , T B) = 21 :

T AB =
gcd(T A , T B)

T A T Bhhhhhhhhhhhh =
21

6174hhhhh = 294

Evaluating k in equation (@equation Euclidk@), noting that h = 3:

k =
R
J
J T AB

| x| hT Ahhhhhhh
H
J
J

=
R
J
J 294

3 × 3 × 42hhhhhhhhhhh
H
J
J

= 2

Evaluating t according to equation (@equation Euclidt@):

t = (hx) T A + kTAB = (−9 × 42) + (2 × 294) = 210

Evaluating OAB according to equation (@equation taskaboffset@):

OAB = t −
J
J
Q T AB

thhhh
J
J
P
T AB = 210 −

J
J
Q 294

210hhhh
J
J
P
210 = 210

Thus the hybrid task has period T AB = 294 and offset OAB = 210. We note that OAB

corresponds to the first common release of τA and τB.

3. OPTIMAL PRIORITY ASSIGNMENT

In the previous section it was shown how to check if the tasks in ∆ will ever be released
simultaneously. Tasks sets whose tasks will never undergo such a release are termed non-
critical-instant tasks sets, ∆* (the set of all ∆* is a subset of the set of all ∆). For any ∆*,
section 1 indicated that neither rate-monotonic or deadline-monotonic priority assignments
were optimal. We now develop an optimal priority assignment for tasks with arbitrary start
times.

Consider ∆* = {τA, τB, τC,...} of cardinality n. A priority assignment function maps
each task onto a different priority level. For ∆* there are n! distinct priority assignments
over the task set, hence the set of distinct priority assignment functions has cardinality n!.
This is denoted by Φ = {Φ1 , Φ2 , . . . , Φn!}. We denote the mapping of a task onto a
priority level by

Φ i (τ A) = j

where the i th priority assignment function maps τA onto priority level j. The inverse
mapping, of priority level to task, is denoted:

Φi
−1 (j) = τ A

When the priority ordering over ∆* specified by a priority ordering function is feasible, we
term that function a feasible priority assignment function.

In general, τA is feasible (schedulable) if and only if [Aud90, Aud91b]:

C A + I A ≤ DA

where I A represents the execution requirement (interference) of higher priority tasks in the

interval defined by the release and deadline of τA.

If τA is not feasible, and the task timing characteristics cannot be changed (i.e. C A

cannot be decreased and DA cannot be increased), the only way to make τA feasible is to
decrease I A. This is achieved by changing the priority ordering over ∆* by using a priority
assignment function that reduces the priority of a higher priority task to be lower than τA.
(Note that we could then promote a lower priority task to be higher than τA as long as the
new I A is less than the original.)

Let us now consider the effect on the feasibility of ∆* (cardinality n) for Φx ∈ Φ such
that Φx (τ A) = n. We present two theorems regarding such an assignment.

Theorem @theory prilow1@:
If τA is assigned the lowest priority, n, and is infeasible, no priority assignment
function that assigns τA priority level n produces a feasible assignment.

Proof:
Amongst the n! distinct priority assignment functions, (n − 1) ! produce an
assignment with τA at priority level n. For all such assignments, the interference
due to tasks of higher priority than τA is equal, as the same set of tasks is of
higher priority than τA in each ordering. Thus if τA is infeasible as the lowest
priority task by one assignment function, it will be infeasible under the priority
ordering of any other function assigning it the lowest priority.

a

Theorem @theory prilow2@
If τA is assigned the lowest priority, n, and is feasible, then if a feasible priority
ordering for ∆* exists, an ordering with τA assigned the lowest priority exists.

Proof:
Let us assume that an assignment function Φy produces the feasible assignment:

Φy (τ B) = 1, Φy (τ C) = 2, , . . . , Φy (τ A) = i, Φy (τ D) = i + 1, , . . . , Φy (τ E) = n

We note that τA is feasible at priority level i < n. A second priority assignment
function Φx defines:

Φx (τ B) = 1, Φx (τ C) = 2, , . . . , Φx (τ D) = i, , . . . , Φx (τ E) = n − 1, Φx (τ A) = n

Since τA is feasible if assigned priority level n (by the theorem), we can assign
τA to level n. The tasks originally assigned priority levels i + 1 . . . n in Φx are
promoted 1 place (i.e. the task at priority level i + 1 is now assigned priority i).
Clearly, the tasks assigned levels 1 . . . i + 1 remain feasible as nothing has
changed to affect their feasibility. The tasks originally assigned levels
i + 1 . . . n also remain feasible as the interference on them has decreased with
τA now being of the lowest priority. Since τA is feasible at the lowest priority
level, at least one feasible priority assignment exists with τA as the lowest
priority task. The theorem is proved.

a
The above theorems limit considerations to priority level n. We now extend the above two
theorems, to consider assignment of arbitrary priorities to tasks, rather than merely priority
n.

Theorem @theory inductive@:
Let the tasks assigned priority levels i, i +1,.., n by assignment function Φx be
feasible under that priority ordering. If there exists a feasible priority ordering

for ∆*, there exists a feasible priority ordering that assigns the same tasks to
levels i..n as Φx.

Proof:
We prove the theorem by showing that a feasible priority assignment function
Φy can be transformed to assign the same tasks to priority levels i, i +1,.., n as
Φx, whilst preserving the feasibility of Φy. The proof is by induction: Φy is
transformed successively moving tasks Φx

−1 (n) , Φx
−1 (n − 1) ,.., Φx

−1 (i) to priority
levels n, n −1,..,i under Φy.
Base
Let Φx

−1 (n) = τ A and Φy (τ A) = m, where m ≤ n. By theorem @theory prilow2@
we can move τA to the assigned level (n) under Φk without altering the feasibility
of ∆*.
Inductive Hypothesis
We assume that the tasks assigned to priority levels n −1, n −2, .., i +1 under Φx

are moved to levels n −1, n −2, .., i +1 under Φy. ∆* is assumed to remain
feasible.
Inductive Step
Let Φx

−1 (i) = τ B and Φy (τ B) = m, where m ≤ i (since the reassignment of priority
levels n, n −1, .., i +1 has promoted τB to have a priority of between 1 and i).
Under both orderings, the tasks assigned to priority levels i +1, .., n are identical.
Task τB is reassigned in Φy to level i. We know (by Φx) that τB is feasible at this
level (assuming that tasks assigned to levels i + 1..n are identical under Φx and
Φy).
After the reassignment, tasks at levels 1..i −1 remain feasible, as their respective
interferences are no greater than before the reassignment and therefore must
remain feasible. This proves the theorem.

a
We now use the above theorems in developing an optimal static priority assignment

scheme which assigns tasks to priority levels n, n −1,.., 1 in order. Only if a feasible
assignment can be made to priority level i do we proceed to priority level i −1. A generic
approach for assigning to level i (1 < i ≤ n) is now given.

Task Assignment to Priority Level i

We assume that priority levels n..i +1 have been assigned such that the tasks assigned to
those levels are feasible. Let the task assigned to priority level j be given by Ψ(j). We note
that Ψ(j) is only defined for i < j ≤ n. Let the set ∆i+1 be composed of those tasks in ∆*

that have been assigned priority levels n, n −1,..,i +1 (cardinality of ∆i+1 is n − i). For each
task τA in ∆*-∆i+1 (i.e. the set of unassigned tasks) we select a single Φk ∈ Φ such that

∀ l : i < l ≤ n : Φk
−1 (l) = Ψ(l)

The set of such Φk for priority level i is termed Φi. Set Φi contains i elements of Φ, each of
which assigns priority levels n to i +1 identically, differing in their assignment of priority
level i (each Φk assigns a different τr ∈ ∆ *-∆i+1 to level i).

For each Φk ∈ Φi we check the feasibility of the task assigned priority level i (by
virtue of reaching the assignment of priority level i we know that tasks assigned to levels
n, n −1,..,i +1 are feasible). Two cases are identified:

(i) all tasks are infeasible when assigned priority level i;

(ii) one or more tasks are feasible when assigned priority level i.
In the first case, we know by theorem @theory prilow1@ that no feasible priority

assignment exists for ∆* and so the task set is infeasible. In the second case, we may
arbitrarily select one of the feasible tasks noting by theorem @theory inductive@ that if a
feasible priority assignment for ∆* exists, one will exist with the selected task assigned
priority level i. Thus, Ψ(i) is defined. We proceed to the assignment of priority level i −1.

Eventually, we reach the assignment for level 1. This is trivial since at this stage onl
one task remains to be assigned (i.e. the cardinality of ∆*-∆2 is 1) leaving no choice for
priority level 1. The next section gives an efficient implementation for this method of
priority assignment.

Algorithmic Implementation

An algorithm implementing the priority assignment method detailed in the previous
sections is now given.

Algorithm @algorithm priassign@: Optimal Priority Assignment:

PriorityAssignment ()

begin

∆ = ∆* -- copy the non-critical instant task set

for j in (n..1) -- priority level j

unassigned = TRUE

for τ A in ∆
if (feasible(τ A, j)) then -- if τ A is fesaible

-- for priority level j

ψ(j) = τ A -- assign τ A to priority level j

∆ = ∆ - τ A

unassigned = FALSE

endif

if (unassigned)

exit -- no feasible priority assignment exists

endif

endfor

endfor

end

a
Firstly, we attempt to find a task τA that is feasible at priority level j = n. If one is found,
then by theorem @theory prilow2@ if a feasible priority assignment function exists, one
also exists with τA assigned priority level n, i.e. Ψ(j) = τ n. Next, priority level j = n − 1 is
now considered. If a task can be found (amongst the n − 1 tasks that have not yet been
assigned a priority level) that is feasible at priority level n − 1, then by theorem @theorem
inductive@ we know that if a feasible priority assignment function exists, a feasible
priority one also exists with this task assigned priority level n − 1. Successively, tasks are
found that are feasible at priority levels n to 1. If, for any priority level j a feasible task
cannot be found, no feasible priority assignment function exists.

Discussion

This priority assignment scheme is optimal in the sense that if a feasible priority ordering
exists for a task set, it will be found by this method. The proof of this assertion lies in
theorems @theory prilow1@, @theory prilow2@ and @theory inductive@.

The complexity of the priority assignment scheme lies in the number of priority
assignment functions examined. This is more readily described by examining the
behaviour of algorithm @algorithm priassign@. To find a task that is feasible at priority
level n involves testing the feasibility of a maximum of n tasks. In general, to find a task
feasible when assigned priority level i ≤ n requires testing the feasibility of a maximum of i

tasks (that is the i tasks that have yet to be assigned a priority). Therefore, across all
priority levels, the number of tests required, B, is given by:

B = n + (n − 1) + (n − 2) + ... + (n − (n − 2)) + (n − (n − 1))

Since there are n terms

B = n 2 − 1 − 2 − . . . − (n − 1) = n 2 − n −
i = 1
Σ

n − 1

i

Since the sum of all integers between 1 and m is m(m + 1)/2

B = n 2 −
2

(n − 1) nhhhhhhhhhh =
2
1hh (n 2 + n)

Therefore, finding a feasible priority assignment or showing that no such assignment exists
requires that a maximum of n 2 + n priority assignment functions be examined. In effect,
the feasibility of a maximum of n 2 + n tasks needs to be determined. This is polynomial in
n and as such is exponentially more efficient than examining all possible n! priority
orderings.

The priority assignment technique detailed above relies upon a sufficient and
necessary feasibility test being available. Such a test is developed in the following sections.

4. FEASIBILITY INTERVAL

Feasibility testing of a task set requires the definition of an interval over which that testing
needs to occur. We term this the feasibility interval. For tasks which share a critical
instant, feasibility can be determined by examining the first deadline of each task after a
critical instant. This approach is used in many of the feasibility tests cited in section 1 for
static priority task sets. Hence the feasibility interval for each τi is [t, t + D i) where t

corresponds to a simultaneous release of all tasks. When arbitrary task start times are
permitted, or more specifically when the tasks form a non-critical-instant task set, this
approach is not appropriate.

Leung et al [Leu80, Leu82, Leu89] showed that an interval of [Omax , 2P) is a
sufficient interval (where Omax represents the maximum process offset and P is defined by
the lcm of all task periods). This interval was established by considering dynamic priority
scheduling schemes, such as Earliest Deadline. For static priority schemes we now show
that, in general, a smaller interval is sufficient.

We make the initial observation that the feasibility of an individual task in a static
priority pre-emptive scheduling scheme depends only upon itself and other tasks of higher
priority. Therefore, when determining the lower and upper endpoints for the feasibility
interval of τi ∈ ∆ * we consider τi and those tasks in ∆* of higher priority. Considering the
optimal priority assignment method introduced in section 3, all priority levels 1..i −1 are

unassigned. Therefore, without loss of generality, we arbitrarily assign currently
unassigned tasks to those levels. When determining the feasibility interval, the specific
assignments of levels 1..i −1 is not important, only that all unassigned tasks have priority
greater than τi.

To aid the following discussion, we refine the offsets of the tasks in ∆* without
altering their relative phasing. The following theorem expresses this refinement.

Theorem @theory refine@:
When determining the feasibility interval for τi ∈ ∆ *, the timing characteristics
of tasks τ1, τ2,..., τi-1 can be rearranged, without altering the relative phasing of
those task releases, such that:

(a) min (O1
. . . O i) = O i = 0

(b) ∀ τ j ∈ {τ1,.. τi} : O j ∈ [O i , O i + P i)

Proof:
Let the offsets of tasks τ1, τ2,.. τi be represented by (O1 , O2 , . . . , O i). We can
form condition (a) by adding an amount l j to O j for any task τj ∈ {τ1, τ2,.., τi-1}
where O j < O i. To preserve the relative phasing of the tasks, l j is a multiple of
T j. Also, l j must be at least O i − O j. Therefore, we define

j@)’l j =
R
J
J T j

O i − O jhhhhhhhhh
H
J
J

(@equation

Thus

l j T j ≥ O i − O j

Therefore we have

O i ≤ O j + l j T j

where l j is defined by equation (@equation lj@). Since T j ≤ P i and O j < O i,

O i ≤ O j + l j T j < O i + P i

Hence we can transform (O i
. . . O i) into (O1

′ O2
′ . . . Oi

′) by the function:

Oj
′ =

I
J
J
K
J
J
L if O i ≤ O j

if O i > O j

Oj
′ = O j

Oj
′ =

R
J
J T j

O i − O jhhhhhhhhh
H
J
J
T j + O j

We note that the transformation of O i (to O i) is defined by the function, although
not necessary. Once transformed to meet (a), the task set also meets (b), since
all O j < T j. Without loss of generality, we can now assign Omin = 0 with all
other offsets reduced by Omin. We note task phasing is not affected.

a
With task timing characteristics rearranged according to Theorem @theory refine@, we
can now establish the feasibility interval for τi. Firstly, we define the initial stabilisation
time at the start of the task set execution.

Definition @definition stabilisation@:
The initial stabilisation time, S j, of task τj, is the time after which the execution
of the task set repeats exactly every P j with respect to tasks τ1, τ2,..., τj.
a

For a task set with a critical instant, that is where all O j = 0 for 1 ≤ j ≤ i, the initial
stabilisation time is 0 [Liu73]. In general, the initial stabilisation time is given by the
following lemma.

Lemma @lemma stabilisation@:
The initial stabilisation time, S j for τj is given by:

S j =
R
J
J T j

Omax − O jhhhhhhhhhhh
H
J
J

T j =
R
J
J T j

Omaxhhhhh
H
J
J

T j

where Omax = max (O1 , O2 , . . . , O j −1)

assuming O j = 0

a
The above lemma equates the initial stabilisation time for a task to be the first release of τj
at or after Omax.

Now we show a fundamental characteristic of the run-time behaviour of periodic
static priority task sets, namely that schedules repeat exactly at intervals equal to the lcm of
the task periods, after the initial stabilisation phase. More specifically, for any τj
(1 ≤ j ≤ n) the schedule repeats at intervals defined by P j. Hence the schedule repeats every
T 1 units with respect to τ1; every lcm(T 1 , T 2) units with respect to τ2 etc. This is
formalised in the following theorem.

Theorem @theory cyclic@:
For all tasks τj, 1 ≤ j ≤ n, the execution of τj at time t, denoted exec(τ ˆ(&sjˆ(&e, t),
where t ≥ S j, implies exec(τ ˆ(&sjˆ(&e, t + kP j) for 0 ≤ k ≤ ∞.

Proof: (including proof of lemma @lemma stabilisation@)
Consider the behaviour of the highest priority task τ1. It executes for the first C 1

units in any interval R
Q O1 + kT1 , O1 + kT1 + D1

M
O for 0 ≤ k ≤ ∞. Therefore, the

behaviour of τ1 is static, in that for every time t 1 that the task executes, it will
also execute at t 1 + P 1. Hence,

exec(τ ˆ(&s1ˆ(&e, t 1) => exec(τ ˆ(&s1ˆ(&e, t 1 + kP 1) 0 ≤ k ≤ ∞ t 1 ≥ S 1

We note that P 1 is exactly T 1.
The behaviour of τ2 (the second highest priority) can be expressed in a similar
manner. After the initial stabilisation time, τ2 executes in the first C 2 time units
in every interval [O2 + kT2 , O2 + kT2 + D2) for 0 ≤ k ≤ ∞, which will not be
used by any higher priority task, namely τ1. Therefore, since the times that τ1
executes are already determined, and τ1 has been released, we can assert:

exec(τ ˆ(&s2ˆ(&e, t 2) => exec(τ ˆ(&s2ˆ(&e, t 2 + kP 2) 0 ≤ k ≤ ∞ t 2 ≥ S 2

The argument can be continued until τi is reached. This task will reserve the first
C i units of computation time that are not required by any higher priority task.
Thus,

exec(τ ˆ(&siˆ(&e, t i) => exec(τ ˆ(&siˆ(&e, t i + kP i) 0 ≤ k ≤ ∞ t i ≥ S i (a)

Therefore, we have built up the static requirements of all tasks, assuming all
higher priority tasks have been released.

The only time that the assertion (a) does not hold is if at time t i, there exists a
higher priority task τj that has not yet been initially released, (i.e. t i < O j). In
this case, it may occur that exec(τ ˆ(&siˆ(&e, t), but that exec(τ ˆ(&sjˆ(&e, t i + kT i)

as t i < O j ≤ t i + kT i. This can only occur if τj has not been released, which
contradicts Theorem @theory cyclic@ and Lemma @lemma stabilisation@.
Hence Theorem @theory cyclic@ holds given Lemma @lemma stabilisation@.

We now proceed to prove Lemma @lemma stabilisation@.
All tasks are initially released before or at Omax (assuming offset refinement by
Theorem @theory refine@). However, this is not a sufficient value for S i.
Consider a release of τi before Omax with a deadline after Omax. That is:

O i + nT i < Omax < O i + nT i + D i (b)

Since τi is released before some higher priority tasks, this could lead to a time t

such that

Omax < t < O i + nT i + D i

which is idle but with the following condition holding:

exec(τ ˆ(&siˆ(&e, t + mT i) m ≥ 1

That is, due to τi running before all higher priority tasks had not been released, τi
completed its execution defined by (b) early in comparison to corresponding execu-
tions in subsequent P i periods. This cannot occur in releases of τi beginning at or
after Omax. Therefore S i corresponds to the first release of τi after Omax, given in Lem-
ma @lemma stabilisation@.
Thus, Theorem @theory cyclic@ and Lemma @lemma stabilisation@ are proved.

a
Theorem @theory cyclic@ and Lemma @lemma stabilisation@ can now be restated to
give the feasibility interval for τi.

Theorem @theory interval@:
Task τi is feasible if and only if the deadlines corresponding to releases of the
task in [S i , S i + P i) are met.

Proof: By Theorem @theory cyclic@ any τi ∈ c that executes at time
t ∈ [S i , S i + P i) will also execute at t + P i. Therefore, the schedules in the
following intervals will be identical (with respect to τ1, τ2,.. τi):

[S i , S i + P i)

[S i + P i , S i + 2P i)

. . .

[S i + mP i , S i + (m + 1) P i)

If a task deadline is missed at d from the beginning of one interval, it will be
missed at d from the beginning of all such intervals. Therefore it is sufficient to
check the deadlines of one interval only, so proving Theorem @theory
interval@.

a

Discussion

The feasibility intervals defined in the above sections are shorter than those proposed by
Leung et al [Leu80, Leu82]. The latter interval is designed for testing earliest deadline
feasibility. Therefore, determining static feasibility requires less evaluation than for
dynamic in two main ways. Firstly, the latter requires twice the lcm to be examined.
Secondly, dynamic feasibility requires the lcm of all task periods, whilst Theorem @theory
interval@ only requires the lcm to consider the periods of tasks with greater or equal
priority to the task whose feasibility is being considered.

The interval derived in this section will be exponentially less than that proposed by
Leung for most task sets. Consider 5 tasks with relatively co-prime periods, i.e.
T 1 = 9, T 2 = 11, T 3 = 13, T 4 = 17, T 5 = 29. Under Leung’s method, each task is examined
for twice the lcm of all periods @footnote leung@, hence the feasibility interval for each task
is 1,268,982 long, 6,344,910 in total (for the 5 tasks). The interval derived in the previous
section has total length T 1 for τ1, T 1 T 2 for τ2 etc. This evaluates to a total of

9 + (9 × 11) + (9 × 11 × 13) + (9 × 11 × 13 × 17) + (9 × 11 × 13 × 17 × 29) = 657705

This is approximately 10% of the total length of Leung’s interval. In general, the length of
either interval is at a maximum when all task periods are co-prime. In this case, Leung’s
interval for n tasks becomes

Leung_Interval_Total = 2n(T 1 T 2 ...T n) (@equation

The interval derived above becomes

New_Interval_Total = T 1 + T 1 T 2 +... + T 1 T 2
. . . T n (@equation

If all task periods are unitary, we have Leung_Interval_Total = 2n and New_Interval_Total = n.
Let all task periods be mutually co-prime, with T i < T i +1 (1 ≤ i < n). We can state that:

Leung_Interval_Total > New_Interval_Total (@equation

Substituting (@equation leungint@) and (@equation newint@):

2n(T 1 T 2
. . . T n) > T 1 + T 1 T 2 +... + T 1 T 2

. . . T n

Taking T 1 T 2
. . . T n from each side:

2(n − 1)(T 1 T 2
. . . T n) > T 1 + T 1 T 2 +... + T 1 T 2

. . . T n −1

The left hand side can be expanded to n − 1 terms of 2(T 1 T 2
. . . T n), giving n − 1 terms on

each side. Comparing terms, each 2(T 1 T 2
. . . T n) is clearly greater than corresponding

terms on the right hand side. Thus, equation (@equation compareints@) holds. The
difference between left and right hand sides is given by:

Leung_Interval_Total − New_Interval_Total =

(2nT 2
. . . T n − 1) T 1 + (2nT 3

. . . T n − 1) T 1 T 2 +... + (2nT n − 1) T 1 T 2
. . . T n −1

Thus, in general, New_Interval_Total is exponentially less than Leung_Interval_Total.

hhhhhhhhhhhhhhh
@footnote leung@. Leung’s approach incorporates the construction of a schedule over an interval
equal to twice the lcm of all task periods. In the worst case, when inserting any task into the
schedule, each slot in that schedule has to be examined. Hence, each task requires a check of the
entire interval.

5. FEASIBILITY AND PRIORITY ASSIGNMENT

Optimal priority assignment requires a sufficient and necessary feasibility test. The
previous section showed that such a test need only check deadlines of τi in [S i , S i + P i) to
establish feasibility. This section provides a method for examining feasibility and shows
how the combined optimal priority assignment and feasibility approach work in practice.

5.1. Feasibility Testing

The primary result of section 4 was that feasibility of a task set can be determined by
examining the executions of each task over its feasibility interval (defined by theorem
@theory interval@). This could be achieved by the construction of a schedule over each
feasibility interval. This requires that for τ1,τ2..τi, we assign sufficient slots in a schedule
for each task to meet its deadlines. However, since we need to know exactly how much
outstanding computation needs to be honoured at S i, the schedule has to be constructed for
[0, S i + P i). This is an increase of S i over the exact feasibility interval required. S i can
have a maximum value given by:

Si
max = max1 ≤ j ≤ i {τ j } + T i − 1

Therefore, as n increases, the additional interval length becomes less intrusive. This
approach is inefficient in that, in the worst case, the entire schedule has to be examined for
each task.

We now introduce a more efficient approach. For the purposes of the following
discussion, we assume that task offsets have been adjusted according to theorem @theory
refine@. For a release of τi at t, we can state that it will meet its deadline if and only if the
computational demands of higher priority tasks and C i are no greater than D i. That is:

Ii
t + C i ≤ D i (@equation

Since the feasibility of an individual task in a static priority pre-emptive scheduling
scheme depends only upon itself and other tasks of higher priority, when determining the
feasibility interval of τi ∈ ∆ * we consider τi and those tasks in ∆* of higher priority.
Considering the optimal priority assignment method introduced in section 3, all priority
levels 1..i −1 are unassigned. Therefore, without loss of generality, we arbitrarily assign
currently unassigned tasks to those levels. When determining feasibility, the specific
assignments of levels 1..i −1 is not important, only that all unassigned tasks have priority
greater than τi.

The term Ii
t is defined as follows:

Definition @definition interference@:

The interference that is suffered by τi due to higher priority tasks wishing to
execute during the release of τi starting at t is defined as Ii

t.

a
The interference Ii

t is made up of two parts: the execution demands of higher priority tasks
that have been released before t and have deadlines after t; and the executions of higher
priority tasks released in [t, t + D i). We now define these two terms.

Definition @definition remaining@:

The remaining interference on a release of τi at time t, due to higher priority
tasks that have not completed their execution at t, is defined as Ri

t.

a

Definition @definition created@:

The created interference on a release of τi at time t, due to higher priority tasks
released in the interval [t, t + D i), is defined as Ki

t.

a
Formally, we can state that the interference on τi during the release starting at t is

Ii
t = Ri

t + Ki
t

Hence, at each release of τi at t, if the following condition holds, τi is feasible for that
release.

Ri
t + Ki

t + C i ≤ D i

Formally, for the entire task set, the feasibility condition becomes:

∀ i : 1 ≤ i ≤ n (@equation

∀ t ∈ B i : Ri
t + Ki

t + C i ≤ D i

B i =
I
K
L
t | t ∈ (S i , S i + T i , S i + 2T i ,....,S i + P i)

M
N
O

Any test based upon the feasibility intervals defined by theorem @theory interval@ using
the feasibility condition given by equation (@equation feasible@) will be sufficient and
necessary if and only if the values of Ri

t and Ki
t are exact.

We now move to define Ri
t and Ki

t together with a sufficient and necessary feasibility
test.

Exact Calculation of Ri
t

The easiest method for determining Ri
t is to construct and examine a schedule for the

interval [0, t), for each release of τi at t. This is clearly inefficient. A better solution would
be to adopt Leung’s approach [Leu80], and construct a schedule for the entire task set for
the interval [0, t max), where t max is defined by the maximum endpoint of the n feasibility
intervals defined for the tasks in ∆*. This again is inefficient.

Another approach can be derived by noting, when we consider the feasibility of τi,
that its first release occurs at time 0 @footnote exact@. Therefore, since the interference due
to higher priority tasks released at time 0 will be included in Kt

i, we have Ri
0 = 0.

Definition @definition lit@:

Li
t represents the outstanding computation requirement by tasks τ1..τi at time t. Li

t

is only defined for t = 0, D i , T i + D i , 2T i + D i
. . . @footnote feas@

a

Considering the second release of τi at T i, we use Li
D i as a basis for calculating Ri

T i (releases
of τi occur at 0, T i , 2T i ,...). Knowing at D i that Li

D i computation of τ1..τi is outstanding, we
can step through the execution of tasks τ1..τi-1 for [D i , T i) noting the remaining
computation at T i. This forms the remaining interference value Ri

T i . In general, we utilise
hhhhhhhhhhhhhhh
@footnote exact@. By rearrangement of task timing characteristics according to theorem
(@theorem refine@) min(O 1 ..O i) = O i with O i = 0.
@footnote feas@. We note that if τi has met its deadline at t then no part of Li

t will be due to τi.

Li
(m −1) T i + D i as the basis to determine Ri

mT i , m ∈ Z+: all releases of τ1..τi-1 in
[(m − 1) T i + D i , mT i), together with Li

(m −1) T i + D i , can contribute to Ri
mT i .

A set of tuples β can be found, where each tuple (C j , t) represents a demand by τj ∈
{τ1, τ2,.., τi-1} for C j units of computation time for a release of τj at any time t ∈
[(m − 1) T i +D i , mT i). If Li

(m −1) T i +D i > 0 we introduce an extra tuple
(Li

(m −1) T i +D i , (m − 1) T i + D i) into β to represent the outstanding computation at
(m − 1) T i + D i. The tuple set β is ordered in non-decreasing t values. Ri

t can now be
determined by stepping through the computation demands defined by the tuples in β. The
following algorithm encapsulates this approach.

Algorithm @algorithm rtuples@: Exact Remaining Interference.

RemainingInterference ()

begin

time = t - Ti + Di

Ri
t = 0

-- create and order tuple set β
-- for this release of τ i

for (C, tr) in β
if (tr > time + Ri

t) then

Ri
t = 0

endif

time = tr

Ri
t = Ri

t + C

endfor

Ri
t = Ri

t - (t - tr)

if (Ri
t < 0) then

Ri
t = 0

endif

end

a
The result of the algorithm is that rem = Ri

t. We note that β is empty for Ri
0, hence on

termination Ri
0 = rem = 0.

The complexity of the algorithm is due to the ordering of the tuple set. This can be
achieved in O(N i log 2 N i) where N i gives the cardinality of β for τi. In the worst case N i is
given by:

N i = 1 +
j = 1
Σ

i − 1 R
J
J T j

T i − D ihhhhhhhh
H
J
J

(@equation

This approach is also sufficient and necessary in that any value of Ri
t for a release of τi at t

(1 ≤ i ≤ n) is exact. The proof of this is trivial.

Exact Calculation of Ki
t

One approach to solve is to define a set of tuples η, in the same manner identified in
section 5.1, with one tuple (C j , t j) per release of τj ∈ {τ1..τi-1} at t j ∈ [t, t + D i). Each
tuple is used to step along the interval [t, t + D i) to calculate the demands of higher
priority tasks. Allowance is made for the outstanding computation at t, namely Ri

t, by
stepping through [t + Ri

t , t + D i). The tuple set is ordered by non-decreasing t. The
following algorithm illustrates the approach by calculating Ki

t.

Algorithm @algorithm tuples@: Exact Created Interference.

CreatedInterference ()

begin

next_free = Ri
t + t

Ki
t = 0

total_created = Ri
t

-- create and order tuple set η
-- for this release of τ i

for (C, tr) in η
total_created = total_created + C

if (next_free < tr) then

next_free = tr

endif

Ki
t = Ki

t + min (t + Di - next_free, C)

next_free = min (t + Di, next_free + C)

endfor

Li
t+Ti = total_created - create - max(Di, Ri

t)

end

a
Variable next_free is used to keep track of the next free slot in [t, t + D i). For tuple
(C, t), this is always at least t as a task cannot execute before it is released. The
initialisation of next_release indicates the first free slot occurs at t + Ri

t. Variable
create tracks the part of the computation demanded by τ1..τi-1 in [t, t + D i) which is
actually met in the interval. Hence on termination, Ki

t = create. Variable
total_created contains the total computation demand during the interval. It is
initialised to Ri

t to allow for the outstanding computation at t. The value of Li
t + T i , required

for calculating Ri
t + T i can be formed from the termination value of total_created by

subtracting create and max(Ri
t , D i). Note that if Ri

t ≥ D i the release of τi at t cannot be
feasible.

The complexity of the approach lies in ordering the tuples, i.e. O(N i log 2 N i) where N i

gives the number of tuples to be ordered. In the worst case, N i is given by:

N i =
j = 1
Σ

i − 1 R
J
J T j

D ihhh
H
J
J

(@equation

The approach is sufficient and necessary in that the value of Ki
t on termination is

exact. The proof lies in observing that only the computation demand that is honoured
within [t, t + D i) contributes toward Ki

t.

Sufficient and Necessary Feasibility Test

The following algorithm defines a sufficient and necessary schedulability test. Its
framework is based upon the feasibility condition, equation (@equation feasible@), and
algorithms @algorithm rtuples@ and @algorithm tuples@ to provide calculations for Ri

t

and Ki
t respectively.

Algorithm @algorithm second@: Sufficient and Necessary Feasibility.

FeasibilityTest ()

begin

for τ i in ∆* -- taken in order τ 1, τ 2,...

t = 0;

Li
t = 0

while (t < Si + Pi)

-- Calculate Ri
t - create and order β

RemainingInterference ()

-- Calculate Ki
t - create and order η

CreatedInterference ()

if (Ci + Ri
t + Ki

t > Di)

exit -- τ i not feasible so quit

endif

t = t + Ti -- go to next release of τ i

endwhile

endfor

end

a
The algorithm assumes task offsets are rearranged according to theorem @theory refine@
for each loop iteration of τi.

The complexity of the algorithm is held in the number of releases of each task
examined together with the complexity of determining Ri

t and Ki
t. In general, for τn, we

examine (P n /T n) − 1 releases. The worst-case for Ri
t and Ki

t are given by equations
(@equation nirem@) and (@equation nicre@) respectively. Hence, the complexity is
given by:

O

I
J
J
J
J
L

T n

P nhhhh

I
J
J
J
L

j = 1
Σ

n − 1
I
J
J
L

R
J
J T j

T n − Dnhhhhhhhhh
H
J
J

+
R
J
J T j

Dnhhhh
H
J
J

M
J
J
O

M
J
J
J
O

M
J
J
J
J
O

This approach is sufficient and necessary as the values calculated for Ri
t and K i t

are
exact for each iteration of every τi ∈ ∆ *.

Theorem @theory schedexact@:
The schedulability test defined by equation (@equation feasible@) using
algorithms @algorithm tuples@ and @algorithm rtuples@ for Ri

t and Ki
t

respectively is sufficient and necessary.

Proof:
Consider τi ∈ ∆ *. By theorem @theory interval@, if each release of τi in
[S i , S i + P i) meets its deadline, τi will always meet its deadline.

Consider the release of τi at t. In a static priority system, the only tasks that can
prevent τi from meeting its deadline at t + D i are those higher priority tasks that
need to execute in [t, t + D i). This is quantified as interference: Ri

t + Ki
t. Since

these values are exact, the test is sufficient and necessary.

a

5.2. Combining Priority Assignment and Feasibility Testing

The optimal priority assignment approach outlined in section 3 finds tasks feasible for
priority levels n, n −1, ..., 1, in that order. The overall complexity of the combined
approach is bounded by n times the complexity for determining the feasibility of τn, that is:

O

I
J
J
J
J
L

n
T n

P nhhhh

I
J
J
J
L

j = 1
Σ

n − 1
I
J
J
L

R
J
J T j

T n − Dnhhhhhhhhh
H
J
J

+
R
J
J T j

Dnhhhh
H
J
J

M
J
J
O

M
J
J
J
O

M
J
J
J
J
O

Consider the following task set.

Example @example exnon@:

τ ˆ(&sAˆ(&e : C A = 2 DA = 3 OA = 2 T A = 4

τ ˆ(&sBˆ(&e : C B = 3 DB = 4 OB = 0 T B = 8

τ ˆ(&sCˆ(&e : C C = 1 DC = 5 OC = 1 T C = 8

a
Trivially the above is a non-critical instant task set. Firstly, we attempt to assign a task to
priority level 3. Both τA and τB are infeasible at this level (for brevity we omit the
calculation). Consider τC at level 3 (arbitrarily we assign τA to 1 and τB to 2). Task offsets
are refined according to theorem @theory refine@: O1 = 1, O2 = 7 and O3 = 0. For τ3,
P i = 8 with S i = 8. Therefore, the feasibility interval is [8, 16) implying we must check the
deadline of the release of τ3 at 8:

Release of τ3 at 8:

Calculate R3
8. Since L3

0 = 0, tuple set β = {(2,2) , (2,6) , (3,7) } Stepping through time,
we derive R3

8 = 2.

Calculate K3
8. Tuple set η = {(2,10) }. Stepping through time, we derive K3

8 = 2.

Giving R3
8 + K3

8 + C 3 = 5 = D3

Hence, if a feasible priority assignments exist for the task set, (at least) one will
assign τC to priority level 3. The process of assignment and feasibility testing
continues for levels 2 and 1, although is omitted for brevity. Tasks τB and τA are
assigned levels 1 and 2 respectively and are feasible. An extended example is given

in the appendix.

6. CONCLUSIONS

This paper has considered and addressed several outstanding issues in static priority
scheduling theory for task sets containing tasks with arbitrary start times. Presented in the
paper have been efficient methods for

(i) determining if a set of tasks each with an arbitrary start time share a critical instant;

(ii) determining an optimal priority assignment;

(iii) determining feasibility.

Whilst no previous work is known to the authors regarding (i) and (ii), a comparison can
be drawn between (iii) and a feasibility test proposed by Leung, based upon the
construction of a schedule for a pre-determined interval. We have reduced Leung’s
interval, so making the feasibility problem easier, as well as offering a more efficient
feasibility test for the reduced interval.

Whilst this paper presents a complete piece of work, further consideration of the
feasibility test may yield more efficiency. The theory provided in this paper, provides a
springboard for efficient solution of many problems that utilise task sets with arbitrary start
times. Also, the theory in this paper is extensible. For example, it is the authors contention
that the priority ceiling protocol theory [Sha90] can be incorporated trivially, thus
permitting tasks to block on resource access. Overall, the theory presented in this paper
provides a suitable vehicle for future research into the feasibility of even more generalised
and flexible static priority task sets containing tasks with arbitrary timing constraints.

REFERENCES

Aud90. N. C. Audsley, ‘‘Deadline Monotonic Scheduling’’, YCS 146, Department of
Computer Science, University of York (October 1990).

Aud91a. N. C. Audsley, A. Burns, M. F. Richardson and A. J. Wellings , ‘‘STRESS: A
Simulator For Hard Real-Time System’’, RTRG/91/106, Real-Time Research
Group, Department of Computer Science, University of York (October 1991).

Aud91b. N. C. Audsley, A. Burns, M. F. Richardson and A. J. Wellings, ‘‘Hard Real-
Time Scheduling: The Deadline Monotonic Approach’’, Proceedings 8th IEEE
Workshop on Real-Time Operating Systems and Software, Atlanta, GA, USA (15-17
May 1991).

Jac75. T. H. Jackson, Number Theory, Routledge and Kegan Paul (1975).

Jos86. M. Joseph and P. Pandya, ‘‘Finding Response Times in a Real-Time System’’, The
Computer Journal (British Computer Society) 29(5), pp. 390-395, Cambridge
University Press (October 1986).

Knu73. D. E. Knuth, The Art of Computer Programming: Vol 1 Fundamental Algorithms,
Addison-Wesley (2nd Edition 1973).

Leh90. J. P. Lehoczky, ‘‘Fixed Priority Scheduling of Periodic Task Sets With Arbitrary
Deadlines’’, Proceedings 11th IEEE Real-Time Systems Symposium, Lake Buena
Vista, FL, USA, pp. 201-209 (5-7 December 1990).

Leh89. J. Lehoczky, L. Sha and Y. Ding, ‘‘The Rate-Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behaviour’’, Proceedings IEEE Real-
Time Systems Symposium, Santa Monica, California, pp. 166-171, IEEE Computer
Society Press (5-7 December 1989).

Leu89. J. Y. T. Leung, ‘‘A New Algorithm for Scheduling Periodic, Real-Time Tasks’’,
Algorithmica 4, pp. 209-219 (1989).

Leu80. J. Y. T. Leung and M. L. Merrill, ‘‘A Note on Preemptive Scheduling of Periodic,
Real-Time Tasks’’, Information Processing Letters 11(3) (November 1980).

Leu82. J. Y. T. Leung and J. Whitehead, ‘‘On the Complexity of Fixed-Priority
Scheduling of Periodic, Real-Time Tasks’’, Performance Evaluation (Netherlands)
2(4), pp. 237-250 (December 1982).

Liu73. C. L. Liu and J. W. Layland, ‘‘Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment’’, Journal of the ACM 20(1), pp. 40-61 (1973).

Nas91. E. Nassor and G. Bres, ‘‘Hard Real-Time Sporadic Task Scheduling for Fixed
Priority Schedulers’’, Proceedings International Workshop on Responsive Systems,
Golfe-Juan, France, pp. 44-47, INRIA (Institut National de Recherche en
Informatique et en Automatique) (3-4 October 1991).

Ros85. K. H. Rosen, Elementary Number Theory and its Applications, Addison-Wesley
(1985).

Sha90. L. Sha, R. Rajkumar and J. P. Lehoczky, ‘‘Priority Inheritance Protocols: An
Approach to Real-Time Synchronisation’’, IEEE Transactions on Computers 39(9),
pp. 1175-1185 (September 1990).

APPENDIX: Extended Example

Consider the task set, ∆*, given in example @example app@.

Example @example app@:

τ A : OA = 4 ; C A = 1 ; DA = 1 ; T A = 10

τ B : OB = 5 ; C B = 1 ; DB = 2 ; T B = 10

τ C : OC = 0 ; C C = 5 ; DC = 6 ; T C = 20

τ D : OD = 7 ; C D = 8 ; DD = 9 ; T D = 40

τ E : OE = 27 ; C E = 8 ; DE = 14 ; T E = 40

τ f : OF = 0 ; C F = 6 ; DF = 30 ; T F = 40

a
We note that the tasks τA..τF are arranged in both rate-monotonic and deadline-monotonic
order, that is in order of increasing periods and deadlines. The utilisation of ∆* is 100%.

Common Release Time

We determine if a common release time exists for the tasks in ∆* using the method
outlined in section 2.2. By inspection, τC and τF both have offset 0, hence share a common
release time at 0. We form the hybrid task τCF. The gcd is calculated by Euclid’s algorithm,
returning gcd(T C , T F) = 20, with x = 1 and y = 0. The period T CF is given by equation
@equation citab@:

T CF = T C gcd(T C , T F)

T Fhhhhhhhhhhhh =
20

20 × 40hhhhhhhh = 40

We now evaluate OCF. Evaluating k in equation (@equation Euclidk@), where h = 0,
leaves k = 0. Evaluating t according to equation (@equation Euclidt@) leaves t = 0. The
offset, OCF, given by equation @equation taskaboffset@ is OCF = 0, coninciding with the
first common release of τC and τF.

Next, we consider if the hybrid task, τCF, shares a common release time with τA. By
equation @equation CriticalInstantCondition@ in section 2.1 we note that τCF and τA have
a common release time if:

OA − OCF = h gcd(T A , T CF) [h ∈ Z]

Since, by Euclid’s algorithm, gcd(T A , T CF) = 40, h = 20/7 and so is not an integer. Thus τCF
and τA, and therefore all the tasks in ∆* do not share a common release time.

Now, we move to consider the priority assignment and feasbility of the task set,
according to the method established in sections 3 and 5: each priority level from 6 to 1 is
assigned to a task in ∆*.

Priority Level 6

Let Ψ(6) = τˆ(&sFˆ(&e i.e. we wish to see if τF is feasible when assigned the lowest
priority. Now we test the feasibility of τF at priority level 6. We have no need to refine
offsets as OF is the minimum offset of ∆*. By theorem @theory interval@, the deadlines
of τF need to be checked for releases occuring in [S F , S F + P F) where P F = 40 and
S F = R 27/40 H 40 = 40. Hence the feasibility interval is [40, 80), requiring the examination
of the release of τF at 40, assuming all other tasks have a higher priority:

Release of τF at 40:

Calculate R6
40. Tuple set β is

β = {(1,4) , (1,14) ,(1,24) , (1,34) , (1,5) , (1,15) , (1,25) , (1,35) ,

(5,0) , (5,20) , (8,7) , (8,27) }

Stepping through time, we derive R6
40 = 0 by algorithm @algorithm rtuples@.

Calculate K6
40. Tuple set η is:

η = {(1,44) , (1,54) , (1,64) , (1,45) , (1,55) , (1,65) , (5,40) , (5,60) , (8,47) , (8,67) }

Stepping through time, we derive K6
40 = 27 by algorithm @algorithm tuples@.

Giving R6
40 + K6

40 + C F = 33 > DF. Hence τF is not feasible at priority level 6.

Let Ψ(6) = τˆ(&sEˆ(&e. We test the feasibility of τE at priority level 6. According to
theorem @theory refine@ we refine task offsets:
OA = 7, OB = 8, OC = 13, OD = 20, OF = 13, OE = 0. The feasibility interval for τE is
[S E , S E + P E) where S E = R 27/40 H 40 = 40 and P E = 40, giving [40, 80). We check the
release of τE at 40 assuming all other tasks have higher priority:

Release of τE at 40:

Calculate R6
40. Tuple set β is

β = {(1,7) , (1,17) , (1,27) , (1,37) , (1,8) , (1,18) , (1,28) , (1,38) ,

(5,13) , (5,33) , (8,20) , (6,13) }

Stepping through time, we derive R6
40 = 3.

Calculate K6
40. Tuple set η = {(1,47) , (1,48) , (5,53) , (6,53) }. Stepping through time,

K6
40 = 3.

Giving R6
40 + K6

40 + C E = 14 = DE. Hence τE is feasible at priority level 6.
We move to assign priority level 5.

Priority Level 5

Let Ψ(5) = τˆ(&sFˆ(&e. Now we test the feasibility of τF at priority level 5. We have no
need to refine offsets as OF is the minimum offset of ∆*. By theorem @theory interval@,
the deadlines of τF need to be checked for releases occuring in [S F , S F + P F) where
P F = 40 and S F = R 27/40H 40 = 40. Hence the feasibility interval is [40, 80), requiring the
examination of the release of τF at 40 assuming τA, τB, τC, τD have higher priority:

Release of τF at 40:

Calculate R5
40. Tuple set β is

β = {(1,4) , (1,14) , (1,24) , (1,34) , (1,5) , (1,15) , (1,25) , (1,35) , (5,0) , (5,20) , (8,7) }

Stepping through time, we derive R5
40 = 0.

Calculate K5
40. Tuple set η is

η = {(1,44) , (1,54) , (1,64) , (1,45) , (1,55) , (1,65) , (5,40) , (5,60) , (8,47) }

Stepping through time, we derive K5
40 = 24.

Giving R5
40 + K5

40 + C F = 30 = DF. Hence τF is feasible at priority level 5.
We move to assign priority level 4.

Priority Level 4

Let Ψ(4) = τˆ(&sDˆ(&e. We test the feasibility of τD at priority level 4. According to
theorem @theory refine@ we refine task offsets: OA = 7, OB = 8, OC = 13,OD = 0. The
feasibility interval for τD is [S D , S D + P D) where S D = R 13/40 H 40 = 40 and P E = 40, giving
[40, 80). We check the release of τD at 40 assuming τA, τB and τC are of higher priority.

Release of τD at 40:

Calculate R4
40. Tuple set β is

β = {(1,7) , (1,17) , (1,27) , (1,37) , (1,8) , (1,18) , (1,28) , (1,38) , (5,13) , (5,33) }

Stepping through time, we derive R4
40 = 0.

Calculate K4
40. Tuple set η = {(1,47) , (1,48) }. Stepping through time, K4

40 = 2.

Giving R4
40 + K4

40 = 10 > DD. Hence τD is not feasible at priority level 4.

Let Ψ(4) = τˆ(&sCˆ(&e. We test the feasibility of τC at priority level 4. Since OC = 0 we do
not need to rearrange task offsets. The feasibility interval for τC is [S C , S C + P C) where
S C = R 14/20 H 20 = 20 and P E = 40, giving [20, 60). We check the releases of τC at 20 and
40, assuming τA, τB and τD are of higher priority.

Release of τC at 20:

Calculate R4
20. Tuple set β = {(1,4) , (1,14) , (1,5) , (1,15) , (8,7) }. Stepping through

time, we derive R4
20 = 0.

Calculate K4
20. Tuple set η = {(1,25) , (1,24) } with K4

20 = 2.

Giving R4
20 + K4

20 + C C = 7 > DC. Hence τC is not feasible at priority level 4.

Let Ψ(4) = τˆ(&sBˆ(&e. We test the feasibility of τB at priority level 4. We refine offsets
according to theorem @theory refine@: OA = 9, OC = 15, OD = 2, OB = 0. The feasibility
interval for τB is [S B , S B + P B) where S B = R 15/10 H 10 = 20 and P B = 40, giving [20, 60).
We check the releases of τB at 20, 30, 40 and 50 assuming τA, τC and τD are of higher

priority.
Release of τB at 20:

Calculate R4
20. Tuple set β = {(1,9) , (1,19) , (5,15) , (8,2) }. Stepping through time, we

derive R4
20 = 1.

Calculate K4
20. Since tuple set η = {}, K4

20 = 0.

Giving R4
20 + K4

20 + C B = 2 = DB. Hence τB is feasible at priority level 4 for the
release at 20.
Release of τB at 30:

Calculate R4
30. We note that L4

21 = 0, that is the remaining workload of τA, τC and τD at
the deadline of the release of τB at 20 was 0. Tuple set β = {(1,29) }. Stepping
through time, we derive R4

30 = 0.

Calculate K4
30. Since tuple set η = {}, K4

30 = 0.

Giving R4
30 + K4

30 + C B = 1 < DB. Hence τB is feasible at priority level 4 for the
release at 30.
Release of τB at 40:

Calculate R4
40. We note that L4

31 = 0, that is the remaining workload of τA, τC and τD at
the deadline of the release of τB at 30 was 0. Tuple set β = {(1,39) , (5,35) }. Stepping
through time, R4

40 = 1.

Calculate K4
40. Since tuple set η = {}, K4

40 = 0.

Giving R4
40 + K4

40 + C B = 2 = DB. Hence τB is feasible at priority level 4 for the
release at 40.
Release of τB at 50:

Calculate R4
50. We note that L4

41 = 0, that is the remaining workload of τA, τC and τD at
the deadline of the release of τB at 40 was 0. Tuple set β = {(8,42) , (1,49) }. Stepping
through time, R4

40 = 1.

Calculate K4
50. Since tuple set η = {}, K4

50 = 0.

Giving R4
50 + K4

50 + C B = 2 = DB. Hence τB is feasible at priority level 4 for the
release at 50. Therefore, τB is feasible for releases at 20, 30, 40 and 50 and so is
feasible at priority level 4.

We move to assign priority level 3.

Priority Level 3

Let Ψ(3) = τˆ(&sDˆ(&e. We test the feasibility of τD at priority level 3. We refine offsets
according to theorem @theory refine@: OA = 7, OC = 13, OD = 0. The feasibility interval
for τD is [S D , S D + P D) where S D = R 13/40 H 40 = 40 and P B = 40, giving [40, 80). We
check the release of τD at 40, assuming τA and τC are of higher priority.

Release of τD at 40:

Calculate R4
40. Tuple set β = {(1,7) , (1,17) , (1,27) , (1,37) , (6,13) , (6,33) }. Stepping

through time, we derive R4
40 = 0.

Calculate K4
40. Tuple set η = {(1,47) }. Stepping through time, K4

40 = 1.

Giving R4
40 + K4

40 + C D = 9 = DD. Hence τD is feasible at priority level 3.
We move to priority level 2.

Priority Level 2

Let Ψ(2) = τˆ(&sCˆ(&e. We test the feasibility of τC at priority level 2. There is no need to
refine deadlines according to theorem @theory refine@ as OC = 0. The feasibility interval
for τC is [S C , S C + P C) where S C = R 14/20 H 20 = 20 and P C = 20, giving [20, 40). We check
the release of τC at 20, assuming τA is of higher priority.

Release of τC at 20:

Calculate R4
20. Tuple set β = {(1,4) , (1,14) }. Stepping through time, we derive

R4
20 = 0.

Calculate K4
20. Tuple set η = {(1,24) }. Stepping through time, we derive K4

20 = 1.

Giving R4
40 + K4

40 + C C = 6 = DC. Hence τD is feasible at priority level 2.
We move to priority level 1.

Priority Level 1

One unassigned task remains, hence let Ψ(1) = τˆ(&sAˆ(&e. Refining offsets, OA = 0. The
feasiblity interval is [S A , S A + P A) where S A = R 0/10 H 10 = 0 and P A = T A = 10, giving [0,
10). We check the release os τA at 0 only. Trivially, since no higher priority tasks exist,
R1

0 = K1
0 = 0, giving C A = 1 = DA. Thus τA is feassible at priority level 1.

Summary

The task set ∆* is feasible with Ψ(1) = τˆ(&sAˆ(&e, Ψ(2) = τˆ(&sCˆ(&e,
Ψ(3) = τˆ(&sDˆ(&e, Ψ(4) = τˆ(&sBˆ(&e, Ψ(5) = τˆ(&sFˆ(&e and Ψ(6) = τˆ(&sEˆ(&e.
Figure 1 shows a simulation of task set ∆* illustrating that no deadlines are missed when
the above priority assignment is used. In contrast, Figure 2 shows the result of using
deadline-montonic priority ordering: tasks miss deadlines. The figures are produced using
the STRESS real-time simulator [Aud91a]. In both figures, time increases horizontally to
the right, with individual dashed timelines shown for each task. Tasks have solid
horizontal times whilst preempted. Task releases are given by a circle on the timeline;
execution by a hatched box; task completion by a raised circle. Deadlines are indicated by
a vertical solid line with an arrow head on the timeline. Missed deadlines are shown by a
raised solid bullet.

0 50 100 150

τA

τC

τD

τB

τF

τE

Figure 1: Task Set ∆* with Optimally Assigned Priorities.

g

g

g g

g

g g

g

g g

g

g

0 50 100 150

τA

τB

τC

τD

τE

τF

Figure 2: Task Set ∆* with Deadline-Monotonic Assigned Priorities.

